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A probabilistic setting for prime number theory*
by
M. ¢, Wunnirrion (Delalhb, TIL)

Introduction. This puper it gonerally concerned with questions of
gtability with respect to theoremns in prime number theory. To what extent
does 1 theorem, lrue for the sequence of primes, remain trie when one
perturbs the defining characteristies of the primes. The work of Bewrling
2] and more recently Bateman and Dismond [1] represent an analytic
approach to thiv question and the proof of the prime number theorem for
genaralized primos represents @ troe generalization of the prime number
theorem. The author has been interested in questions of stability from
a quite ditforent point of view. I1f one perturbs the defining charvacter- -

atiern of the sieve of Yratosthenes, one obtaing a different sequence of

“primesd” and the suthor [67] had demonstratied a high degree of stability
for the prime nuniber theorem for these sieve generated sequences.

Tn 1958, David Mawling [8] described this type of perturbation in
terms of the following stochastic process: let 4, be the sequence
{2,8,4,5,...}, Binee A4,(1) =2, we climinate from 4, all elementy
exceading 2 with probability &, producing A,. In general, it 4,(n) = k,
you eliminate eneh element in A, which exceeds kb with probability 1/k,
produeing A, ,. One would like to determing to what extent the prime
nomber theorem, or any other theovem concerning primes, is true for the

[3%)
goquence A = () A4, goneratedl by thiy process,
el - '

Recently, Duvid Tawking |47 construetied o sequence of {inite prob-
abilily xpacos £, whieh cemulabed this process. The elements of I, are
soquences of intogers -2 w and ho defines the random variable b, (g), ce Py,
o be the nuumber of elements in g. Pe proceeds to obtain statistionl ewbi-
mudios for the disteibutions of &, and is able Lo show that the prims number
theorent holds in these spaces in the sense of the weak law of large numbera.

* Pho repeareh for Uhig papor was partially supported by N8I grant GI? 232909,
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The purpose of this paper is threefold.

A, We construct in Section I a single probability space X -which
emulates the HMawkins sieve. The finite spaces P, correspond to cylinder
sebg in X '

B, In Section II, the result of Hawkins is obfained in X by obtaining
similar buat sharper statistical estimates for the distributions of &,.

C. In Section X1, we employ o method of Paul Lévy [5] to prove
a theorem which enables us to obtain vesults in the genge of the strong luw
of large numbers from results in the sense of the weal law of large numbers
for sequences of random variables {f, («)} which possess certain properties.
Using this theoram, we are able to generalize Hawkins' result and show
that the prime nuomber theorem holds for almost all fequences aed.
We also show that an analog of Merten’s theorem holds for almost all
sequences aeX; that is fo say,

U 1 1
(1 - w) ~ )
& logn
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Finally, we study a sequence of random variableg in X which essentially
counts the number of consecutive infegers in a sequence. We prove that
for almost all sequences aeX, the number of consecutive pairs k-1, &
for which & < o iy agymptotic to »/log?x. This result is analogous to IHardy
and Littlewood’s conjecture regarding the density of twin primes.

The author would like fo thank Professor David Williams (University
of Wales, Swanges) for suggesting the method of approach used in Section
II7.

I. The probability space. In this first part of the papér, we will
constriet the probability space. Throughout the section, lower case Greek
letters a, #, v, ... will denote sequences of integers. Upper case Latin
letters 4, B, /, ... denote sets of sequences and upper case seript letbers
&, #,C, 2,... will denote classes of sets of sequences. The integery
themselves are denocted by lower case Latin letters. Note thab in this
section, & is a sequence and not a small positive real number. Tf o i3 a o~
quence and # an integer greater than 2, we will use «, to denote the finite
sequence ani{2,3,4, ..., 721} (None of our sequences will contain 1.)
In other words, =, is the set of integers of o which ave less than n. Cor-
respondingly, «" denotes the set of integers in « mot less than n.

We begin by lefting X be the space of all sequences of integers
greater than 1. X contains finite ag well as infinite gequences. & i the
clags of all sets of such sequences, i.e. the power set 2. The following
detinition establishes a class of élementary sets over which we can define
a probability meagure.
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DariNi1oN Lo We & ixtcalled an clementary set of sequences, or just
an olementary set if there existy o finite sequence {ay, a4y, ..., a,}e X and
an integer n = a, for which ee  if and only if

B = (Gyy Gy ooy ).

B is denoted (o, dgy ..oy a5 0) o (g5 ») il o is being nsed to denote the
sequoncs {@y, @y ... @l N s referred $o ag the order of the eleomentoxy
et Noto that & could bo zero inowhich ease {5 w) 38 the set of all soguences
whoso elements are not loxs than n We will assume that 4 2= 2 sinee 1
is never an olement of our sequencer, MNote alse that { ; 2) = X, The
clay of elementary seby i denotod by &,

Qe probabiliby funetion is now defined recursively on &,

DrmiNrrion 2, @ v a teal valued function defined on & to satisfy

(a) w( 5 2) = L
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Note that {e) with k = 0 and » = 2 implids that the class of sequences
not eontaining 2 hag probability zere (aysuming that empty products
equal 1).

