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Simultaneous quadratic inequalities
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R. J. Coox (Cardiff)

1. Introduction. H. Davenport and H. Heilbronn [6] proved that if
5
(1) Q(x) = D v
i=1

is an indefinite quadratic form with real coefficients, such that at least
one of the ratios »/ is irrational, then for every ¢ > 0 there exist integers
&y, ..., T, DOt all zero, such that :

Q)| < e.

Here we shall consider the analogous problem for two diagonal quad-
ratic forms having real coefficients. Let :

9 9
(2) F(@) = ) Aot and @) = D ot

i=1 i=1

The condition that at least one of the ratios #;/» in (1) be irrational is
equivalent to requiring that not all of the binary linear forms »u %0
have coefficients which are linearly dependent over the rationals. We
associate ternary linear forms

v ow
3) Lyg(uyv,w) = |4 4 &), 1<i<j<k<?9,
My i Bk

with the two forms F and @G.

THEOREM. Let F(x) and G(x) be diagonal quadratic forms, having real
algebraic coefficients, in 9 variables. Suppose that

(i) Every member of the pencil {LF+MG} (£, #H) # (0,0)] is an
indéfinite form with at least b mon-zero coefficients; and

(ii) Not all of the ternary linear forms L, associated with ¥ and @
have enefficients which are linearly dependent over the rationals.
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Then for any e> 0 there exist integers D1y .0y Ly, Mot all zero, such
that

(4) [F(x)|<e and |G(x)|<e.

This is a partial complement to the analogous result for Diophantine
equations [3]. By an appropriate application of Hua’s Lemma, analogous
results may be obtained for R additive inequalities of degree k. We have
assumed that the coefficients of # and @ are algebraic in order to simplify
the statement of the Theorem. It is possible to obtain results for forms
having real coefficients, and we shall state these results in § 2.

This paper is essentially part of my PhD thesis, London 1971, and I
am grateful to Prof. G. L. Watson for his advice and encouragement,
and to the Science Research Council for a grant.

2. Preliminaries. We begin by normalizing the inequalities (4). Let
Loy v, w) = ﬁu+qv+7'wa

the.n Wwe may suppose that p, ¢ and r are linearly independent over the
rationals, and in particular r # 0. For any given &£> 0 we choose an
integer m > ¢! and take

n = mmaX (4| +|4s|, || + |p,l).
‘We define the normalized forms A (x) and B(x) by
A =m~ uF—2,6) and B =mwH(u, F—1,6).

Thus A(x) and B(x) are diagonal quadratic forms in 9 variables such
?;hat every member of the pencil {#£4 +.#/B} [(£, .#) + (0, 0)] is an
indefinite form with at least 5 non-zero coefficients. We write

9 9
(5) Ax) = Maga? and  B(x) = D) bat,
=1 =
so that 1
(6) a =by =n, a,=b,=0, a;= —npfrs and by = ng/r.

‘ 11'1 order to prove the Theorem it is sufficient to prove that there
exist integers x,, ..., 2,, not all zero, such that

(N |[A(®)]<1 and |B(®)|<1.

DEFINITION. For any real number a, we say that the real linear
form pu+ qv+rw is of order a if the inequalities

(8) lPu+gv+rw| < U™,  0< max(lul, o], lw|) < U,

have an integer solution (u,v,w) for all U greater than some Ugy(a).
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LeMMA 1. Let p, q, r be algebraic numbers which are linearly independ-
ent over the rationals. Then for any 6> 0 there are only finitely many
integer points (u, v, w) with

(9) |pu & qu 4 rw| < max (|u|, ||, Jw])27°.

This is a particular case of Corollary 1 of Schmidt [7].
COROLLARY. The linear form L,,3 is of order at most 2.

Proof. We have L3 = pu+qv+rw where p, q, r are algebraic
numbers which are linearly independent over the rationals. Thus

M = min|pu+qv+rw| > 0,

where the minimum is taken over those integer points (u, v, w) # (0, 0, 0)
which satisfy (9). Hence if U?**®> M~! there are no solutions of (8) so
L,,, is not of order 2 + 6. This is true for any é > 0 and so L,,; is of order
at most 2.

‘We shall only require that L,,; is not of order oo, and an analogue
of the Theorem can be proved for quadratic forms F and G having real
coefficients provided that not all of the associated ternary linear forms
are of order oco. It is straightforward to prove that the coefficients of
the ternary linear forms of order oo form a set of Hausdorff dimension 2.
Also, the proof of Theorem XIV of Cassels [2], p. 94, may readily be
modified to show that there are ternary linear forms of order oo whose
coefficients are linearly independent over the rationals.

