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which can be made arbitrarily small by choosing N large enough. This
proves Erdoss’ theorem for f(p) + f{g) (f(p) 0, flg} # 0). 1f for some
sequence f(py) = f{p,) = ..., then, considering the oxpreﬁsicm

V! (cos g Ty —1)
fm)=m (@) =41
ingtead of
\‘1 LOHf Tg/—il,

Lt P

one can repeat the argument above and our statement follows agadin.
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Some remarks on the decomposition of a rational prime
in a Galois extension

by

M, Buasxaran {Perth, W. Australia)

1. Imtroduction. Not much is known about the law of decomposition
of rational pritnes in a Galois extension if the extension is not abelian.
It is lenown that only for abelian extensions we can give a simple law of
decompesition depending on the regidae of the given prime with respect to
a certain inodulug. The object of the present paper ig to get some informa-
fion about the relationship hatween the number of prime divisors of a given
rational prime and a rational prime which is ramified in a Galois extension.
This information alse helps us to gebt some idea about the clasy numbers
of certain ulgebraie number fields. For example, the well-known result

P
that the class number of the field Q(¥a) (r odd prime and o is divisible
by a prime of the form ri-- 1) is divisible by # could be deduced from our
reqult.
I would like to thank Professor A. Schinzel and the referee for their
valuable comments in the preparation of the paper.

2. Notations and preliminaries. Throughout this paper, @ denvtes
the rational number field, % denotes a finite Galoig extension of @ with
Galois group & and @, denotes the ring of integers of %, The prime ideals
of O are called k-primes. p and ¢ denote distinet rationsl primes and
B and £ denote the k-primes lying above p and ¢ respoctively. g, denotes
the number of. digtinet k-primes 2 lying above the rational prime I. ¢, and
f; denote the ramifieation index avd residue class degree respeclively
of £. Gy and 4y denote the decomposition group and inertia group of L.
They are subgreoups of @ of order e f, and ¢ respectively, 'y is a subgroup
of @y and ity elements induce the teivial automorphisn on the residue

4]

class field of 8. ¢, will be the nurmber of cosels of Gy in & Let ¢ = Lj LTS

Fool

be & coset decomposition of Gg in &. Then the k-primes ;£ are precigely

the distinet A-primes lying above .
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If x is the smallest positive integer such that ¢® == lmodp, then we
say that « is the order of ¢ with respect to p and it is denoted by ord,g.
{#,0,¢,...) denotes the G.C.W, of a, b, ¢, ..., a|b means a divides &, ath
means & does not divide b and a”||b means b but a”t'1b.

3. Main resulis. We firgt prove the following

TrporEy 1. Let (k: @) = n and e be o positive inleger mr,oh that (e, nje)
=1 and e|(g,, e, p—1). Then if q splits into principal k-primes,

ele(p —1)jord,q
“where

1 if e ds odd or p = 1lmodZ2¢,

2 otherwise.

Proof. If e =1, there is nothing to prove. So let us assume ¢ > 1,
Let « be a prime factor of e and «f||e. Without loss of generality, we prove
the theorem when ¢ is replaced by «'. Take any Sylow w-subgroup B

of Ty which is of order »* since (', n/u’) = 1. The elements of B belong

to distinet cosets of Gg; for otherwise, if 7, and v; of B belong to the same
coseb of Gy, then 7,77 ¢ Gg and so ibs order divides n/u’ which is a contra-
diction. Let the elements of B be ©; (3 = 1, 2, ..., #%), 7, being the {dentity
of G. :

Extend ¥ to a set § consisting of elements in & which represont the
g, cosets of Ggin & Let 7, (s == 1,2, ..., g,) (the first w elements being
those of E) be the elements in S. Let the coset of v, be denoted by 7, and
- & be the set of these cosets. Now, we will arrange g, elements of § which
represent the distinet cosets in gq/u‘ columps in a suitable manner. For
this, first put 7,, Tyy -y Tyt 10 the first column. Take a »; from 8 not belong-
ing fo the cosets vy; 1"72, voey Tyt ANG PUG Ty Ty, Ty Ty, -0y Tyt T I bhe second
eolumn. Tt is easy to see that the 24’ elements in these two colummns belong
to 2ul distinet cosets. Take a 7; from § not helonging to the cogets of the
2u' elements already arranged. Put 7, 75, 74 7, ..., % 7;in the third column.
We easily see that all the 34 elements thus arranged belong to 3w distinet
cosets. Repeating this process gq/u tirnos, we get the desired regult. Thus,
we gat 2 set of g, elements of &, which represent the g, cosets in §, in the

torm U 7,.F where F consisty of g, /u elements S8Y oy, Oy .

qe=]
Now, let us assume that the k-primes lying above g are principal and
write the factorization of (g) in the following manner;