This definition is perhaps better understood by regarding it as a bingry
tree. (See Tigure 1.) The root of the tree is X = (23 3) which hag probabili-
ty 1. It is divided into two subclasses — those sequences containing 3

and those that do not. Each subelass has, in this case, probability . Each -

of these classes is separated info two classes ag shown in the figure, Thus
each npde B of the tree corresponds to an elementary set (a,, g, ..., t,; %)
and ig divided into two elementary sets B, and B, depending on whether
or not » 18 or iz not in the sequences.

. The probabilities of these subelasses are chogen, 110 emulate the LT awklm
sieve: » will have heen eliminated with the probabilities 1/2, 1/a,, 1/as,

.y 1ja;, so that the conditional probability of ity vemaining is
H(l 1l/a;). Hence we obmm p{By) and p(B,) by multiplying x(B)
=]
by ” (L—1/a;) and 1— H(l——l/a ) respectively.

t=]

This tree structure Wl_ll ba useful later in the proof of several lemmas.
Note that when 4 is below B on the tree, 4 < B. If 4 is neither above
or below B, AnB = @. The level of each node corresponds exactly with
n—2.

- We will now want; to extend the definition of u to a ring of subsets
of X and to do this we need the following property:

Limvva 1. g ds fimitely additive on &, that is, if A = B,UB,U ... UB,
where 4 and the B, are in & and the B; ave disjoint, then

ke

pld) = 3 u(B,).

F=1

Proof. We will utilize the binary tree struc-
ture of x to formulate an induction argument
on k. If k == 2, then A must be of the form dia-
grammed. to the right and the lemama follows from
Definition 2. Assume now that the lemma
holds for k< m and assnme that "4 = B,u

UB,U...UB,,. Since the R’ are a finite 'B\

o

By # & 3y

get, two of them, say B, and B, ., must

be subtrees of the same node, say B’. (Otber-

wise the union would not be an elementary g o o p
set.) By definition, we can replace B, U B, . ™ T, 9 o
by B" and our inductive assumption completes : e

the argument.
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Drrintizon 3. A set of gequences R iy evenlually arbitrary if a pos-
itive integer > 1 exists which has the following property: For any
sequence ge ft and for any sequonce #; = (Ny, ny, ...) of integers n; = n,
there existy a sequence g £ such that p, = o, and g" = 5. In terms of elem-
ontary sets, we say that K is eventually arbitrary if for every ¢e B where g,
= {F1y Pay < ory Pehy Vhe elementary set (vy, 7y, ..., 7 0) is contained in L.
Clearly if this condition holds for =, it holdy tnr any m o> %, 80 we define
the minimal such # fo be the order of the aventually arbitrary set. We de-
note by 2 the clasg of all oventually arbitrary sets.

LiwuMA 2. 2 ds an algebra of subsets.

Proof. A set &K = # ean he ropresented as s finite disjoint union
of c]omontmy Kot in the following way : if n iy the order of R, let u,, ay, as,
s 4 be tho Hﬂb of all distinet finite sequences g, where o ranges over
all of B Then U {ag5 n) = B by Definition 3. Also, any #inite union

fen

of elementary sets is eventually arbitrary. Thus K is closed under finite
unions, To show that # is closed under differences we must show thatb
if' ¥; and By ave in &, then B, — %) i in 2. One can see from, the binary
tree reprosentation thal oither K, « B, Tfu < By, or Binl; =@, Thus
we need only eonsider the ease 2, < 8. [l‘er(, Wwe can express I, ad a union
of all elemontary sets contained in B, at the lovel (on the tree) of B and
thuy B;— By would be that sume union minus Z,, Finally, X is clearly
eventually tubli,t'(mr'y making # an algebro.

We can now extend uto & by 1'apresen1,ing, efmh element K ag a digjoint

union. [y, By, ..., B, and defining u(R Z’ () Lemma 1 can be

used to show that the definition iz well d@:iimed We have then, at the
moment, & finitely additive set funetion x detined on an algebra of sets #
such that u(X) == 1. Yo order to use the measure extengion theorem

we must prove that u is countably additive on %, that is

A p{dRy)

(1) f&(U By} ==
g ]

whenever the unjon is disjoint and contained in . Wo will show that (1)
holds vacuously, in that countable digjoint unions of elements in 2 cannot
themselves be in #. Minee an element of f{f oan be expressed as a 111111@

disjoint union of elementary sets, R = U T, would imply

LJH «~ U B,

Juml
and the pigeonhole prineiple Wc)u].d imply thati at least one B, contains
ag subsets a countable wnion of disjoint elementary sets.



