XXVI (1974)

which can be made arbitrarily small by choosing N large enough. This proves Erdös' theorem for $f(p) \neq f(q)$ ($f(p) \neq 0$, $f(q) \neq 0$). If for some sequence $f(p_1) = f(p_2) = \ldots$, then, considering the expression

$$\sum_{f(p)=g_l} (\cos g_l Ty - 1) \sum_{f(p)=g_l} \frac{1}{p}$$

instead of

$$\sum \frac{\cos f(p) Ty - 1}{p}$$

one can repeat the argument above and our statement follows again.

References

- [1] P. Erdös, On the density of some sequences of numbers III, J. London Math. Soc. 13 (1938), pp. 119-127.
- [2] P. Erdös and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61(1939), pp. 713-721.
- [3] M. Kac, Statistical independence in probability, analysis and number theory, Carus Math. Monographs, 1964.
- [4] A. Rényi, On the distribution of values of additive number-theoretical functions, Publ. Math. 10 (1963), pp. 264-273.
- [5] Probability Theory, Amsterdam-London 1970.
- [6] I.J. Schoenberg, On asymptotic distributions of arithmetic functions, Trans. Amer. Math. Soc. 39 (1936), pp. 315-330.

MATH. DEPT. SUNY AT STONY BROOK
MATH. INST. DER ALBERT-LUDWIGS-UNIVERSITÄT, Freiburg i. Br.

Received on 7. 7. 1973 (435)

Ъy

M. BHASKARAN (Perth, W. Australia)

1. Introduction. Not much is known about the law of decomposition of rational primes in a Galois extension if the extension is not abelian. It is known that only for abelian extensions we can give a simple law of decomposition depending on the residue of the given prime with respect to a certain modulus. The object of the present paper is to get some information about the relationship between the number of prime divisors of a given rational prime and a rational prime which is ramified in a Galois extension. This information also helps us to get some idea about the class numbers of certain algebraic number fields. For example, the well-known result that the class number of the field Q(|r'a|) (r odd prime and a is divisible by a prime of the form rt+1) is divisible by r could be deduced from our result.

I would like to thank Professor A. Schinzel and the referee for their valuable comments in the preparation of the paper.

2. Notations and preliminaries. Throughout this paper, Q denotes the rational number field, k denotes a finite Galois extension of Q with Galois group G and θ_k denotes the ring of integers of k. The prime ideals of θ_k are called k-primes. p and q denote distinct rational primes and \mathfrak{P} and \mathfrak{Q} denote the k-primes lying above p and q respectively, g_l denotes the number of distinct k-primes \mathfrak{Q} lying above the rational prime l. e_l and f_l denote the ramification index and residue class degree respectively of \mathfrak{Q} . $G_{\mathfrak{Q}}$ and $T_{\mathfrak{Q}}$ denote the decomposition group and inertia group of \mathfrak{Q} . They are subgroups of G of order $e_l f_l$ and e_l respectively. $T_{\mathfrak{Q}}$ is a subgroup of $G_{\mathfrak{Q}}$ and its elements induce the trivial automorphism on the residue class field of \mathfrak{Q} . g_l will be the number of cosets of $G_{\mathfrak{Q}}$ in G. Let $G = \bigcup_{j=1}^{g_l} \tau_j G_{\mathfrak{Q}}$ be a coset decomposition of $G_{\mathfrak{Q}}$ in G. Then the k-primes $\tau_j \mathfrak{Q}$ are precisely the distinct k-primes lying above l.

If x is the smallest positive integer such that $q^x \equiv 1 \mod p$, then we say that x is the *order* of q with respect to p and it is denoted by $\operatorname{ord}_p q$. (a, b, c, \ldots) denotes the G.C.F. of $a, b, c, \ldots, a \mid b$ means a divides $b, a \nmid b$ means a does not divide b and $a^w \mid b$ means $a^w \mid b$ but $a^{w+1} \nmid b$.

