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Abstract. Theories with finitely manny countable models are investigated. Several
situations are shown in which such theories have at least two universal models.
A theorem of Vaught is improved and an example is given which shows that it
cannot be generalized.

Introduction. The theme of the major part of this paper is deseribed
in the following

CoNyECTURE. If a complete not w-categorical theory has only Sinitely
many countable models then it has at least two universal models.

We thought we had a proof of the conjecture; it contained an “under-
graduate mistake” but by strongthening the assumption of the conjecture

' the argument can be saved (see Theorem 3). We prove two other, maybe

more interesting results, in the direction of the conjecture. Theorem 1
proves the existence of two universal models from a restriction on inter-
actions between types of the theory. The concept we introduce may be
useful in other investigations. Theorem 2 strengthens the hypothesis of
the conjecture to: “every complete extension of T by finitely many con-
stants has finitely many countable models”. Known examples of theories
with finitely many models satisfy either of the last two assumptions and
they, of course, agree with the conjecture. On the other hand we are
rather ignorant about the power of the assumption in the conjecture.
We know that the conclusion boils down to finding an extension of T
which omits a certain type (see proof of Theorem 3). But we have no syn-
tactical characterization of theories with, say, 3 countable models. By
Ryll-Nardzewski’s theorem (see [9]) we know precisely when a theory
has one countable model. It is thus. surprising that no generalization of
Ryll-Nardzewski’s theorem has appeared. Other problems which emerged
during our work on the conjecture are mentioned later.

Is the conjecture interesting? We, of course, think it is. Firstly, it,
ag any other conjecture, stimulates research which usually has value

) Some ;(;s‘ults in this paper were obtained in summers of 1971 and of 1972
while the author was at the University of California in Berkeley and was supported
by NSF grant GP24352.
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even in the case when the conjecture turns out to be false. Secondly,
if the conjecture were true it would be a general fact which would imply
Baldwin-Lachlan’s theorem ([1]). In connection with this we should men-
tion a theorem of Lachlan which says that no totally transcendental
theory (in fact no superstable Lheorv) hag n counmblc models where
l<n< o (see [6]). . o ,

The lagt part of the pa.p(,l is an improvement sm(l hopefully, also
an explanation of the fact that no complete theory has exactly two count-
able models (see [11]). More precisely, we show that the definition of
a saturated model cannot be made simpler (except in trivial cases) and
that it is not complementary to the definition of a mxme model.

The notamon and Lummolowy are standard unlc.s% o l,herwme indicated.
An n-type.of a theory is.a maximal consistent set of formulas in variables
@yy ey By If we add to a structure elements from its universe (whieh ig
always denoted by the corresponding Roman capital) then the elements
will name themselves, i.e. if ¢(x) is a formula of the language for 4, and
a e A then g(a) is a legitimate formula (sentence in this case) of the lan-
guage for (4, a). As can be noted above, when we talk about the number
of countable models of a theory, we have in mind the number of ist‘)mor-
phism types of such models.

" 1. Throughout this section T' will stand for an arbitrary theory in
a ‘countable language.

DrriniTION 1. a) Let @,y by finite sequences of distinet variables.
Let Z(2) be a type of T. A formula a(z,y) is a Z-atom in y if a(e, y) is
an atom of T' v X(c).

b) Let X(z) and 4(y) be types of T. A type A(z, y) is called a link
of Zand At E(z)o A(y) C Az, y). A link A(z,y) is Z-non-principal
if it contains mo X-atom in ¥. ‘

¢} T has few lUnks if for any two types Z(x) and 4(y) there are only
finitely many X-non-principal links of X and 4.

Mo give the reader a feeling for the notion we present some examples.
They will show that the notion is independent of number of types, models,
total transcendence, etc.

Examerrn 1. Any o- categorma] theory has Eew links since given
any two types there is only finitely many links between them (sce [9]).