64 M., Wuandoerlich

Lmatma 3. If T is an elementary set and By, By, ... is an infinite mutually
disjoint sei of elementary sels coniained in B, then here ewisls o sequence
ae B not contained in |J)E;.

i

Proof. In Figure 3, the binary tree corresponding to the elementary
set I is depicted and the vertices corrvesponding to the sets My, H,, ..
are cireled. To prove the theorem, delete any vertex if it i3 an ancestor

Fig. 3

of one of the K. If the remaining tree does not contain. an infinite path
~ from the root downwards, it is finite and the sequence %, B,, B, ...
congisty of the terminal nodes which are finite in number contrary to the
hypothesis of the lemma. Such an infinite path clearly represents a se-
quence of integers not in any of the #,.

We have now shown that g is a countably additive set function on
an algebra, and we can uge the well known extension theorem to extend
it to the smallest s-algebra containing %, We will denote this class by 5.

There are two important classes of sets, contained in % which are
of interest to us for this paper. Let f be & pogitive non-decreasing veal-
valued function and let S, be the set of all sequences {a,, a,, ...} satisfying

31 f(r). Similarly, we let 8§/ be the set of sequences that satisfy
[P ] .

- 1z f{w). These are elements of % since they can be represented
[t . N

ag an intersection of a countable number of eventually scbitrary sets.

II. In this section, we will show that the sequences contained in the
probability space tend to be prime-like in thut the number of elements
less than z approximates xfloge in the sense of the weak law of large num-
bers. EBxcept for Lemma 4, all the results in this section were obtained
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by David Hawking [4] in a slightly different but logically equivalent
context, Alse, (31) gives a sharper eslimate for the variance than that
obtained by Hawking,
We begin by defining two sequences of random variable on X,
DerNmrieNy 4.  n2 and ae¢ X then define a,(e) and h,(a) by

@, (a) mi-—[(l—%), @yla) = 1,

ae
a<n

B () == 21

e
=

Since @,(e) and &, (x) have constant values on any olementary set A4,
of order n, we will often, employ the notation &(4,) and k(d4,,) to represent
@, () and R, {a) for aecd,. If we let

a,{a if nea
(2) zn(a) = ”( ) N ’
1—am,fa) if =nda,
then the following lemma gives us an explicit expression for the measure
of any elementary set.

Lomma. 4. If a is any sequence in an clementary set 4, of order n, then

aldn) = [ (0.

L]
"The proof is easily obtained by iterating in the definition of u.
LommaA b, If we let 8, represent the seb of all sequences containing n,
then

(3) M(Sn) = E[wnl == fmndlu°
X
Proot. It follows from Definition 2 that we can write

w(8,) = D u(B)e(B,)
Bn

where the sum is extended over all clementary seby B, of order » (& nota-
tion which we will use frequently) bub thiz is exactly the expectation
requived. in (3). _

We now uge Definition 2 to obtain the following recurrence relation
for thoe &th moment of w,.

. . , 1"
(4) B [wﬁnl-l = 2: P(Bn) (1 - ‘1"(-;’r:’):'l))"’r’rn (B -+ M(Bn)w(Bu) mrﬂ(Bn) (1 - '";;“)

By
8 1y ;
= Dt (1= ) =) B uiB) b5y
o)

5~ Acts Arlthmetlea XXVIL
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which is equivalent to
1 i3
(%) Blog ] — 0] == ((lmz) ml)E[w’;'l'l].

We observe that the above relation holds for all integral & and is subject
to the boundary condition #[#}] = 1. Letting & = —1 in (5) and summing
from 2 to n—1, we obtain

-2

1L 1
6 e [P T L — L1404,
(8) Bz '] = 1+ £ p log(n—2)+y-+1 LO(%)

To obtain a relationship between B[] and Ela;'], we lot & =1 in (B)
and write it in the form

e, -1
- 11 m[aw[vcﬂ} ——Iv’{cvn]]-

Blan,]  Bla,) Blw,]

k—-l k+1
If we apply Schwartz’s mequahty to the random variable z,* and a,*
we obtain

(8) Bl B[l = B k]
and. thus

H

Blap] = B w,)
In (7) this implies

E [mn—i-lj"'E”} [2,] =~
which when summed from 2 to n—1 gives
(9) B (2,13 log (n—1)+ y 1 o( )

But Schwartz’s inequality also implies that B [»,] B 1= 1 whieh'together
with (9) and (6) has proved
Ligpova: 6.

1 1
log(n—1) _l_o(logz(fn,-—l))‘

The followihg lermma is a straxght forward genera,hza,tmn of the pre-
viouy regult.

