148 H. Cohen

- [3] D. H. Lehmer, An extended theory of Lucas functions, Ann. of Math. 31 (1930), p. 419-449.
- [4] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973), p. 207-215.
- [5] A. Schinzel, On some problems of the arithmetical theory of continued fractions, I, Acta Arith. 6 (1961), p. 394-413; II, Ibid. 7 (1962), p. 288-298.

Reçu le 22. 6. 1973 (430)

Note on sequences well-spaced and well-distributed among congruence classes

by

S. L. G. Choi (Vancouver, Canada)

Let

AULA ABILLIMETTOA

XXVI (1974)

 $(1) a_1 < a_2 < \dots$

be an infinite sequence of positive integers with asymptotic density (1) δ . Then it is said to be a *well-spaced sequence* if there exists a constant $C = C(\delta)$, depending only on δ , so that

$$\sup_{i\geqslant 1}(a_{i+1}-a_i)< C.$$

Suppose $0 < \eta < 1$. Then the sequence (1) of asymptotic density δ is said to be (η) -well-distributed among congruence classes if there exists an absolute constant K so that for all $m \le Kn^{1-\eta}$, we have

$$\left|\sum_{\substack{a_i=a(m)\\a_i\leqslant n}}1-\delta nm^{-1}\right|\doteq o(\delta nm^{-1}); \quad a=0,\ldots,m-1$$

as $n \to \infty$.

Henceforth we shall refer to a sequence which is well-spaced and (η) -well-distributed among congruence classes as an η -sequence.

One question that naturally presents itself is whether the function $f_{\eta}(\delta)$, which denotes (2) $\inf \lim_{\mathcal{A}_2} A_2(n) n^{-1}$, where the inf is taken over all η -sequences \mathscr{A} with asymptotic density δ , tends to ∞ as $\delta \to 0$.

In this paper we shall prove the following theorem which shows that $f_{1/2}(\delta)$ is bounded for all $\delta > 0$. It is an open question whether there exists $\eta < \frac{1}{2}$ so that $f_{\eta}(\delta)$ remains bounded for all $\delta > 0$.

THEOREM. For every $\delta > 0$ there exists a $(\frac{1}{2})$ -sequence $\mathscr A$ of asymptotic density δ such that

(2)
$$\overline{\lim} A_2(n) n^{-1} \leqslant (2+o(1)) \delta.$$

⁽¹⁾ The asymptotic density of a sequence \mathscr{A} , if it exists, is defined to be $\lim A(n)n^{-1}$, where A(n) is the counting function of \mathscr{A} .

⁽²⁾ $A_2(n)$ denotes the number of integers < n of the form $a_i + a_j$ where a_i , $a_j \in \mathscr{A}$.

^{3 -} Acta Arithmetica XXVI. 2

Proof. Let $\alpha = \frac{1}{2}(5^{1/2}-1)$ and \mathscr{A} consist of the integers α so that

(3)
$$aa - [aa] \leq \delta$$
.

It is clear that $\mathscr A$ is well-spaced.

From (3) it follows that if a_i , a_j belong to A-then

$$(a_i + a_j) \alpha - [(a_i + a_j) \alpha] \leq 2\delta.$$

To show (2) it suffices to show that the number of fractional parts $(a), (2a), \ldots, (na)$ falling into any interval (a, b) of (0, 1) is (b-a)n+o(n), as $n\to\infty$. In fact we shall establish this as well as that $\mathscr A$ is $(\frac{1}{2})$ -well-distributed among congruence classes by showing that there exists an absolute constant K>0 so that for every $m\leqslant Kn^{1/2}$ and $0\leqslant a < m$, the discrepancy of the sequence of fractional parts

(4)
$$((tm+a)a), t = 0,[(n-a)m^{-1}]$$

is $o(nm^{-1})$, as $n \to \infty$.

A theorem of Erdös and Turán ([1], p. 55; [2]) asserts that the discrepancy of (4) is

$$< K_1 \left(\frac{nm^{-1}}{u} + \sum_{k=1}^u \frac{\psi(k)}{k} \right),$$

where K_1 is an absolute constant, and

(6)
$$\psi(k) = \Big| \sum_{t=0}^{[(n-a)m^{-1}]} e^{2\pi i k(tm+a)a} \Big|.$$

It is well-known that (3)

(7)
$$||q\alpha|| \geqslant 5^{-1/2} 2^{-1} q^{-1}, \quad q \geqslant q_0$$

so that (6) and (7) imply that

$$\psi(k) \leqslant 2 \|km\alpha\|^{-1} \leqslant 4 \cdot 5^{-1/2} mk$$
.

Using this in (5) we see that the discrepancy of (4) is

$$< K_2(nm^{-1}u^{-1}+mu),$$

and this is $o(nm^{-1})$ if u is chosen sufficiently large in terms of K_2 , and K is chosen sufficiently small in terms of u.

Acknowledgement. The author is indebted to Prof. Erdős for his valuable suggestions.

References

- [1] P. Erdös, Problems and results on diophantine approximations, Asymptotic distribution modulo one (1962).
- [2] and P. Turán, On a problem in the theory of uniform distribution I, II, Indagationes Math. 10 (1948), pp. 370-378, 406-413.

MATHEMATICS DEPARTMENT UNIVERSITY OF BRITISH COLUMBIA Vancouver 8, B. C., Canada

Received on 2. 7. 1973

(428)

⁽³⁾ $\|\theta\|$ is the difference, taken positively, between θ and the nearest integer.