98 J. B, Fenstad and D. Normann

game ordinals. (Note, the proof needs only a finite part of ZF, so the
assumption’ about inner models can be eliminated.)

Some consequences of the lemma are:

1. If 292 > 2%, then there are absolutely measurable sets which are
not in the projective hierarchy.

2. Let A be the get of the lemma. We can prove in the theory ZF -
+VaC (oM < o) that 4 is not Z3.

3. Let 4 be the set of the lemma. We can prove in the theory ZI--PD
that 4 iy not projective.

To prove 1 use a cardinality argument. To prove 2 and 3 notice that
in ZP+VaC o(wl® < o) every uncountable Xj set contains a perfect
subset, Solovay [7], and in ZP4-PD every uncountable projective set
contains a perfect set, see e.g. [5]. ‘

Remark. The lemma does nob answer the question about the com-
plexity of absolutely measurable sets in every case. It has been proved
congistent by Martin and Solovay [4] that every Z; set is absolutely
meagurable and that every set of cardinality o, is IIj.
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Solution to a problem of Gandy’s
. by
Stephen Leeds and Hilary Putnam (Cambridge, Mass.)

Abstract. Consider the hierarchy of ramified analytical sets g, where 4, = finite
gets of integers (for simplicity, finite reals), Apy; = Teals definable by analytical
predicates with constants from Apg and quantifiers restricted to Ap, 43 = ﬁU Ap, if

<A

2 is a limit. One of the authors and Gandy independently confirmed a conjecture
of Cohen by proving the existence of a smallest B-model of analysis. Moreover, they
identified it to be Ag, where By is the least place where the hierarchy Ag stops, i.e.,
the least f such that Ag= 4p,. We prove here that for all f<fBg Ay =reals
definable by analytical predicates without constamts with quantifiers restricted to Ag.
We also show that there is a constant-free predicate which uniformly well-orders the
Apg (when its quantifiers are restrieted to Ap), and a constant-free predicate which
is satisfied by the arithmetically complete sets of order less than f.

NorarioN. We define the 4, as follows:

iy Ay = {XCN: X is finite}.

() dpp={XCN: Xis 2-N.T. definable over 4,, using constants
to name sets in A,.

(i) A, = U 4,.

g<t )

Let By = (uf)(Ap = Agyy). The ramified analytic hierarchy (RAH) is
defined to be Ag,.

It X edp,—4, we say X i of order p. It X has the property, that
any ¥ of order § (a fortiori, any ¥ € Apy) 18 arithmetical in X, we say
X is complete of order . We shall use the notation “¥Y <4 X” to express
«Y i arithmetical in X». We shall reserve the notation Eg to denote
particular complete sets of order B.

Our notation will be otherwise that of [3]. We will assume throughout
the results of [1] and [2], and especially the results on equivalences between
the RAH and other hierarchies.

Gandy (in lectures in 1967) asked the following question: If we drop
the mention of constants from clause (i) above, do we still have a charac-
terization of the same sets? In other words, if X e d;,,, does X have
a congtant-free definition over 4, We shall answer Gandy’s question
in the affirmative. Our theorem is the following:
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TaeoREM. Let B< f,. If X e 4 th i ) g ;
2-N.T. without set gmstggzts.f e fhon s definable over Ay in
‘ In giving the proof we shall often have to show that a definition ig
arithmetical, or that a definition can be expressed in 2-N.T. (15 To
facilitate the reading of the argument, we will use English Whexzever
posgible, and leave to the reader the essentially mechanical tagk (ﬁi veri-
fying that our definition can be given formally in the required style
Thus, if R is a set of integer which defines a well-ordering, we shall writc;
@ e Field R rather than, e.g. (Ha)(2%-3° ¢ RV2°-3% ¢ R). '
. Notice that if X is definable over A without set congtants, then so
is any Y r.e. in X. To establish this, we use Rogers’ charmcizerization
of relative recursiveness: :

Wi = {w: (Ba)(Bu)(Bo)({@, a,u, vy ¢ W, &D,C X &D,C X)}.

If X is 2-N.T. definable over A by M () (2), where M is a formula with-
out set constants, then the following will define ¥ over 4:

(Ba)(Bu) (Bo) Kz, a, 4, 0> e W, & (z)(z eD, = M(2)&2zeD,= —M(z)) .