B(8,) =
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Levma 7.

Bla] == -

1
16*&;;“(‘;;‘“1‘) “I"O (_1—6‘5’,'7&1(7;:;—1—;) f()i ANy jJOS’&tM)B k.

Proof. We use induction on & and use as our induetive assumption
the ghatement of the lemmsa together with the statemoent
(10} Blwy, "] = logh(n-- 1)+ 0 {log" ! (n-1)).
Lemma 6 and (6) verily tho truth of the inductive agsumaption for & == 1,
go we asswme it trae for k—1 and proceed by using (B) to obtain
1 [
Ewﬁﬂmwwﬂw%ﬁ+%ay)mﬂﬂmﬁﬁn
etz of3 e

loght{n—1) _}_o(logk“z(n—l))
n--1 -1, '

Summing this from 2 to n—1 verifies (10). We now use (3) and write

Lo 1 [ Bloy, B ]“1
Bkl ~ Blak] Bk~ B[k, ]

ot (l“— +o( )) P B |

o)

-1 & 1
mm] \W+%ﬁ)

ny o

- {E« log"*(» ~1)+0 (log®* (-~ 1)).

We have made use of the inductive assumption and (8). Summing this
from 2 to n--1 yields '

B [a] 2= logtn -+ O (log = n)

which. together with (10) and the fact thab E[w"ﬁﬂ[ﬁ; Nzl (Sehwartz)

completes the proof of the lemma.
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We now consider the identity

1
Mm:l m_‘l—M)
HE5
o (! —M) (@' —-H)" l{ m(m‘im—ﬂfm)’}
A T R B e
or
TN et O Jrilates
) e = - S R e () Tt

I welet M = M, = E[z;'],let & = o, and integrate (11) over X we obtain,

(12) E[mn1=7;——+£[LWM_)—1 o (e B Bl —,)]

Raising (11) to the kth power before integrating produces

. 1 1) Bl —M)%]  (pyo\ @y’ —M,)]

(13)  B[a] mﬂ+(°2 ) el _(G?f: ) e
B e (@' — M)

oo -2y 2L (Mm Y

LuMwa 8. There exists positive constants ¢y 5 Such that for each i, o g

ewists such that

(14) - fmi,f =
and '
1 Cin n 1
(15) Blo] = - —n—“Mas-»— ﬂ}m ot O(Mi;‘)
and '
E4+1\ Gip H--2) Cpn 1
16) Bk — ( )_m;# - G0 (mw)
MH- .2 M;w ( 3 )Mﬁls Mﬁ“l

Proof. In view of (12) and (13) we need only verify (i4), that is,

the central moments
n = E[(w;l_ n)n]
“tend to finite limits ag #->oco.
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'We observe first that

s

(A7) . Oy == Z (—1y (f) MES B¢,

=

If we let Aoy, == Cppyq— O (13) will follow if we can prove that Ao,
= O (1 /fn”“ i'm? a lixed 130.511'&31 Vﬁ . 1*01“ notational comff‘menw, we will

gubtract texms ab will which are O (1L /n‘ ). Since M2, = ML+ —w»—in]l{[ﬁ“ +

-

4 O (L' %) and since B o] = O (log?n) we can, Wme, uging (17),

Aty = X‘ 1 (8) (Mt Bl — 2 B L))

ﬂmD

[ .
= DN=1r () M B - BleD) +
gul)
Je—t

+ 3y ) i =S M By

Yal)
= 4 4+ B.
Now using (B), '

4 = j (—1)° (f;’) M ((1 + _;%%_.f)”_l) pop—

&=l
= ch: —1)° (') My ( )E[m”""*‘ 1
e
= S (=1 }Stl( ~Iu 1) (_f'mtwl )Mfam&mllg[m;-s
ge=0 .
= 3 e () 255 arte o
= — B,

To complete the proof of the lemma, we rust verify that the last terms
of (12) amd (18) are finite. The Schwartz inequality yields

e I.q"ﬂ('zfn ”"’ Mrn) _] "k-u 'f’;m JE[(@:IM ﬂ.l
whieh eonverges by Lemma 7. Similarly for the last term of (13), we write
e [mk(% LW )M] < Pr-ﬂm,]-ﬁ [( WM )ERI]

and again use Lemma 7.
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‘We now turn our attention to the random variable k, (o). Our objective
will be to compute its expected value and its variance and thus bhe in
a position to use Chebyshev’s inequality. The fundamental recurrence
relation for %" is :

BIRE ) = D) p(B) (1—(Bp)) W (By) + (B (By) (h(B,) +-1)°
%

from which we obtain

(18) Blhyp1]~ Blhy,] = Blw,]
and. .
{19) Elhp 1~ B h] = 28w, h,]+ B [w,].