Examrre 2. Let T, be the theory of (Q,<<, U, ..., Un, )y, Where
Q is the set of rationals, < is the natural order on it and U, ..., Uy is
@ partition of @ composed of dense subkets of Q. T, has n-+3 countable
models (see [11]) and has few links. E.g. take T, and two 1-types Z(x)
and A(y). If they are both principal then they are determined by “z =T
and y = m” or “z=k'and m< y< n” or “k< &< m and k< y<m”’ or.
In the 1ast case there are 3 links between them (nzunely @ =1, @< y

icm

Remarks on countable models 109

and y << #). In the other cases there is just one link between them. ATl
links in this case are X-principal. If X(x) is principal- (non-prinecipal)
and 4(y) is non-principal (principal) there is just one link between them.
If both are non-principal there are 3 links between them, those deter-

mined by s <y, =y and y< z resp. Only the last one is X-non-
principal.

Exaverr 3. Let T be the theory in the language {Uy| n< w} v
v {07 m,n< o} whose axioms are: U, A On) for n, m< w; Cf = Cp if

(n, k) # (m,p); Up~ Up=0if n % m. T has 2° countanle models but
it has o types. It is not difficult to see that it has few links.

ExamprE 4. Let T be the theory of (@, <, Dgeq- ThIS theory has 2¢
1-types but it still has few links.
Some w,-categorical theories have few links some don’t.

Examere 5. If T is the theory of (o, n),., T is w,-categorical  (and
not w-categorical.) It clearly has few links. On the other hand if 7' is
the theory of (I, 8) where I is the set of integers and S(n) = n-+1 then
this theory is w,-categorical but it does not have few links: {# = x} de-
termines a complete 1-type X'(x). Let A(y,, y,) be the type determined by
{8%5) # 9| keI} v {8%y,)  y,| keI}. Then for every n < o Z(w) v
v {8™w) = y,} v 4(yy, y,) determines a link of X and A which is X-non-
pnnmpal

Levma 1. If T has few links and I'(2) is a type of T (2 is a finite se-
quence of variables) then T o I'(c) has few links (¢ is a sequence of new
constants of appropriate length).

Proof. Let Z(xz, ¢) and 4(y, ¢) be types of T w I'(¢) and let A(x, Y50
be a X(x, ¢)-non-principal link of them. Then A(z,y,2) is a non-
principal link of X(z,z2) and A'(y) = {Hed| 6 eA(y, 2)}. By assumption
there are only finitely many of these.

The next lemma will be needed in the proof of Theorem 1.

LeMMA 2. Let A be prime over a == (ay, ..., an) and let b= (Byy ooy ba)
e A" Assume that a non-principal type E(b,y) of Th((4,b)) is reahzed
in (A, b) by ¢ e A¥. Then a is not prime over b, i.e. a realizes in (A, b) a non-
principal type of Th((4, b)).

Proof. By way of contradiction assume that « is prime over 5. Then
there is B < 4 such that a, beB<* and (B, d) is prime. Let a(a, %, ¥)
be the Th((4, a))-atom for (b,c). If ¢ e« B* is such that (B,b)
l=a(v, b, y)[a, ¢'] then the, Th((B, b))-type of ¢’ is Z(b, y); this contradicts
primeness of (B, b). (

DEFINITION. A structure A is full if every type of Th(d) is realized
in 4. A structure A is prime. over @ fimite set if for, some.ay, ..., ane A
(4, ag,y ..., ay) I8 prime.

on
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Note that every w-universal model i§ full. In [10] full models are
called almost saturated. We reserve this term for models which are closer
to saturatedness than full models.

TeporEM 1. Let T be a complete theory which has, few links. Hvery full
model of T which is prime over a finite set is universal.

Proof. Theorem 1 is certainly true for w-categorical theories so
we may assume that 7' is not w-categorical. If 4 is a full model of T prime
over b, ..., by then 4 is countable so 7' has countably many types and
it has a countable saturated model. We will point by point embed the
saturated model into 4. The inductive step is singled out in

TeMMA 3. If Z(x) is a 1-type of T there is an @ < 4 which realizes X
and such that (A, a) is full.

