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Minimality in the 4i-degrees*
by
Harvey Friedman (Ambherst, N. Y.)

Abstract. We give a proof in ZFC that every sequence of A}-degrees has a minimal
atrict upper bound (Theorem 2), and characterize those sequences which have minimum
strict upper bounds (Theorem 3):. In addition, we prove that every countable stable
ordinal is the first ordinal not 4j in some f: @-w, under the assumption that o, is in-
accesgible in L (Theorem 7).

In conpection with various notions of degree, consider the following
statements: ‘

A. There is a minimal degree.

B. Every sequence of degrees has a minimal strict upper bound.
{This implies A).

C. No sequence of degrees has a minimum strict upper bound.

For Turing degrees, A was established in Spector [11], B was
established in Sacks [7], and C was established in Spector [11].

For hyperdegrees, A was established in Gandy, Sacks [2], and re-
proved in Sacks [8], and C was refuted in Richter [6]. Sacks believes
B is false, but is planning to publish some positive results on B in Sacks [9].

For degrees of constructibility (of functions on w), A was established
in Sacks [8] under the assomption wf < o, and in Jensen [3] under the
assumption o¥ < w,;. We do not know how to decide B, even nnder the
assumption that measnrable cardinals exist, but we econjecture that
both B and C can be decided under the assumption (Vo C w){wF® < w,).
‘We can refute O nnder the assumption (Vz C o) (2% exists) by defining
dy= 0, d,, = (d,)*. The (degrees of constructibility of the) d, have
the least upper bound (the degree of constructibility of) {2"3™: n € dm}.

The 43-degrees ave the equivalence classes of functions on o under
the equivalence relation (f is 43 in ¢ and g is 4% in f).

Por 43-degrees, a proof of A may be found in Shoenfield [10]. We
establish B here (Theorem 2). We also prove (Theorem 4) that C is equi-
valent to the statement (Vo C o) (Hy C w) ('r/ ¢ L(x)). All of our arguments
can be formalized in ZFC.

* This research was partially supported by NSF GP 34091X.
1 — Fundamenta Mathematicae LXXXI
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The paper concludes with a proof thalb the countable stable ordinals
are just those ordinals that are the first ordinal stable in some f, under
the assumption that - e, is inaccessible in I (Theorem 7). We conjecture
that o®C L is equivalent (in ZFOC) to: the countable stable ordinals are
just those ordinals that are the first ordinal stable in some few® For
proofs that the countable admissible ordinals are just those ordinals that
are the first ordinal admissible in some f, see Friedman and Jensen [1],
and Sacks [9]. A similar theorem for IL-cardinals appears in Jensen and
Solovay [4]. (The connéction with 43-degrees is that the first ovdinal
stable in f is always the first ordinal not A3 in f.)

Tn the paper it is notationally convenient to use representative
functions instead of their degrees.

DerinetioN 1. K Cw® is Turing closed iff for all f,,...fae K,
(foy oy fu) <p g for some g ¢ K. Let K C o® be Turing closed. Then f is
AL-minimal over K if and only if (Vg e K) (g is 45 in f and f is not 4; in g),

(Vh) (if b is 4% in f and (Vg € K) (g is 45 in f and f is not Ay in g) then f is
A‘ in 1). Also f is 4;- minimum over K if and only if f is Al-mmunml over K,
and is AL in any g which is 4;-minimal over K.

Tt is convenient to speak of A-degrees, for limit ordinals 4. Our A-de-
grees are the equivalence classes of sets under (v el,(y) and y € L;(x)).

DrriNrrioN 2. Let K Cw® be Turing closed, or of cardinality 1,
J a limit ordinal. Then f is A-minimal over K if and only if

(Vg e K){g e L(f) &F ¢ Ialg))y (VB)(h e Ly(f) & (Vg e K) (g ¢ Ly(h) &
& h ¢ L(g))) —(f € La(h) -

If K = {h}, we will omit the brackets and write: f is A-minimal over h.

DEFINITION 3. Let Ag( f) be the least ordinal not 4; in f. For K C %,
let A4Y(K) be UA

LEMMA 1 Letf, g € w® Then f is 43 in g iff feL,,( ), where A= A}g).
~Proof. Left to the reader.

The next lemma follows easily from Lemma 1.