‘We can similarly obtain

Blhyawh) = D) w(B) (1~0(B,) h(B,)2*(B,) +

By

[

. 1 i
T 14 (B2 (B, (1B, + 1) (B,) (1 -
from which we obtain
: E[hn+1 wz-l-l]_ B [hnmro]

1
(1 ——) Blaitt]— JL [hnmk“] o () (wE [y ! ]) .

However since A, < n, we can sum the above expression obtaining
Hh,at] == O(nB [m’““j) and thus obtain the simplified expression

(20) E[Tln+1ﬂ?g+1]~—E[hﬂm;‘] = E[mﬁilvl]“'“n“ﬂ[hn'vﬂ:!—!]‘f‘o( El-mkmj)l

Levmwa 9. If », s and  are integers satisfying s 0 and 0 < r < ¢,
then ‘

gy STE LR e et
& Mo sl I .
I e TR L LOMIP ( n’ )
k M;’Ht“r“l) M;{l‘
wnere
’
a(l R —

o (7"":3). GL1p

an
- (22) e(i, 7, 8) = rrtd) .. i1

(s -1
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Proof. If we let » =={—1, (21) becomes

,’,".T 1 B 1 Pt . O(%M«])
md MY Tl MR M

which follows from (6). Assuming that (21) holds for »--1, r<<¥t—1,
partial summation yields

I | N e ( M%;.H-_Mz)
Lt My sobL ML & s bl\ MLMG,

1
e, e have for any s > 0

Since My, — My = 1
. e L 1
I
T—1 O(i’cz““)

(22.5) A
so that
n Rl
-1 K 1 [ ntt N )
ettt 3L st | ety el e O 86
- M g1 ( M | 7'4_, Mr+1 + 0 (n*°)
Lt et el rade)
B 1( T i P 7r e
re{(t—r,r-1,8) nott nt
A srl MZ"'H'“'“"') +0 i)

cli—-1,r--1, 8) 7
‘ 8-k1
gubstitation obtains (21). Thus we have obtained (22) for all 0 < r <ty

reverse induection, ‘
This lemama can be uged to obtain the following estimates:

and this

However, (22) implies that ¢ld,r,8) =

H
) \ 1 o (m)
@) 2 =g O )

Jewn 3
[ .
7 "9 dn
‘ N e S CARIL ()( )
GO 2wt s O
n

o1 1 "W 2, 60
@) X “’(Ms)

26 -y 1 n " 2n } Bn _l_’o(;rjfm)
26) N7 A TR TR T )



72 M. O, Wunderliel

n
k 1 n? o
iy : 0( )

= = ?f“z“ﬂ‘g;“l‘- )
o f;:; -z’i;f- h %;E "i_:i ;:Vli *}MZ;. * Z 1141‘4 H)( Mﬂ,,)

We now sum (from 2 to = -—1) the expression (20) letting & be 4, 3, 2 and
finally 1 using (15) and the estimates (23) through (30) to ohta‘m in turn

Bh,xt] = O(nE %5,

.E'. } |J,3
]: biirqa?lj _Zl[:b }» 0 ( J’J—s )

: n # %
Elhyw;] = W + W + 0 (Fi)a
% 7 n(30-+2) %
Hix == o emmn - Yy} P
Wntin] = b gpr =+ 0 ( it )’

where (f = ¢, , = lim (7 —M,)] in (15

0O

). Summing (19) in the same
way obtains

n' 3C-+5 *
BTH] = W _} - f"__(..ﬁ_ﬁt_) 0 (_f’b)

and swnming (18) yields

n(C-+2) n
B, e e TL/ ) putemy
Che] = 4 Mi + M R0 M
Thus the variance ¥ [h,] can be computed to be
. _ . On? e
31 VIk,] = B[] = E*Th,] == moese b O f |,
(31) (] = B~ BT = e (M)

To estirnate O, let
C, = Bllmy' —M, 1] = Blu;*1— .
- Using (5), we can write

1 :
- (M, —1)

Copr1—0p =
"+l O'n. (9%-—1)2
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and summing this from 2 o n—1 yields

'n.j_jvzl 1 - —] TCH”T 1
- ) WMyl) me S
G??z ﬁ ('r“ - 1) ( fe ) ﬁ ](}---_I ‘S

. I Segal has shown that

O = o, == £(8) == 1.202056905% ...

et )
Wo have thus shown that
s

‘ B V ik, | rm e
(52} . [An] i g%)

A gimilar ecorputation can be carried out to show that the third momoent

of h satigfios

T g 1 n ns
WL~ B = 5 5170 355)
and hence, in. view 'of (32), all the higher moments of 5, tend to infinity
with . '
TuorowneM L (1. Hawking). If p(n) 48 eny funciion of n satisfying

(@) p(n) = o(logn},

(33) (b) w(n)-+o0 a8 H-»roo,

then

| o 1
(34) M{cze.l’,: Ih, () — B (B < ’?.!iﬂﬁ.)_} '1'“0("4}T27%T) w10 (n).