For the rest of this paper we shall suppose that L,,; is not of order oo.
We can choose a real number ¢ such that L,,; is not of order o and take

= 1/2(c+2). We denote by é a small positive constant chosen so that
o< A4/4.

‘We recall that the coefficients of the normalized forms A (x) and
B(x) are a; and b; respectively. We take

(10) 7i=ai‘1+biﬂ fOI‘ % =1,...,9.

Let P be a large integer which will later be restricted to lie in a certain
sequence. By X € Y we mean |[X|< CY where C is independent of P.
We let ¢ denote a small positive constant and we write e(2) for exp(2niz).

LEMMA 2. Suppose that for every large integer P there exist real numbers
a, B and integers A;, Q;, i = 1,2, 3, satisfying

(11) max(|al, 18]) < P°,
(12) Yi = Ai/Qi+O(PA_2)7 t=1,2,3,
(13) 0 #£0Q; <P, ¢=1,2,3
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and
(14) (4,, 4,) #(0,0).
Then L,yq is of order o.

Proof. Suppose that for all sufficiently large integers P there exist
solutions of (12)—(14). Now

yi=1maa, y=np, and ry;=n(¢f—pa)
8o that

q(A4:/Q2) —p(4,/Q,) = r(4:/Qs) + o(P*%).
Hence .

94,0:Q5 —qA4:9,Q3+74,0,Q,.| < QleQsPA_z < P,
Algo 4; €« P°** < P* for ¢ = 1,2, 3, so taking

U =A,0:0s, v=—-4,0,0;5 and w = 40,0,
we have
|pw+ v +rw| < P*-?
and
0 < max(|ul, |0, lw|) < P*.

Therefore for any e > 0, L,,5 is of order (2—44)/44 —¢, which gives
the Lemma provided that e is small.

COROLLARY. We may suppose that there exists an infinite subsequence
P = P (o) of the positive integers such that for all PeP? (11)—(14) are not
all soluble.

3. General lemmas

LEMMA 3. The equations A = B = 0 have a non-singular real solution
with nmone of the variables vanishing.

This is essentially Lemma 2.4 of [3].
From such a solution we have a solution y of the equations
@it tagxy =0, bigyit...+byye =0

such that y; > 0 for ¢ =1,...,9. Then, choosing®a suitable linear mul-
tiple of this solution, we may suppose that y;> 1 for ¢ =1,...,9. We
now choose a constant C, independent of P, so that

{15) I<y<C* for i=1,..,9.
For i =1,...,9 we take

CcP
(16) T, =T(y) = D e(ya?),
=P
CcP
(17) Iy =d(r) = [ el(y;ena,
P
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and we put
(18) _ K(a) = (sinwa/ra)?.
LeEMMA 4.
(19) [ e(na) K (a)da = max(0,1—n)).

-—00

This is a Lemma 4 of Davenport and Heilbronn [6].

Let # be the box {#: P<#;<CP,i =1,...,9} and let N(P) be
the number of integer solutions of the normalized inequalities (7) in £.

LEMMA 5.

(20) NP> [ [ [[T0)E(@E(p)dadp

—0 —00 =l

and

(21) fw f []7 ) E(a) E(B)dadp

-0 —oc0 t=1

CcP cP
= [ ... [ max(0,1—]4(&))max(0,1—|B(&))d¢.
P P

This result follows from Lemma 4 on multiplying out the products
and interchanging the orders of integration and summation.

4. Reduction to a finite integral. We shall obtain a lower bound for
N(P) from (20), and begin by reducing the integral to a finite region.
LEMMA 6. For any real y, z and any & > 0
3 y+12+1 9

(22) J | []'1TGoldads < P

where ' denotes the omission of any one faclor from the product.
Proof. Since every member of the pencil {¥A+4.#B} (&, #)
# (0, 0)] contains at least 5 terms explicitly, any ratio occurs at most 4
times among the a;/b;. Therefore the 8 factors in the product can be
arranged into 4 pairs T(y,), T(y,) such that a,b,—a;b; # 0. Then
y+124+1 9 y+1 2+1

(23) [ []'rwadedp < 3 [ [ TR T () dads,
k1l vy z

v z i=1
where the sum is taken over such pairs k, . The Lemima now follows on
applying the generalization of Hua’s Lemma obtained in [4].
COROLLARY. For any real y, z and any &> 0,
y+1 241 9