Proof of Lemma 3. Because 7' is not w-categorical neither is
T'o Z(c). There is therefore a type Zy(@, ¥y, -y ¥s,) 0f T which includes
() and is X(«)-non-principal. Let Zix, ¥y, ..., ¥,) be an enumeration
of all types of T such that Z(z) C Zi(x, 4y, ...). Let an e 4 be such that
(A, a,) realizes every Zi(dn, U1, -, Yy,) With i < n. Such an element exists
Decause 4 is full 5o & completion of Zy(@, 43, v, Yh) ¥ oo Znl@, YTy ey Y2
to a type of T is realized in A by, say, (a4, ¢, .., ch). Let A(y)
= A4y, ..., Yp) be the type of b= (by, ..., bp) and let An(z, y) be the type
of (an, b). Ay is a link of X(x) and 4 (y). Because (d, as) realizes a non-
principal type of Th{(4, as)) (e.g. Zy(@n, ...) 4 is X-non-principal ac-
cording to Lemma 2. Thus, because T has few links, there is a link 4 of X
and 4 such that M = {n| A, = 4} is infinite. If n, m ¢ M then (4, b, a)
= (A4,b, an). Moreover, (4,b) being prime is homogeneous. The last
two facts imply that the models (4, ax), (4, an), (n, m e M) realize the
same types (actually arc isomorphic). By the definition of a, and the
fact that M is infinite (4, a,) is full for any n e M.

Going back to the proof of Theorem 1 let 4 be a full model of I'
prime over b ¢ A™. Let B be the countable saturated model of 7 and let
{dn| n < o} be an enumeration of it. Assume that we have found ay, ..
in A such that (4, aq, ..., an) is full and

.y Om

(A, ay, ooy Om) = (B dgy .oy dp) .

(A, @y, ...y am) is still prime over a finite set, Th((4, dy, ..., am)) has few
links by Lemma 1 so, by Lemma 2, there is a,,,c.d such that

(A @yy vy Opyy) = (B, dyy ovy Gppy)

with (4, @y -.o; @) being full. The map f(ds) = an embeds B into 4
elementarily so A is universal.
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We now show that theories we are interested in have full models
prime over a finite set.

DEFINITION: X(2y, ..., %x) i8 a powerful type of T if every model
of T which realizes it is full.

Note that the argument in Theorem 1 establishes the following:
If T has a powerful type A and for every X there arve only finitely many
links of 4 and X which are A-principal and X-non-principal then every
model of T which realizes 4 is universal.

ProPOSITION. If a complete theory T has finitely many countable
models then it has a powerful type.

Proof. If no type of T is powerful we can form by induction
2, C 2 C ... types of T and 4,, 4;, ... models of 7' such that X is realized
in 4; but X, is not. Then if ¢ # j we have 4; not isomorphic to 4;.

COROLLARY 1. If T is complete and has n countable models where
1< n< w then T has a full not saturated model.

Proof. By Proposition T has a powerful type.-If A is a model prime
over the powerful type of T it is full and by Ryll-Nardzewski’s theorem
it cannot be saturated.

Remark. Corollary 1 can be also found in [8]. We proved Proposition
independently of [8] though a year later.

Combining Theorem 1 and Corollary 1 we get:

CoROLLARY 2. If T is a complete theory which has n countable models
where 1 < n< w and has few links then T has a universal not saturated
countable model.

2. DerFmniTIOoN. Let P be a property of theories. We say that
a theory T insists on having the property P if for every type X (@, ..., Tn}
T X(6, ..y ¢n) has P (ie. every extension of T by finitely many con-
gtants hag P).

H.g. every w- (or w,-) categorical theory insists on being w- (or w,-)
categorical. Or, reversing the definition, we might say that o - categoricity
ig a persistent property (i.e. is preserved by entensions by finitely many
congtants). As far as we know no systematic sbudy of persistent properties
has been undertaken.