It follows that the class of sets of integers definable over 4 without
set constants is closed under <, and closed under jumps, hence is cl(;secl
deer <q. Oonsequently, to show that this class is identical with 4
it will be sufficient to show that it contains some ¥, a complete seé%
order 8. We shall prove this fact, and thereby our theorem, by establishing
the following: ’ ;

Levma. There is a two-place predicate of 2-N.T. without set constants,

W(X, X), which defines over each Az, B < @ .
; = well-ordert y
in Ag. Ie., the relation ﬂ’ Py ng of the sels

A <Y=4=W(X, Y)
is & well-ordering of the sets in A,.

It is easy to see that 4, |= W(X, X) i - ing; bhat £
sy ot () s = W(X, X) is a well-ordering; e.g. that for
Ay |= (LX) M (X) = (H! X)(M(X) & (Y)(M(Y)= W(X, ].7))) .

The fact that a single formula works for all 8 < g, is interesting; it wi
Py 2w i et B < f, is interesting; it will
We now show how to use our lemama to prove the theorem.

() 2-N.T. is the two-sorbed lan
) S guage, whose small-t; ia
integers; the capital-letter variables range o’ver 2y, vpe varhiies mnge over

() By “X is 2-N.T. definable over ¥ by M (x)”, we mean X = {w: ¥|= M (x)}.
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DrrINTTIoN. Let ¥ be a seb of sety of integers. We call a set H a uni-
form upper bound (uub) on ¥ if (He)(X)(X ¢ ¥ <« (Hre WE)(Ox = DF)).
Thus B is & wub on ¥ if each set in ¥ is <, B and further, there is an
F-recursive enumeration of the Godel-numbers in H of the sets in V.

Let << f,- We claim that if B is a unb on 4,, definable in 2-N.T.
over Ag, then ¥ is a complete set of order g. First, B is of order . For
B e Apyy; further, it B were €4y, then B’ ¢ Ay, so that B’ <4 B, which
is impossible. Hence B ¢ Ay, — 44, Le. Bis of order g. To show & a com-
plete set, let B, be a set of order f. Then B, is definable over 4, by a for-
mula M(#) in 2-N.T. (perhaps containing names of sets in A4,). Using
the fact that ¥ is a vub on 4, we may paraphrase quantification over
sets in 4, by quantification over Giodel-numbers: we may thereby convert
the formula M (») into an H-arithmetical formula which defines B, — the
get constants will be replaced by numerals. Hence B <. B So Eis
complete of order f.

Consequently, to prove the theorem, it will be sufficient to find
a uub on A, definable over 4, in 2-N.T. without set constants. Now
we know there are uubs on A, definable over A, in 2-N.T.; let
Mz, 4, ... Ay) define such a uub, where the A; name sets in A4;. Then
the same uwub may be defined by a formula M (@, A), where A names
a set in Ag. (4 may, for example, be taken as {(a,): @€ A}, We may
use M to define a nub on A, over 4, without set constants, as follows:
Let B be the W-least set in 4, such that M(x, B) defines a uub on 4,,
when the set quantifiers of M are faken to range over Ag. Let B be the
wub thus defined by M (z, B). Then E may be defines over A4, in 2-N.T.
by the following set-constant-free formula:

(ELX)({y: M(y, X)} is a uub on 2N & .
(¥)(fy: M(y,T)} is a wub on 2¥= W(X, Y) & M(, X)).

(We leave to the reader the translation of this formula into 2-N.T.)

This completes the proof of the theorem.

We turn now to proving the lemma. Boolos [1] has found formulas
which play the role of W for HYP ordinals B (i.e. for g such that X ¢ 4;
= 0% ¢ A;). Further, it is not ditficult to produce such formulas for f< the
Teast FIYP ordinal. Because a limit of HYP ordinalg is itself H'YP, this
leaves only one. case: § = 67, Where § < B, and 4 is the greatest HYP
ordinal < B, n >0. Our proof applies indifferently to all these cases.

Tet B< By We wil construct a parameter-free formula with
free get variable, satisfied in 4, only by complete sets. We recall two
definitions from [27]:

Dorrxroion. If P C 2V, the recursive unmion of P (RU(P)) is
{X: (BY e P)(X <¢ )}
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DerintTioN. If ACN, A;= {a: <a, i) ¢ A}.