Proof. We aﬁply Chebyshev’s inequality using (32).
This shows that the prime number theorem. holds in X in the sense
of the wonl law of large nwmbers. We can actually say @ bit more. If

we uge tho estimate
| e - 1t H o
Bl ] ]"c'ig'j‘f 1 log“n + O(lng‘%?.,)

wo can write (34) in the form

. M

. | fo, () - lume‘/ i,,,(,,7) ] e ¢

(35) NatE T " logt ;;l T sy
Togh—"a
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- This shows that the error term is smaller than nflog®n for any & = ¢
in. the sense of the weak law of large numbers. If we let ¢ == 0 in (35) wo
gat no useful information. '

It wounld seem. reasonable to conjecture that given & = 0, a function
A{w} = 1,(n) exists for which A(n)-+oco and such that the set of all ge-
quences ae X sabisfying

n
Ry (@) — iogq}

= A(n) -

has a measure which tends to one ag n— oo, Howover, not enough is known
about the distribution of 4 to obtain such a regult.

I In this section, we will employ & method of Paul Lévy [b] to
obtain » nmamber of results in the sense of the strong law of large nunahers,
Our immediate objective is to generalize Theorem 1 and prove that almost
all sequences in X satisfy the prime number theorem and & direct proof
of this can be found in [7]. However in this paper we will present the
method in a more general form so we can apply it to & number of random
variables. ‘ '

Trmormsr 2. Suppose fola), n =1,2,..., i8 « sequence of random
variables defined on X having mean and vaviance B[ ful and V[ f.] respecti-
vely. Suppose furthermore that we can choose functions

By ~E[fy], Vo) =0V and  Rn) = V(n)/E )
whick satisfy the conditions
o) Tim f i 208" . .
(8) 1“1_1;111 nﬂlﬂ E(anjﬁwi s | 'wlwa-_e H(z) = B{{=]),

(b) B(n) is monotonically non-increasing and

T R(B)
it kb o !
press

() fula) is monotonic in n for any fived $eQUence we X,
then for almost all sequences aeX, f,(a) ~ H(n). .
It is apparent that the two random variables @, () and. h, (o) which,

were studied extensively in the previous section satisfy the hypotheyis
of Theorem 2, In fact, one obtaing from (16) that

1 1
—_——
el = Togmn %O (log“w)

icm
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g0 that wo can choose for both random variables the funetion

1
B = g
which certainly satisfies condition (b). ky,{n) is monotonically non—ﬁleoreaay}ng
since h 8 o counting function and w,(a) is monotonically non-inereasing
ginco @ 18 a product of termns lesy than 1. Thus after proving Theorern 2,
wo will also have proved
Trrorem 3. Almost all sequences e X salisfy

(36) by, () ~ nflogn,
’ 1 1
(37) (1) = [ i (1 .ﬁ) ~ g
e

(36) i3 our probabilistic analog of the prime 1111?)‘1']0"0.1' the(_)re@ and
(37) in @ probabilistic analog of Mertens’ theorem. We ghould pmm; ont
at this point thut for the soquonce of primes, Mertens’ theorem produces
the constant ¢~ rafher than 1. .

Proof of Theorem 2. We will chooge any 430 vsuud define E{,(fn-)
= ln) s [(Lb & If we lob p(n) == 0(n), wo can use Chebyshev’s ine-
quality o write ) . :

(88) _l(",‘[“c A Lh(ﬂ.)(a) ~Mi(n)i -~ W(l‘(]l’)}-ﬁqm)] < wg(",(%))

I wo assume that for @ = 1, B, = R, We call use {b) to write

o3 = o i 5} - R
. 1, ‘ J'a I . al uﬂi—u \7 k ot
N By = M By N g (ug-) < 3 - Q) o

A d id ] . a
fhon ), o] el * Fwa] aﬁ"lﬁé.’cﬂCn”‘
[+
2a 1R
2 BN w1,
o1, I
fowe

Thus, we can. choose a function y(#) = o(n) for wivhmh 1;]3}{ ?1.17511.1 of the
vight hand side of (38) converges. Thus, using the Borel Oantelli lemmg,
wo can asserl that for almost all sequences ne X,

(39) Jign () ~ Bygny-

Wo will complote the proof for the case where )"’n(a), and thuas B{f,], 8
monotonieally non-decreasing in.n, We will therefors assumme 1111&13' we'.h?.vc?
chosen, J, to be monotonically non-decreasing in #. If the integer ¢ satisfios
bm) < 4 l(m-1) we can write

| Finta) < fi() < fiman (@)
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or