3. Main results. We first prove the following

THEOREM 1. Let (k: Q) = n and e be a positive integer such that (e, n/e) = 1 and $e \mid (g_q, e_p, p-1)$. Then if q splits into principal k-primes,

$$e \mid e(p-1)/\operatorname{ord}_p q$$

 $\cdot where$

$$c = \begin{cases} 1 & \textit{if e is odd or } p \equiv 1 \mod 2e, \\ 2 & \textit{otherwise}. \end{cases}$$

Proof. If e=1, there is nothing to prove. So let us assume e>1. Let u be a prime factor of e and $u^t\|e$. Without loss of generality, we prove the theorem when e is replaced by u^t . Take any Sylow u-subgroup E of $T_{\mathfrak{P}}$ which is of order u^t since $(u^t, n/u^t) = 1$. The elements of E belong to distinct cosets of $G_{\mathfrak{Q}}$; for otherwise, if τ_i and τ_j of E belong to the same coset of $G_{\mathfrak{Q}}$, then $\tau_i \tau_j^{-1} \in G_{\mathfrak{Q}}$ and so its order divides n/u^t which is a contradiction. Let the elements of E be τ_i $(i=1,2,\ldots,u^t)$, τ_1 being the identity of G.

Extend E to a set S consisting of elements in G which represent the g_q cosets of G_{Ω} in G. Let τ_s ($s=1,2,\ldots,g_q$) (the first u^t elements being those of E) be the elements in S. Let the coset of τ_s be denoted by $\overline{\tau}_s$ and \overline{S} be the set of these cosets. Now, we will arrange g_q elements of G which represent the distinct cosets in g_q/u^t columns in a suitable manner. For this, first put $\tau_1, \tau_2, \ldots, \tau_{u^t}$ in the first column. Take a τ_i from S not belonging to the cosets $\overline{\tau}_1, \overline{\tau}_2, \ldots, \overline{\tau}_{u^t}$ and put $\tau_1, \tau_2, \ldots, \tau_{u^t}$ in the second column. It is easy to see that the $2u^t$ elements in these two columns belong to $2u^t$ distinct cosets. Take a τ_j from S not belonging to the cosets of the $2u^t$ elements already arranged. Put $\tau_1, \tau_j, \tau_2, \tau_j, \ldots, \tau_{u^t}, \tau_j$ in the third column. We easily see that all the $3u^t$ elements thus arranged belong to $3u^t$ distinct cosets. Repeating this process g_q/u^t times, we get the desired result. Thus, we get a set of g_q elements of G, which represent the g_q cosets in \overline{S} , in the form $\bigcup_{i=1}^{u^t} \tau_i F$ where F consists of g_q/u^t elements say $\sigma_1, \sigma_2, \ldots, \sigma_{g_q/u^t}$.

Now, let us assume that the k-primes lying above q are principal and write the factorization of (q) in the following manner:

$$(q) = \prod_{i=1}^{q_q} r_i \mathfrak{Q}^{e_q} = \prod_{i=1}^{u^t} r_j \left(\prod_{i=1}^{q_q/u^t} \sigma_i \mathfrak{Q}^{e_q} \right)$$

where Q is a principal k-prime lying above q. Hence

$$q = \varepsilon \prod_{j=1}^{u^t} \tau_j \left(\prod_{i=1}^{g_q/u^t} \sigma_i \gamma^{e_q} \right)$$

where $\gamma \in \mathcal{O}_k$ and generates \mathfrak{Q} and ε is a unit in \mathcal{O}_k such that τ_i $(i=1,2,\ldots,g_q)$ fix ε . Applying n/g_q automorphisms r_s $(s=1,2,\ldots,n/g_q)$ of $G_{\mathfrak{Q}}$ on both sides, we get

$$g^{n/y_q} = \varepsilon' \prod_{s=1}^{n/y_q} \nu_s \left(\prod_{j=1}^{u^t} \tau_j \alpha \right)$$

for some $a \in \mathcal{O}_k$ and a unit ε' which remains fixed under all the automorphisms of G, i.e. $\varepsilon' = \pm 1$.

Now

$$\tau_i \alpha = \alpha \operatorname{mod} \mathring{\mathfrak{B}} \quad (j = 1, 2, ..., u^t)$$

since $\tau_{j} \in T_{\mathfrak{P}}$ and so induces the trivial automorphism on the residue class field of \mathfrak{P} .

Hence

$$\pm q^{n/q_q} \equiv a^{u^t} \bmod \mathfrak{P}.$$

Since (e, n/e) = 1 and $e|g_q$, we have $(u^t, n/g_q) = 1$. Then, it follows that $+q \equiv \beta^{u^t} \bmod \mathfrak{P}$

for some $\beta \in \mathcal{O}_k$.

This shows that, if u is odd or $p \equiv 1 \mod 2^{t+1}$, q is a u^t -th power mod \mathfrak{P} . Otherwise, q is a $u^t/2$ -th power mod \mathfrak{P} .