We now introduce the notation Z(X, ¥) to represent the following
situation: ¥ (taken as a set of ordered pairs) defines a well-ordering of
integers, and X defines a hierarchy indexed by Field Y in the following
sense:

(i) |ilg=0=>X;= N.

(H) ily = |jlr-+1= Xo= X,

(iii) |¢]x & limit = X is an arithmetically least nub on RU ({X;: j< 5 })
(i.e., for every uub Z on RU({Xj: j <y }), X; <4 2).

It is eagy to show that an equivalent formulation of condition (iif) is
the following:

(ili") [¢f]y & limit = X, is an arithmetically least uub on {X;: j <y 4}.

If |Y]= 641, and if 5E(X, Y), then the X;, ¢ ¢ Field ¥, constitute
the hierarchy of complete sets, up to and including the complete set of
order §. This fact is esseutially proved in [2].

. For any a < § there are X and Y ¢ 4, with (X, ¥) and |¥]| = a--1.
The proof of this fact is implicit in [1] and [2], we sketch here a proof
which, though tedious, is perhaps as quick as any:

In [1] it was shown thab for 6< §,, dy= M; 2% (%), where M, is
the Oth level of Godel’s hierarchy of constructible sets. Further, it was
shown that for & < g, there is a complete set B, of order 0 which is an
arithmetic copy of M, in the following sense:

Let Field B = {&: (By)({z,y> c BV, @) e M)} Thén, taking H, as
a set of ordered pairs, ¥, defines a binary relation whose doman is Field ,.

We have (Field H,, By ~<M,, eppd>. For formulas ¢ in the language of .

set theory, we shall write

Byl=p for (FieldE,, By |=¢.

Finally, it was (essentially) shown in [4] that there is a firgt-order
fprmula, in set theory, o(zx) such that M, |=0(x) itf o= M, for some
limit 2 < y. It follows that B, |= o(w) iff & represents in B, some M, for
a limit ordinal A. :

Now given a<< 8, choose H, ¢ Ay an arithmetic copy of M,. We
shall use the ordinals of B as an index set ¥, for a hierarchy of com-
plete sets X,, with =2(X,, ¥,). Notice, however, that |¥|= a. To find
an X, ¥ with 5(X, ¥) and |¥| = a-+1, we ghall simply add the set E,
to the end of the hierarchy, indexed by a new integer.

Let Y, = {<@,9> ¢ B,: B, |=o and y are ordinals}.

Let B, be the set of ¢w, 4> sueh that ¢ represents a limit ordinal A
and  represents a least complete get of order A. B, may be defined as
follows: (arithmetically in B):

() We let Mg = {: = is hereditarily finite}.
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R, = {<x,i): (Be)(H, |=0o(2) and ¢ is a limit ordinal and 4 = the set
of ordinals in 2z and « is a wub on the set of sets of integers in 2
and v (v is a wub on the sets of integers in z.=-x <zv) and
for all ' with this property, » < a".)

We may now fill in the gaps in E;: Let

R,= {{»,%y: B, |=1 is an ordinal and either 1. B, |=4 is a limit ordinal
&<w, iy e Ry or 2. (Bn)(Ej)(H,|=i=j+n & j is a limitv
v j = 0and (By)(<y, j> « By & B, |= 2 is the nth o-jump of )) ().

We may now define X, = {¢y,i): (Bo)(K@,4) e Ry & B, =9 e .
Finally, let

Y = {<2% 27: <i, 5> e Yy} v {(2%, 8> i e Field ¥y},
X ={¢y,2%: <y, iy e Xy} o {C¥,3>: yeB}.

Using the techniques of [1], it iy easy to show that X and X are
both <4 F,, hence are ¢ 4,. Clearly Z(X,Y), also |¥|= a+1.

‘We turn now to the problem of expressing the predicate Z(X, Y)
in Ay. Let B(X, ¥) be the obvious 2-N.T. expression of 5(X, X), with
the following special features:

1. “Y is a well-ordering” is expressed by “every initial segment of
Field Y is either = Field ¥ or has an lLu.b. in Field X”.