Jumy () « file) . fman(o)
=z T ] "
Einsy ik By

But then from (39), we have for alimost all e X,

(40) Ero) By _ file) _ (L+o(1) By
By B By

We mow choose a sequence d&; such that &1Lt and that for [ (n)
= [(1+6:"]

S TeT
woos By

exists. Such a choice is possible by (a). Then letting g; = g;-+1/i, we
have from (40) that for almost all sequences ¢eX an integer M == M (a)
exists such that for i > M - s

(41) b

We will let 7; be the set of all sequences which satisfy (41). Since p;-—-1
as {-»oo, the intersection

15 exactly the set of all sequences for which f;(a) ~ Z;. But since u(T;) = 1
for all 4, it follows that u(T) = 1 and our theorem for B[ f] non-decreasing
i proved. The proof of the remaining case is similar to the above.

Very little can be said about the hehaviour of the error term P () —
—nflogn in the sense of the strong law of large nwmnbers. If we let pin)
= o(1) and. let 1< y.< 2, we can use Chebyshev’s inequality to obtain

] ks
{ [ ) ——
, look
(42) ppoeds | “Og] . o ()} <l g G P
l _.._‘_]f’;._% " (%) ]‘og’*“‘ﬂ’ %

log"k

If one makes the substitution &k = (1 - 8)* the sum (over %) of the might
band side of (42) will converge as long ag y < 5. One cannot adapt Lévy’s
method to this situation because the raridom variable h,h.(a)w}'éflog ki
not monotonic. However, there are other ways to obtain strong law results
- from weak law results which involve making use of statistical dependency

relationships between the random variables and modified versions of the

icm
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Borel Cantelli lemnma, Although these methods arve diffienlt to apply to thig

- gituation, we ftate ag a conjecture the strengest pogsible result of this kind.

Conymorurm L. If 8; 48 the set of wil sequences o for which

| o "
hay{a) = fogn ~° (]-“gmwﬁ'n)’ =t

then u(8) = L
On. the other hand, if ¥ ‘ in (42), wo gob no information from the
substitation & == (L--8* I we eould obbain more information about
the digtribution of A, () we would expeet to be able to prove
Conmmerrvn 2. T7 Sy 48 the seb of all sequences o for which

# n
h I R =/l [ I £ 0
n() logn logitey |7 :

then () == 0, .
#plays an important bound-

16 is intercsting to note that the exponent 3
ary role in. Bateman and Diamond’s work concering Beurling’s general-
ised primes. _

‘We will now turn our attention to & probabilistic analog of the twin
primes conjecture, Although a “twin prime” is defived to be a prime
p such that p-+2 is also & prime, wo will consider a “random twin” to
bo & pair of consecutive clexnents #, w41 We ean prove that almost all
gequences in X contain infinitely many consecutive integers without
making any use whatsoover of Theorem. 2, ITowever, using Theorem 2,
we will obtain & strong law result which deseribes the asymptotic density
of eonsecutive slemendts. _ '

TrmoREM 4. Let &, (c) count the number of conseoulive indegers in the
sequence o which ave less than n; that is

tpfat) = 2 o
o<t

Toate
Jo~aleat

Then for almost all sequences weX, #,(a) ~nflogin.
Proof. The function 1, («) does nob lend itself to the methods det&ni.left
in, Section I, since its fundamental recurrence rolation analogous bo (18) 18
- o h el ke el 4
B[ty Bt e laghd e Y] o (Bl ] B ™ ).

ey

Hml

We will enploy an auxiliary funetion

. NTIT 1 N
: - e ) B o Wi Wimy ().
(43) tala) = Y [ i 2 1{e}
fwn  Je 1 — e A;c-‘é(:t
gt A \TTF )
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We mnote that 1 satigfies the recurrence relation

by (0) == 1, (@) - () 2 () 9

% odd,
wﬂ

where y,,(a) i3 the characteristic function of m. This leads immediately
to the fundamental recurrence relationships

. 1
(44-') [n]—I]HE[Gﬂ. 1] = (l"” ;{""“’ )Df”'n l1
. and

i 1y 1y, - ,
(45) Byl =Pl = (1= 527 ) +2 (1~ g} isend, woda,

The Tast expectation in (45) shows that we will require a recursion for
B, 25,1 for general & similar to (20).
It a i any sequence in X and B,,, and B,., are the eclemen-

tary sets (a;n-+1) and (a;n—1) respectively, then we have (for
»n odd)