Apart from «-categorical theories the theories in Hxample 2 insist
on having finitely many models.

TueorEM 2. If a complete theory T insists on having finitely many
countable models and is not w-categorical then it has a universal not saturated
countable model.

Proof. The argument uses Konig’s lemma so we will build a tree.
Let B be the countable saturated model of 7' and let {by] » < w} be an
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enumeration of B. We form a tree whose nth level L, containg models
of form (A4, as);., and satisfies the following conditions:

(1) it (A4, ai)jen € Ln then (A4, a1);c, = (B, by)icn and (4, ai)kfn is
a full not saturated countable model, o

(2) if (A4, @)iep # (A’ 1) scn, and both are in L, then (A, ar),
& (4 a)sens

(8) if (A’, ay)s<, Satisfies (1) then for some (4, a,);cp ¢ LIn (A, @)i<n
(A4, @) icn-

Using our assumption and Corollary 1 we see that every level is
non-empty and finite. If (A4, @:);c, a0d (A', 0))scm are on nth and mith
level resp. we define (A, tn)icy < (A @icnm HE (4 8))icn (4, 87)icn
and n < m.

This tree satisfies the hypothesm of Konig’s lemma g0 it hag an in-
finite branch say {(4,, 7)<yl #< w}. We claim that 4, is the required
model. It certainly is countable and not saturated by the ‘definition of
0th level. Because 4,~ A4, there is a, e 4, such that (4, ap) ~ (4, ag).
Since (4, a§) ~ (d,, a;) there is a, e 4, such that (4, ay, a)) =~ (4, af, a3).
Similarly we find a,, a5... The map f(bs) = a5 is by (1) an elementary
embedding of B into A4 showing that 4 is universal.

‘We now reproduce an example constructed by J. Rosenberg of a theory
with 3 countable models whose every extension by a constant has more
than 3 countable models. In other words the notion “7' has exactly 3 count-
able models” is not persistent. )

ExXAMPLE 6. We start with the model (@, <) and add to it a sequence
of “irrationals”, i.e. add P, C @ such that P, is an initial segment of ¢
which has no last element and @— P, has no least element. We also stipu-
late that P, C Py if n<.m. Finally let B be an equivalence relation on
@ which has 2 equivalence classes both of which are dense subsets of Q.
Let T be Th{(Q, <, B, Pn)mm). Then T has 3 countable models (one in
Whieh U Py = @, one in which | J Py is (—c0,7) (r € @), and one in which.

n<aw n<o

@— | Py bas no least element). If we add a constant to T we are able
n<e

to distinguish between the equivalence classes and we geb 4 mo(flels:
UPr=@Q or (—oo c) (depending where ¢ was added); | Py == (— oo, )
and 7 B ¢; | ) Pn = (—o0, 7) and not » Hc; Q— | Py haJs no first elvmo'n'(;.
Adding more equiva,lence relations one can find in a similiar way theories
with 3 countable models which have, after adding a constant to them,
arbitrarily large finite number of countable models.

The following question, asked by J. Rosehberg, is open (1): is the

(*) H. J. Keisler was kind to inform me that the mnotion is absolute. It follows

from his book on Model Theory for Infinitary Loglc (Gorollary D on page 64) and Levy’s
absoluteness result. .
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notion “7' has finitely many countable models” absolute? If it is one will
probably -have to prove a non-trivial model-theoretical theorem about
these theories. G. Sacks remarked that this had to be done for e.g. showmg
absoluteness of w- (or w,-) categoricity.

3. The argument we mentioned in the introduction was supposed to
prove the following: if T’ has & full not saturated model then it has a uni-
versal not saturated model. We no not know-a counterexample to this
statement but it seems too strong to be true. If we assume the existence of

a model better than a full model, the statement is true.