Hence

$$\operatorname{ord}_p q | \left(\frac{p^{f_p} - 1}{u^t}, p - 1 \right)$$

if u is an odd prime or $p \equiv 1 \mod 2^{t+1}$ and

$$\operatorname{ord}_p q | \left(rac{p^{f_p}-1}{u^t/2}, \, p-1
ight)$$

otherwise.

Now

$$(p^{f_p}-1, p-1)|f_p(p-1)$$

and

and

$$(u^t, f_p) = 1.$$

Consequently, we have

 $u^{t}|(p-1)/\operatorname{ord}_{p}q$ if u is an odd prime or $p \equiv 1 \operatorname{mod} 2^{t+1}$

$$u^t | 2(p-1)/\operatorname{ord}_p q$$
 otherwise.

AC

Repeating our method for all other prime power factors of e instead of u^t , we get our theorem.

When the class number of k is relatively prime to n, we can delete the condition on q that it splits into principal k-primes and state the theorem in the following manner:

THEOREM 2. Let (k: Q) = n and let the class number of k be relatively prime to n. Let e be a positive integer such that

$$(e, n/e) = 1$$
 and $e|(g_q, e_p, p-1).$

Then

$$e \mid c(p-1)/\operatorname{ord}_p q$$

where c = 1 if e is odd or $p \equiv 1 \mod 2e$ and c = 2 otherwise.

Proof. Let K be the Hilbert class field of k and let (K: k) = h. Then (h, n) = 1 and (K: Q) = nh. Let e_l^K and g_l^K denote the ramification index of a K-prime lying above the rational prime l and the number of distinct K-primes lying above l respectively. Then, we can easily see that

$$(e, n/e) = 1$$
 implies $(e, nh/e) = 1$

and

$$e \mid (g_q, e_p, p-1)$$
 implies $e \mid (g_q^K, e_p^K, p-1)$.

Taking K for k in Theorem 1, we see that e satisfies the required conditions and so the theorem follows since every k-prime splits into principal K-primes.

Received on 20. 8. 1973 (444)

ACTA ARITHMETICA XXVI (1974)

Arithmetic euclidean rings

by

CLIFFORD QUEEN (Bethlehem, Penn.)

- 1. Introduction. Let A be an integral domain. We shall say that A is a *euclidean ring*, or simply A is *euclidean*, if there exists a map φ : $A \{0\} \rightarrow N$, N the non-negative integers, satisfying the following two properties:
 - 1) If $a, b \in A \{0\}$, then $\varphi(ab) \geqslant \varphi(a)$;
- 2) If $a, b \in A$, $b \neq 0$, then there exist $q, r \in A$ such that a = bq + r, where r = 0 or $\varphi(r) < \varphi(b)$.

It is easy to see that condition 1) is an unnecessary restriction; i.e., if there is a map $\varphi \colon A - \{0\} \to N$ satisfying only condition 2), then there is always another map φ' , derived from φ , such that φ' satisfies both 1) and 2). Further, it is apparently unknown whether one enlarges the class of euclidean integral domains by enlarging N to a well-ordered set of arbitrary cardinality, but this question will not concern us here except to say that whenever A has finite residue classes; i.e., A modulo any nonzero ideal is finite, then insisting on N as a set of values is no restriction. We refer the reader to an excellent paper by P. Samuel [8] in which all of the above and much more is exposed with great clarity.

Let A be as above. We define subsets A_n of A for $n \in N$ by induction as follows: $A_0 = \{0\}$ and if $n \ge 1$, then $A'_n = \bigcup_{\alpha \le n} A_\alpha$. Finally $A_n = \{b \in A\}$ there is a representative in A'_n of every residue class of A modulo $bA\}$. Setting $A'_n = \bigcup_{n \in N} A_n$, A is euclidean if and only if A' = A (see Motzkin [6]). Further when A' = A we get a map $\varphi \colon A - \{0\} \to N$, where if $\alpha \in A - \{0\}$ then there exists a unique $n \ge 0$ such that $\alpha \in A_{n+1} - A_n$ and $\alpha \in A - \{0\}$ now not only does $\alpha \in A$ satisfy conditions 1) and 2) above, but if $\alpha \in A$ is any other map satisfying condition 2), then $\alpha \in A$ for all $\alpha \in A - \{0\}$. Hence Motzkin justifiably calls $\alpha \in A$ the minimal algorithm for A.

Let F be a global field, so F is a finite extension of the rational numbers Q or F is a function field of one variable over a finite field. Let S be a nonempty finite set of prime divisors of F such that S contains all infinite (i.e. archimedean) prime divisors. For each finite (i.e. non-archimedean)