2. The following clause is added to the definition: { <y j = X: <z Xj.
We claim that for X, ¥ e A, E(X,Y) « 4; =B(X, Y).

Proof. Notice first that if ¥ is a set of sets of integers closed
under <,, then for 8, T°e¢ ¥, ¥ |z 8 =4 I*.«>. 8 =q T".

For S <, T” is

(B2) (2 = T° & (BR) (Bm) (R, = Z & (V0 < m)(Rypy = (Ba)) & 8 <o Rn))-
Now this predicate €(S,T) is I}, so ¥ |=0(S, T).=8 <4 T”®. Further,
if §<, T then the relevant sets 7° and R are ¢ ¥, so ¥|= c(8,1T).
Similarly, we may show that 7% <, 8 is absolute in models closed under <q.
Finally, the relation 7; is a uub on RU{T;: j <gi}, taken as a relation
between T, ¢, and 8, is absolute; indeed, it is arithmetical in 7T join 8.

Tt is now easy to show that for X, ¥ e 45, E(X, ¥) =4, |= B(X,Y).
Assume E(X, Y). Because “Y is a well-ordering” is II;, we then have
Ay =Y is a well-ordering”. Clearly, A= lily=0=X;=N. By the

() The 1-8t w-jump of 4 is 4. The (n-1)-th e-jump of 4 is the 1-st w-jump
of the nth e-jump of A.
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preceding paragraph, for |jly = |ilv--1, 4, |= X; =4 X% (°). Also, for |i|y
a limit, we have 4,|=X; is a uub on RU{X;: j<yd}. Indeed, for any
ZeAy Agl=Zis auub on RU{X;: j <y} = Z is a wub on RU{X: j <y i}
>Xi <4 Z=>A, | Xi<aZ. Bo Ayl=X; is an arithmetically least uub
on RU{X;: j<wyi}. Finally, it is clear that 4A;|=i<vj=X; <z X;.

We now show Ayl=B(X, Y).=»5(X,Y) for X,Yed;. Suppose
Ay }=B(X,Y). Then Y is a total ordering of integers. Let Head
Y= {G,5eX: YMn: n<yj} is a well-ordering. We claim that for
i ¢ Field Head ¥, X; is a complete set of order |i|y. The claim is easy to
establish: Head Y is well-ordered by Y; the induction uses the absoluteness
regults of the preceding paragraph and the main results of [2].

Observe that if Head ¥ s ¥, then Field Head Y has no last element.
Por if Field Head ¥ = {i: i<y j} for some jeTield Head Y then
(BZ)(Z ¢ Ay & Z = Feld Head Y). So A |=there is a bounded initial
segment of Field ¥ with no Luw.b., which is impossible.

Consequently, either Head ¥ = Y or (Head Y # ¥ & Head Y = A for
some limit ordinal A.) We will show that in fact Head ¥ = Y. Suppose
on the contrary, that Head Y $ Y and |[Head Y|= A. By reasoning
similar to that of the last paragraph we may refute this assumption by
using it to derive that Head ¥ ¢ 4,, as follows:

We claim 4 % 8. For if 1 > 8, then some 7 ¢ Field Head Y is such
that |i|y = f. But then X, is a complete set of order 8, so Xy ¢ 4,, which
is impossible. We claim now that 4 # g. For if 1= 8, let 7 ¢ Field ¥—
— Field Head Y. Then every complete set of order 8 for § < 8 is <z X (%).
So every set in A4, is recursive in X;, whence X; ¢ 45, which is impos-
sible. Hence 4 < . Consequently some complete set H, of order 1 is e.4,.
Now ¢ € Field Head Y = X; is a complete set of some order < A=-X;e 4.
And ¢ eField Y—Field Head Y = every complete set of order < A is
<p Xi=>Xi¢ A;. Hence Field Head ¥ = {i ¢ Field Y: X; e 4,}. But the
predicate Z ¢ 4, is arithmetic in any complete set of order i, so Field
Head Y is arithmetic in B, join Y. So Field Head ¥ ¢ 4,, so Head ¥ ¢ 4,.
Hence Head Y = Y. It follows that ¥ is a well-ordering, hence that
E(X,Y) QED.

Congider the predicate

D(2) = (BX)(BY) (i) (B(X,¥) & i ¢ Field ¥ & % =, X .