) dﬂql ub+

14
nqp'u

Hfﬂ”‘*‘ —HW(H%"&“)

i Al
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where 2 18 o principal k-primne lying above ¢. Hence

fu,i ﬂ'q/‘“t
=e[[n{[] o)
=1 il

whers y< @, and generates L and ¢ is a unit in @, such that =,
(¢ =1,2,.., g fix ¢, Applying n/g, (mtomorplusms v (s =1,2,..., %/,
of Gg on both sides, we get

Ay ut
wiy . '
po = [l Tod
8] Jeanl

for some ae @, and a unit & which remaing fixed under all the automor-
phisms of &, e & = 41
Now

o = amodP (5 =1,2,..., 4"

gince 7;¢ T'y, and so induces the trivial automorphism on the residue class
field of .
Hence _ ‘
iqn]ﬂq EE a“.‘modgﬁ-
Since (¢, nfe) =1 and e|g,, we have («*,n/g,) = 1. Then, it follows that
g = ﬁ“‘modEB

i
for some fe @,.

This shows that, if » is odd or p = lmod2!*!, ¢ is a »-th power
modP. Otherwise, ¢ is a u'/2-th power modfP.

Henoe .
—]
ordpq|( —,p— 1)
it » is an odd prime or p = lmod2*" and
l
ordpql( i ,p—-l)
otherwise. o
Now .
(pp~1, p~1)| fr(p —1)
and
(“frfm) ==

Consequently, we have

w|(p—1)jord,q if w is an odd prime or p = lmod2*
and

w|2(p~1)jord,qg otherwise.
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Tiepeating owr method for all other prime power factors of e instead
of !, we got our theorem. '

‘When the class number of k is relatively prime to n, we can delete
the condition on g that it splits into principal £-primes and state the theorem
in the following manmner:

Trmorem 2.-Tet (b: @) = n and let the class number of b be relakively
prime to n. Let ¢ be a positive integer such that

(E,T’bfﬂ) == 1 and e'(gqre:pap'—l)‘
Thewn
¢le(p—1)jord,q

where ¢ == 1 if ¢ is odd or p = 1mod2¢ and ¢ == 2 otherwise,

Proof. Let K he the Hilbert class field of & and let (K: k) = h.
Then (b, n) = 1 and (K: Q) = nh. Let e and g& denote the ramification
index of a K-prime lying above the rational prime I and the number of
distinet K -primes lying above I respectively. Then, we can casily see that

(e,nfe) =1 implies (e, nhfe) =1

and
_ 6[(ggs 6ps p—1) implies  eilgy, &, p—1).

Taking & for k in Theorem 1, we see that ¢ satisfies thé required con-
ditions and so the theorem follows since every k-prime splits into principal
K-primes.

EReeetved on 20. 8, 1973 (444}
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Arithmetic euclidean rings
by

IrarFoRD QUERN (Bethlehem, Penn.)

1. Introduction. T.et A be an integral domain. We shall say that 4
is a ewdlidean ring, or simply A is euclidean, if there exists a map ¢
4 —{0}-N, N the non-negative integers, satisiying the following two
properties: )

1) I a,bed —{0}, then ¢{ab)=¢(a);

9) Tf a,be A, b 0, then there exist ¢, re A such that o = bg+7,
where ¥ =0 or ¢(r) << ¢(b).

It is easy to see that condition 1) is an unnecessary restriction; i.e.,
if there is a map ¢: A —{0}—+N satisfying only condition 2), then there
is always another map ¢, derived from ¢, such that ¢’ satisties both. 1)
and 2). Turther, it is apparently wnknown whether one enlarges the clasg
of euclidean integral domains by enlarging ¥ to a well-ordered set of
arbitrary cardinality, but this question will not concern us here except
to gay that whenever 4 hag finite residue classes; i.e., 4 modulo any non-
zero ideal is finite, then ingisting on N as a set of values is no restriction.
We refer the reader to an excellent paper by P. Samuel [8] in which all
of the above and much more is exposed with great clarity.

Let 4 be as above. We define subsets 4, of 4 for ne N by induction
as follows: 4, = {0} and if n = L, then 4, = {J4,. Finally 4, ={be 4|

there s a represemtative in A, of every residue class of 4 modulo b4}
Setting A, = | J 4,, 4 is euclidean if and only if A’ = 4 (see Motzkin
nolN

[61). Further when 4’ «= A we get o map ¢: 4 —{0}~N, where if .4 —
— {0} then, there exists a unique n 3= 0 such that @e A, — A, and @) = n.
Now not only does ¢ satisty conditions 1) and 2) above, but if ¢’ i3 any
other map satistying condition 2), then g(w) < ¢'{z) for all we d —{0}
Hence Motzkin justifiably calls ¢ the minimal algorithmn for 4.

Lét I be a global field, so ¥ is a finite extension of the rational numpbers
Q or F' is a function field. of one variable over a finite field. Let § be a non-
empty finite set of prime divisors of I’ such that § contains all infinite
(i.e. archimedean) prime divisors. For each finite (i.e. non-archimedean)