[ 1'—"’3 1L~—1); 'n"‘l¢a7 nd,
1—ojou(B,_\); H—L¢a, nea
P‘(Bn+1 i * ’ ’
el —o(@—~1fn—1)p(Byr); n—lea, nia,
1 —1jn—-1)u(B,_,); w—leua, nea,
and
a'; n—1¢ a, nia,
N 14\% :
t(lm——%w) ; ‘m—1¢a, neu,
. R
By (@) by sy (@) = 5o 1 "_
_ @'t ]mmi«) n~—leo, nga,
e 14/ 1 % 1 I
w’“(t-{» _—)(1~— w~-*-_-~) (Ll.-—-m) 7 n~lenw,nen,
@® -1 %

where on, the mght hand gide of both expresgions, we have written o for
@, (a) and 7 for i Iy—;. If we make these substitutions in the expregsion

E[“f'nnp-l nH] == ZH nil)mﬂ+l( n+])£ﬂ+l( 1)
B
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we can obtain for # odd {(using the wame abbreviation for #,., and Eﬂ__l
on the right hand side)

(46)  Blat(n )0+ 1)] = Blat]~2 B[] ¢ Bl -

1 k R .
J- (.1 »-;‘-) (B {4 ] B a2 ) -
1 I . | Eep1 e
D I [RROANII [ /1P Lo S R [y [ Tl * g o
! (l_ fn.»--fl) H w1 (l fn—-l) B a7 t]

1 -1 1 ke o s
B I oo b (T T2 8] A B [t
‘ ( o en 1 ) ( 7 ) ( [ J i 4 [ ])
which can Do simplified to the cstimate (n odd)
(7)) Hwhyide] -4 Lwﬁwl-ﬂm

= Bt - 2 Blakth 140 Bl )

Note that with % = 0, (46) agrees with (44). -

Tn addition to our abbreviation for z,_; and f, , on the right hand
gide of an eguation, we 'will let A(H [im’“]) represent the expression
E[f“.,|_1wf,’2.,_,1]w-,ﬁ) [j'E,,,.,lcr"’ ¢] for n odd. These differences will be summzed
over the m.uge % == 3(2)n (meaning 3,5, 7, ..., n—2, n) ylelding esbimates
for W[t,ek] for m even. Use will be ma,rle of (23) through (30) meodified
by the agsertion

‘>“T Ic”

75“3(2)"‘ f kmu
which i easily obtained wsing (22.5). We first write
- 6 ) ) )
(48) A(B[1®]) = Bla'] -~ ;é B[o't]+0 (’;,75 Jﬂ[mm)

which when sumumed yields
(n odd).

B [mﬂi])~

Summing this using (49) and & modj:ﬁed vorgion of (24) yields

", (%
{51) Jj”ﬂ]imﬁn}d] ”"QM‘ -%-O('ﬁ '

(49) H g @401 == O (mI L))
Writing (47) with & == 2, we gat

(50) ARt e B[] = drw“ﬂ i 0(
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(If we had summed 1 rather than 7, in (43), the definition. of f, the firgt
expectation on the right side of (50) would be Z[x*] thus rendering the

estimate (49) useless. This recursive method for solving (47) would not

be possibie.) Continuing in this same way, we obtain

. 7
(52) ¥ [tn+1’5n+1] 2M2 -+ é—lﬁ: 0 (—ﬂ)

‘We now sum (45) uging the above estimate to get

‘ 2 == ,_?_q’j.__ - ﬂ'j n’
(53) Pl = g 55 O(M‘*)

We can sum (44) using (16) fio obtain

o K 1 (2
(54) Blf] =55 53 +o( Mﬁ )

™,

and therefore, the variance of ¢ is

~ ~ “ 2
(55) V] = BLE]— B [i,] = 0(—;—}—) m 0dd

m

%2
- O(Ic)g"%)'

We now observe that the hypotheses of Theorem 2 are satizfied for
the random wvariable i if we let

% . ps 1
¥in) =w—0——, and Rn) =————m-0!

E =
() 2logn’ log*n

Thus, we can assert that for'arlmost all gequences as X,

n
2logn ‘

(56) - t(a) ~

The analysis of t; would have preduced the same results if wo had counted
pairs k&, k —1, for #'even rather than & 0dd. {56) wounld Liold for the modified
function as well and therefore if we define '

b= D it (a)

fes<n
feaa
k—lea

then for almost all sequences as X, %,(a) ~ n/logn. We now define
1 if hea and k—1Tea,
0  otherwise. '

rp{a) =
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T# o gatisfies I,(«) ~nflogn, we use partial snmmation to write

1, () = E’Pk(a) = ka(“)ﬁ%m p ()

P R g1 ( (L)
Lo )a{ 5 (Lo
lng.r. " B EA}:’ logls (ﬂq‘“l )
Litetje 24 1\ _ ([tro@)e
© o logte logln klog?k log 2w

Thus, for almost all aed, b (a) ~n /1og2n and Theorem 4 i proved.

The aunthor wowld like to fhanlk Profossor David Hawkine for corvecting an
grror which osourred in the computation of ¢4, and to Professor Richard Guy for
Lelp in proving Teomma 3.
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