(24) I []1T)ldeds < 7.

v z =1
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From the a-f§ plane we now select 4 regions R;:
R, = {(a,B): a> P} Ry ={(a, f): a< —P);
Ry = {(a,p): B> P}; Ry ={(e,h): f< —P%}.
Here 6 is the positive number chosen in § 2. We take
i 4
(25) B ] B
i=1

-LEMMA 7. For any & > 0
9

(20) ffn I T(y)| K(a)K (B)dadf < P5+°°,
R =1

Proof. It is sufficient to prove the result with each R, in place of R.
Using the estimate K(a) < max(a~?% 1) we have

y+1z+1

[J [T E@E (pdadp = f’f

Ry i=1 y>P% =~

[] T & (a) K (B)dadp

i=1

[

o

A er,

and the other regions R; are treated similarly.
With the linear form p; we associate the line

(27) Iy =0

in the a-f plane. We label the I so that the positive angle from g = 0
to I'; increases monotonically with i. Note that we may have I; = I';,,.
If I; # I,,, let B; be the line bisecting the angle formed by the lines I}
and I',,. If j is the largest integer less than ¢ such that I = I';, we let
811 =... = 8; be the sector bounded by B; and B;. Thus Iy =
= I} lie in the interior of §;.

‘We choose a positive constant ¢ such that if ma2 (|a|, |8]) > ¢, |yl < 1
and a;b;—a;b; # 0 then |y; > 1. Therefore, for any large integer P,
if max(lal, |8])>eP7, |yl<P! and a;b;—a;b; #0 then |y;| > P
Let ~ be a small positive constant, and take S to be the intersection of S;
with the region

cP~"%2 < max(|al, |8]) < ¢P~*.
LEMMA 8. If y; = O(P7') and y; # 0 then
(28) T(y;) < |y~

This is Lemma 7 of Davenport and Heilbronn [6].
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LeEMMA 9. For each S;,

(29) If H |T (y)| K (a) K (B)dadp = o(F*).

S; i=1

Proof. We take new coordinates in the region §;. These are r, the
distance along Iy from the origin, and s, perpendicular to 7. The region §;
lies in a region bounded by two lines, say —mr <s < #wr. Also, we can
choose positive constants ¢,, ¢; and ¢,, independent of P, so that

s g
r> ¢, P~ in §;,

and if a;b; —a;b; # 0, 617 < |y < 6,7

In 8; each yp; is O(P~') and if a;b;—a;b; 0 we have y; # 0 in §;
and so we can use Lemma 8 to estimate T(y;). Since any ratio occurs
at most 4 times among the a,/b; we can use Lemma 8 on at least 5 factors
in the product, and use the trivial estimate O(P) on the remaining terms.
Hence

9
[T E(@E(B)dadp < [ [P~ ") ards
Sj i=1 Si

< fw me“(F*")sdrds

cgP~*3%2 —mr

< P4+3/4+t+88 - O(Ps)’

provided that v and ¢ are sufficiently small.
We now take Z; to be the intersection of §; with the region

max (|al, |B]) > P~

LEMMA 10. For each X,

(30) [[[] 1T E(a)E(B)dadp = o(F).

Z‘j i=1
Proof. If y; # 0 we have, as in Lemma 11 of Davenport and Heil-
bronn [6], J(y;) = O(|y;|¥). The result now follows in the same way
as Lemma 9.

5. The main term
LEMMA 11. For some positive constant D, independent of P,

CcP CcP
(1) f f max (0, 1—|4(&)|)max (0, 1—|B(¢ )l)d& > DP*,
P

for all sufficiently large P.
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Proof. We put & = Pz, then d& = P(2|n;|"*) 'dn;. We take

S ={n: 1< y;<C?i=1,...,9}
and :
& = {n: max(|4,(n)|, |Bi(n)) < (2P*)7},

where A,(n) = a;n,+...+ayn, and B,(n) = byn;+...+byn,. Then the
left hand side of (31) is at least

2’“1’9_[...[]171... 7ol 2 dy.

et d

The surfaces A,(y) =0 and B,(y) =0 are 8-dimensional linear
subspaces meeting in a 7-dimensional linear subspace which contains
the point y chosen by Lemma 3. Further, y is interior to &. The set £ N
will therefore contain a box around y of volume D,P~* for some positive
constant D, independent of P. Then

Jeus [lmy ooe el Bdy > €2 Dy P
EnS '
and the result follows with D = 2-"C~°D,.
LEMMA 12. If |y;| = O(P~%?) then
(32) 1T (y:) —J (ya)l = O(1).
This is Lemma 5 of Davenport and Heilbronn [6].
We take U(r) = {(a, ): max(|a|, |8]) < P37},
Lemma 13.