DrrFINITION. A model A is almost saturated if for any o eA“

@(Byy vy Tny Yuy -y Ym) - and  any type Z(yy, ..., ym) of Th(d4) if
{@p(@y Y1y ooy Ym)} v 2 i8 consistent with ‘T((A, a)) then ib is realized .in
(4, a).

Remark. The following example which shows thab almost safnu-
ratedness is not stronger than universality or homogeneity is due to
H. J. Keigler. Let A be the set of all functions f: w+1-w such that ft e
is eventually constant and f(e) < limf(n). For each n << w let B, C A X 4

n—>00

be defined by

FBug it fHntl)=gt(n+1).

Bach B, is an equivalence relation, B, ;C H, and each equivalence
class of B, contains infinitely many equivalence classes of E,.,.
Th((4, B,)p<,) admits elimination of quantifiers and this simplifies
checking the claims. If B is the set of functions f: w-+1-w which are
eventually constant and B, is defined on B as H, is on A then (B, ).’
is saturated. It is clear that (B, B,), ., i§ not embeddable into (4, E,b)Mw
8o (4, B,),<, i3 not universal.

I Z(2y, ..., #m) is & type of the theory we let f, ¢ A be the function
identically equal to m. (Note that the theory has just one 1-type). f, is
then defined so that it agrees or disagrees.with f; at appropriate (accord-
ing to 2 places. If it is to agree with f, for n <  but be different from
it we define it as constant m on o and f(w-+1) = m—1. fy, fi, ... are found
sn'mlau‘ly The model (4, B,),<, is therefore full go it cannot be homo-
geneous (full countable homogeneous models are saturated). If a consistent
8€t {9 (@, Y1y ooy Y} o Z(Yn; ooy Ym) (@ € AT) 18 given note that p(a, Yuy oo yYm)
restricts the ‘behzwior ‘of ¥y, iery Ym only up to the highest & such that By
appears in @. From that point on one is free to realize X as above so
(4, B,),<. is almost saturated.

Tt will follow from the next theorem that this theory has a universal
not saturated model: Let 4 be the set of eventually constant functions
from w+1 into w+w such that if limf(n) < o then K co)<11mf( ).

n—>00
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(B, E}) is then embeddable into this model by f-2a[w~+f(a)]. The model
is not homogeneous because if f(g) is identically 1 (0) and htw= Anf1]
and h(w)=0 then we have (4, By, f) = (4, Hs, g) but for no ked is
(Ay By, fy h) = (4, Bn, g, k).

TrroREM 3. If o complete theory T has an almost saturated not saturated
model then it has a universal not saturated model.

Proof. Let A4 be the saturated model of T, let {an| » << @} be an
enumeration of A and let 7' be the (complete) diagram of A. Tt B is an
almost saturated not saturated model of 7 there is-a b ¢ B and a type
I'(b,y) of Th((B, b)) which is not realized in (B, b). Let 4(x) be the type
of b (in Th(B)). We want to find a link of T and 4(b) which will omit
I'(b, y). In general this is precisely what one has to do to find & universal
not saturated model. To do this we define C as

{Z(x)| Z(w) is a type of T and A(w)C Z(x)}

and view C as a subset of the Stone space of the Boolean algebra of
1-formulas of 7. O is closed so it is compact and Baire Category theorem
holds in it. For any @ = @(dg, -y 0n, &, Y) Where aq, ..., ay e A lot N, be

{Z e 0] {Hyp} v {(Vy)lp—y]l 7 eIz, 9)} C 2},

N, is the set of thoge links which make ¢ an “atom” for I'(d, y). N, i8
a closed subget of O (being an intersection of clopen sets). We show that

it is nowhere dense. If not then for some y(ay, ..., am, ) (we may assume
m > n) we have

@ - {ZeClypeZ}#0

and ' )

(2)- {Zellpe Z}ICN,.