‘We have shown that this parameter-free 2-N.T. predicate is satbisfied

(°) Here we make some obvious assumptions about the absolutness of such re-
lations ag [jl, = |¢},+1. The proofs are trivial. . }

(") By the extra condition on the expression B(X, ¥), every X;, for |jlv< B
i8 <, Xi. However, every complete set of order < § is <, some such Xy, and hence —
because § is a limit — <, some X, <, Xj.
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in A, by precisely the complete sets of all orders << f. We use D(Z) to
define a well-ordering as follows:

W(X,Y) if order X < order Y, or (order X = order ¥ = 0, and
some constant-free definition of X over A, is shorter than any constant-
free definition of ¥ over 4,).

The translation of this predicate into 2-N.T. is essentially carried
out in [2]. We sketch here some crucial steps:

1. There is a constant-free predicate of 2-N.T. which expresses
in A, the relation B is a complete set & X € Ay, 5 thus:

D) & (BY)(Y<, B&D(V)&E % T&(D)(Z <y B &
D(Z)&B %aZ= 7 <a ¥) & X <4 Y)V(BY)(EZ)(D(Y) & D(Z)
&Y <o Z<aB&Z % Y&E £0Z2&X <. ¥).

(The first disjunct expresses that order F is a successor, and X ea com-
plete set of the preceding order; the second deals with the case where
order ¥ is a limit.)

2. For any constant-free sentence of 2-N.T., ¢, any E, a uub on A,,
the question, does 4, |= ¥ may be uniformly translated into an arithme-
tical question about H,, whose length = o (langth of ¢), for some recursive
function p. (Further, for all integers m, m, length g(m)= length ¢(n)).
Consequently, 7%, the set of all constant-free 2-N.T. sentences of length
<, true in 4,, is ¢ A,,,. Finally, there is a constant-free formula of
2-N.T. Q(z, B, Z), satisfied in 4, by precisely those #, B, Z such that
B is a complete et of order 6, some 6 < B, and Z = T%. (This is easy to
do in the light of 1. We do not require, of course, that I7, e 4,, to be
able to characterize T7,).

3. To say o is the number of a constant-free formula which defines X

over Ao We write (Bn) (nis thelength of a & ()(8(a, 8) € T™ graer S € X)
where (¢, s) is a recursive function such that if ¢ is the Godel number

" of g(x) then (¢, s) is the Godel number of ¢(s).
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Remarks on countable models (1)
by
Miroslav Benda (Seattle, Wa.)

Abstract. Theories with finitely manny countable models are investigated. Several
situations are shown in which such theories have at least two universal models.
A theorem of Vaught is improved and an example is given which shows that it
cannot be generalized.

Introduction. The theme of the major part of this paper is deseribed
in the following

CoNyECTURE. If a complete not w-categorical theory has only Sinitely
many countable models then it has at least two universal models.

We thought we had a proof of the conjecture; it contained an “under-
graduate mistake” but by strongthening the assumption of the conjecture

' the argument can be saved (see Theorem 3). We prove two other, maybe

more interesting results, in the direction of the conjecture. Theorem 1
proves the existence of two universal models from a restriction on inter-
actions between types of the theory. The concept we introduce may be
useful in other investigations. Theorem 2 strengthens the hypothesis of
the conjecture to: “every complete extension of T by finitely many con-
stants has finitely many countable models”. Known examples of theories
with finitely many models satisfy either of the last two assumptions and
they, of course, agree with the conjecture. On the other hand we are
rather ignorant about the power of the assumption in the conjecture.
We know that the conclusion boils down to finding an extension of T
which omits a certain type (see proof of Theorem 3). But we have no syn-
tactical characterization of theories with, say, 3 countable models. By
Ryll-Nardzewski’s theorem (see [9]) we know precisely when a theory
has one countable model. It is thus. surprising that no generalization of
Ryll-Nardzewski’s theorem has appeared. Other problems which emerged
during our work on the conjecture are mentioned later.

Is the conjecture interesting? We, of course, think it is. Firstly, it,
ag any other conjecture, stimulates research which usually has value

) Some ;(;s‘ults in this paper were obtained in summers of 1971 and of 1972
while the author was at the University of California in Berkeley and was supported
by NSF grant GP24352.
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