33)  [[[]Tr)E(a)E(p)dadp

U@) i=1

= [[[]T)E(a)E(B)dadp +o(P?).

U(r) i=1

Proof. In U(zr) we have each |y = O(P~%?), so, by Lemma 12,
A

| [Tz00- H T (v) | = 0(P).

i=1 =1
Thus the difference between the two integrals in (33) is
< PB(P—3/2—1)2 — Ps—z:.

Collecting together the results of Lemmas 13, 10, 5 and 11, we see
that for some positive constant D, independent of P,

9
(34) [[ T[T E (o) K (p)dadf > DF*+o(F°).

U(zr) i=1
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6. The residual integral. We now have to estimate the integral of the
exponential sums T(y;) over the region
(35) R, = {(a, B): P~} < max(|a, |B]) < P’}.

LEMMA 14. Suppose that |T(y;)| = P'~° where 0< }—26; then y;
has a rational approximation A;/Q; such that

(36) 1<Q; <P® and |y;—A4;/Q;) < P2

Proof. By Dirichlet’s theorem on Diophantine approximation, there
exists a rational approximation A/Q to y; such that

1<Q<P* and |y;—4/Q|<Q'P7°.
If Q> P'° then by Weyl’s inequality (Lemma 1 of [4]),
1T (y:)] < P4,

which gives a contradiction. Thus @ <P~ and so, from the Corollary
to Lemma 9 of Birch and Davenport [1],

IT(y:)l < @ "*min(P, P~*|8|™Y),
where f; = y;—A/Q. Thus
Pl—o < Q—llzp
and
P20 < Q7P g

which gives (36).
We recall that for all Pe# (o) there are no (a, f)eR, which satisfy
(12)—(14). Thus for all (e, f)eR, and Pe¢? we have

(37) min (|7 (y,)], 1T (72)]5 1T (v5)l) < P
Thus from (37) and Lemma 6,
9
(38) [ T11T»)IE () K ()dadp < PPPH+p=¥
Ry i=1

for all Pe#. Since 6 < A/4, the right hand side of (38) is o(P®), provided
that ¢ is sufficiently small.

7. Completion of the proof of the Theorem. It is sufficient to prove
that the normalized inequalities (7) have a non-trivial integer solution.
The number N (P) of integer solutions of (7) in & satisfies

o0 2]

9
NP = [ [ []T»)E(a)K(p)dadp.

-0 —o0 i=1
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From (38) and Lemmas 7 and 9 we have

oo 9

I (7 K (@) K () dadf — ff[]T ve) K (@) K (B)dadp + o (P%),

—0 —o0 i=1 U(r) i=

as P—oo through #. Thus, by (34), for some positive constant D
N(P) = DP°+o(P%)

as P—oo through # which gives N(P)> 0, and the proof is complete.
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Halving an estimate
obtained from Selberg’s upper bound method

by
R. R. HALL (Heslington)

Introduction. In many applications of Selberg’s upper bound method,
an unnecessary constant factor appears in the final estimate, due to the
fact that we can only sieve up to approximately Vaz.

At present this restriction seems unavoidable, and arises from the
necessity of squaring in order to obtain a non-negative sifting function,

viz.
s (n) = (Z zd)z.

din

As an example, let K be any positive integer whose greatest prime
factor does not exceed #. Following van Lint and Richert [1], we arrive

at the estimate .
1 22 ' ' 1\7!?
1<—— - 1— =
Z (logz T 9”) ( 1’) ’

n<z <z

(n, K)=1

by a careful application of Selberg’s method. Choosing z optlmally, Mer-
tens’ formula gives

log]
M1 <2@7L;§() @ (1+0(—°1g ng)).
gyl ogw
(n,K)=1

The factor ¢” really is necessary, as the Prime Number Theorem shows,
but apart from the error term, the estimate becomes best possible if we
strike out the factor 2 on the right. The object of this note is to obtain
a general result of this kind.

THEOREM. Let f(n) be defined on the positive integers and satisfy

fa)=1, o0<f(n)<1
and
f(nm) < f(n)f(m) provided (n,m) = 1.

3 — Acta Arithmetica XXV.4
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