The set {1;‘:(.%, wery Tmy b)} v Zm(ty, ...y #m) where X, is the type of
(Ggy vy @m) 18, by (1), consistent with Th((B,b)). Because B is almost
saturated the set {y} v 2n is realized in (B, b) by, 847, dqy .y dpy. Lib
Ay, +oey By @) D& the tyPe Of (Ggs ..y Gpyy B). 9 (@yy +vvy Ty @) € A (Tgy vn , Ty 0)
80, by (2), any extension of 4 to a type in ¢ is in &¥,. Thug
(B; gy ey Ggny b) = (LY) (g, ...y any )

and

(B, @y evs @y B) [= (V) [p—> 7 (b, 9)]

But this means that I'(b, y) is realized in (B, b); a contradiction. Since
there are only countably many formulas | N, is meager and by the
. P

for any y e I'(b, ) .
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Baire Oategory theorem there is Xe 0— N,. If @(a, ..., a, b,y)
ig consistent with T o Z(b) then for some y e I'(b,y) @A 1y must be
consistent with 7w Z(b) by the definition of X. This means that T v Z(b)
has a model C which omits I'(b, y). The reduct of C to the language of T
is universal and not saturated.

Tt should be noted that neither of the theories listed in Example 2
satisfies the hypothesis of Theorem 3.

The proof of Theorem 3 is in the same general class as the proof of
the existence of prime models (that one which uses omitting of types)
or Barwise’s compactness theorem or results in [3]. (We state nothing
of degree of difficulty). All arguments listed above use only syntactical
property of T and information about countable models of T unlike Morley’s
omitting of types theorem (see [7]) or Keisler’s 2-cardinal theorem ([5])
which use information about uncountable models.

4. The theorem of Vaught which says that no complete theory has
exactly 2 countable models puzzled me from the time I learned about it.
Below we improve the theorem (another improvement is Corollary 1)
and we think that the proof better explains the fact than Vaught’s original

roof.

P We fix a complete theory T which has no finite models and use the
gpace of models for ' defined in [4]. So, let Sbe {d] A= w and 4 |=T}.
I @y, .., %) is o formula and %y, ., ke<<w et [p(kyy .oy kn)] De
{d e8| (A, kyy .oy ln) |2 @(Fyy ovy n)}. The sets [p] form a basis for a 0-di-
mensional, Hausdorff completely metrizable topology on 8 (see [4] for
details; actually only the part that the topology is completely metrizable
is not obvious). We note that [(ky, .-, ka)] is clopen and that § is almost
never compact. Given 4 ¢ § we let O(4) to be the orbit of 4 under the
group of permutations of w, in other words

0(d) = {Bef| B4} .

Note that every orbit is dense in §. Assume now that T has only count-.
ably many types. It then has a prime model 4 ¢ § and a saturated model
B ¢ 8. [4] proves that O(4) is G,. In fact, it Z(ay, ..., %) is & type of T,
then the get of models in § which omit X is

N {UlMo(a)]] @ € 0"}
oeX
which is a G, (if not empty it is comeager). O(d4) is the set of models which
omit all non-principal types ie. it is a countable intersection of G,’s.
The orbit of the saturated model has the following form:

oB)= (S*dox[ﬁy/\éﬂubu N [o(a, b))

Z(x,y) aco® ewM geX
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where 4 runs through, finite subsets of X which is a type of T. O(B) is.

clearly F . But if T is w-categorical O(B) is actually open. Otherwise
we have - ’ ) ' :

TarormM 4. If T is not w-categorical O(B) is not B, so it is true I,

Proof. The proof resembles that of the Baire category theorem but
becanse O(B) is meager, the Baire’s theorem cannot be applied directly.
First of all we outline an efficient construction of a saturated model on .
Enumerate all expressions of the form X(m,, weey Ny Y1y oeey Ym) Where
2@y, -y Ym) is & type of T and ny, ..., < . Then construct, by indue-
tion, Tm = T'w 4(0, ..., pn) where 4 is a type of T. If T is constructed
choose at random X(ny, .., Nz, Yy, ..., ¥5) With ny, vy M < Py and such
that 2o {y; £ k| i<j and & < Pm} 18 consistent with Ty. Txtend it
to a type A0, ..,Pm, Yy, ...,y;) of Tp and define Ty a8 To
A0y ey Py Py ooy Do)

Instead of taking X at random we can take X in orderly fashion but
8o that each ZX(n,,..) is considered infinitely many times. 7 = U Tn

will be the diagram of a saturated model. 7 is a diagram of a model Z;.hce
is (Ha)(ny, ..., ne, @) ¢ T then g(ny, ..., g, #) € Z(ny, ..., g, #) which is
sooner or later realized by, say m, s0 ¢(ny, ..., ng, m) e T.

The construetion of a prime model on w for T'w 4(0, ..., m) is usually
done in w steps. We mention only that such a model is not saturated in
our case (7' is not w-categorical). ‘

" Let us now assume. that O(B) == | JF; where Ty is closed; Iy is of

<w .
the form [ {p(ny, ..., )| ¢ ¢ F;} where F; is a set of formulas. We want
to construct a saturated model on w which is outside‘of every Ft. We
start by building the prime model for 7 i.e. we specify 4,0), 4,(0,1), ...
so that the result 4,(0,1,...) is the diagram of a prime model. Because
I, C O(B) for some n,<< w 4,0, ..., my) will contain Tlg(ny, ..., ng) where
@(nyy ...y mz) € By For couple of steps after ny 'we build according to the
instructions above a saturated model for T starting with 4, (0‘J vy M)
Vﬁ{e get to, say, 4,(0,..,m,) and go .on to build ‘a’prime l)mo(;lel for
Am((), weyfg). We come to' 4, (0, ..., n,) which containg 10 (Mg voey M)
with ¢’ in Z;. Then we make more steps toward creating the éaiﬁr@";ed
model but again switeh to the construction of the primd model for the
last theory we constructed so as to get the resulting model out of I

, ehe,
After o steps we get a model Ce O(B)— |JIy. Y

CorROLLARY 3. N

) i<w
. 0 complete theory cam have ewactly 2. countable
models. '

. Proof. If T has 2 countable models it meang that 0(d) v 0(B) = 8.
Since 0(4) ~ O(B) = 0 this would mean that Q(B) is I, because 0(4)

is G,. But this contradicts' Theorem 4, °
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Remark. In terms of § we can interpret Baldwin-Lachlan’s result -
as follows: if T is w,-categorical theory every orbit of a not saturated
model 4 e 8 is included in a @ which is disjoint from the orbit of the
saturated model. Indeed if 4 ¢8 is not saturated them 4 omits a type
Z(@, @y, ...y ®n) Which says that @, ..., s, are independent elements of
the strongly minimal formula ¢(#,.). In general if a not «-categorical
theory has the above property then it has infinitely many non-isomorphic
models. This follows from the property using the fact that finite unions
of @,’s is a G, and Theorem 4. ,

‘When we tried to prove Theorem 4 not knowing whether it was true
we had to make sure that § was uncountable for in the other case every
subset of § would be F,. We noticed that if & is countable then 7T is
categorical in all powers. It iy easy to see that if 7 hag two infinite, say,
1-atoms then § will have power 2” since we can interpret one of the atoms
as any infinite subset of w whose complement is infinite. There must be
an infinite atom (7 must be w-categerical and has mno finite models)
and analogously to the lagt sentence we see that the infinite atom is
strongly minimal. The converse of this remark is false. Th((w, B, 7))
where B is the set of even integers and F(2n-+1) = 2n is categorical in
all powers but its space is uncountable since E and w—FE are infinite
atoms. )

To conclude our discussion of Vaught's theorem we show that it
is false for w-logic. For that we need an example of a closed linear order
with an element not definable from other elements. Let (4,, <<,) be of
order type w--1+4w* Let ¢ ¢ A, be the middle element., Assume (4A,, <q)
is defined and let (4,1, <,4.) be of order type Ay-w-+1-+ Ay o*. Bach
(An, <) has a natural middle element, say ¢,. Let fu: An— 4, be defined
50 that: fa(en) = Cype; fn maps {# € An| @< ¢y} isomorphically into the
initial segment of (A, 1, <puy) a0d fn MaPs {& € An| 2 > ¢} isomorphically
onto the terminal segment of (4,.;, <), assuming that each f, is the
identity on A, we defined (' as |J 4, and < as |J <, (0, <) is a closed

n<o n<ew

order and we claim that ¢ = ¢, is not first-order definable from any
0y, ey € € O— {c}. For that we classify elements of ¢ into types as follows:
t(a) = 0 for every ae; t(a)=n+1 it a=sup{ze 0] < ant(z) = n}.
We say that t(a) = n if t(a) > n and #(a) 3 n+4-1. Note that ¢ is.the only
element z of ¢ for which ¢(z) > n for every n < w. Also note that if a ¢-¢
and % > 0 then sup {z| < aAl(®) = n} = o #finf {z] # > art(2) = n} = 6.
Let F, (n< o) be the set of finite funetions {(as, bs)| ¢ < %}, where
U< o < Ay by << ... < by ave points of O, such that:

a) t(as) = n iff 1(b) =n for i<k,

b) if (@) < n then t(bg) = t(aq),
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c) there are a (a < w) points of type ¢<< n between a; and a,,, iff
there are « points of type ¢ between by and b,,,

d) a, = b, = first element of O, ay = by = last element of C.

We will show, in a more general setting elsewhere, that the sets 7,
satisfy: if f ¢ 7, ., and @ ¢ O then there are g, b ¢ Iy such that fCg, fCh,
a e domain of g and @ erange k. This means that if {(a:, bs)| ¢ < T} e Fy
then (€ <, ti);;, and (0, <.bi)yc;, satisfy the same sentences with at
most n quantifiers. Now, if ay, ..., ax ¢ O—{c} and, say @, << .. < <e¢
< Oy < ... < ax and if be C is such that ¢(d) = n and 4, < .. <@ <b
< @yqq < ..o < ax (there are infinitely many such b’s) then {(a¢, m)| 4 < &} U
v {(b, ¢)} ¢ I}y so it follows from above that any formula ¢(a, ay, ..., ax)
with at most # quantifiers which is satisfied by ¢ is also satisfied by b.
If we put B = 0—{c} and let <z to be <} B then we have:

(1) B,<p < (0,<),
(2) |0—B|=1.

Let M be the set of all elements of B which have direct < - predecessors
or direct < -successors. M will play the role of the natural numbers.
Because M is a definable subset of B, ¢(e 0— B) is not in M and because (1)
holds we have

B=(B,<, M,bjep < (0, <, M, 0)p=C.

We consider B and C as w-models. Let N(.) be the predicate for M.
Note that M is a dense subset of B: if M ~ [b,, b,] = 0 the order of B re-
stricted to [b,, b,] would be dense so € being countable could not be closed.
Because of this we have

3) ) (VR)[N(p)» (< vz y)]»a=1y.

Let 4 be an w-model of Th(B). Since B contains name for every element
in B we see that B < 4. So N4 = M. We now show that |4—B| < 1.
Let ay,a, e A—B and let D; be {be M| b<a;} (i=0,1). By (3) we
have a, # a; iff dy= supD, # d; = supD; sup’s being taken in C. If
di « B we have: for each b e M, b< di iff b < a; 50 by (3) ay = di, contra-
diction. Thus dy, d; e C— B ie. dy=d, = ¢ and that meany @y ==y Tf
|A—B|= 0 then 4= B if |4—B|=1 then 4~ C. So B, C are the only
countable models of Th(B) considered as an w-theory.

Remark. The above example also shows & situation in which B <C
with N® = N€ but for no model 4 & C we have N4 = N€. Other examples
of this situation were found by J. Gregory ([12]) and J. Knight in her
thesis.
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