Levwa 2. Let K C w® be Turing closed. If f is Ay(K

and AYf) = AYK), then f is A3-minimal over K,

LemMa 3. Let K C w® be Turing closed, and let (Ay) be a sequence of
limit ordinals with limit AYK). Suppose that for each & there is an hydj in
some element of K such that (f, hy) 8 Ax-minimal over hx. Suppose Ay(f)
= AYK), and (Vg e K) (g is A% in f and f is not A} in g). Then f is A}-minimal
over K.

Proof. TFirst show that f is A}(K)-minimal over K. Then apply
Lemma 2. 4

)-manimal over K

IG‘TI‘I
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DEFINITION 4. Let 2<° be the set of all finite sequences of 0’s and 1°s.
A tree T is a nonempty subset of 2<° closed under initial segments. 7' is
perfect iff every element of T has at least two incomparable extensions
in I. Write feT for (Vn)(f(n)eT), where f(n)=(f(0),..,f(n—1))

LemumA 4. Let T be a perfect tree, 2 > w closed under addition, and
g: A=~ be one-one. Then there is a perfect subtree T* of T such that
Ui eL,H_l(g, T) and (VfeT*) ((f, T) is A-minimal ovér T).

Proof. By combining the methods of proof of Lemm'us 1.4 and 3.1
in Sacks [8].

DEFINITION 5. Define a partial function F(R, f), for 4-ary recursive
predicates R, few®, by F(R,f)= the least ordinal « such that (QIg)
(the tree of unsecured sequence numbers of (Vh) (E[n)( ( , Fim), g(n), n)))
has ordinal a); undefined if (Hg)(Vh)(Hn) (R(n, Fn), gn), h(n))) is false.

Levwma 5. AY(f) is the wnion of the range of F(R, f) as a pawtml Sfume-
tion of R.

Proof. If a bound on F(R, f) were obtained << 43(f), then it is easy
to see that every set X3 in f would be 4} in f, which is a contradiction.
Conversely, each F(R,f) must be <A§(f), if defined. This is because
the property of being a well-ordering isomorphic to the tree of unsecured
gequence numbers of some (Vh)([[fn)(R(n fn), gn n))) is 21 in f,
and so must have a solution A4} in f.

LEMMA 6. Let T be a perfect tree, R a recursive predicate. Suppose
that for some feT, féL(T), F(R,f) is defined. Then there is a perfect
T*CT, 4y in T, and an o< AYT) such that (VfeT*) (F(R,f)= a).

Proof. We use a technique developed in Mansfield .[5]. Let f ¢ L(T),
feT, F(R,f)= B. Let y be the first ordinal > admissible in T. Choose
o: f—>w to be generic over L,,(T), and such that f¢ZL, e, T), (where
one-one partial functions from g into w gre used as conditions). Define
to be the characteristic function of the relation 8(n, m)«> o~ (n) € o~ (m).
Note that 8 defines a well-ordering of type B. By the admissibility of
LJe, T), we have that L,(h, T) ~ o is precisely the functions hyper-
arithmetic in (h, T). Hence h codes a well-ordering of type-g and f is
not hyperarithmetic in (h, 7). Summarizing we have (Hh) (h codes a well-
ordering of type some § and (Hf)(F(B,f)=p&feT &f is not hyper-
arithmetic in (%, T))\). Hence there must be such an b with the additional
property that % is 4% in 7. Let the order type of & be a. Then a << A3(T),
and {f: F(B,f)= a&fe T} containg an element not hyperarithmetic
in (b, T), as well as being 2! in (k, T). Hence {f: F(R,f) = a&fe T}
containg a perfect subset T* which is recursive in the hyperjump of (h, T').
So in any cage T* is 4 in T, and we are done.

e
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The £6llowing definition is in analogy with the definition of recursively
pointed in Sacks [8].

- DREINTTION 6. A tree T' is A-pointed iff for all fe T, T' e L,(f), and
T i perfect. T is A}-pointed iff for all feT, T is 43 in f, and T is perfect.

Luvma 7. Let T be A-pointed, f e o Then there is a A-pointed T*C T
such that T* and (f, T) have the same A-degree.

Proof. As in Proposition 3.2 in Sacks [8].

LmvmA 8. Let T be AYT)-pointed and A;-pointed. Let fe w®. Then
there is a AL(T)-pointed T* C T of the same A3-degree as (f, T). Turther-
more, any such T* is Aj-pointed. ‘

Proof. By Lemma 7, there is a Aj(T)-pointed T*C T of the same
AY(T)-degree as (f, T'). Then clearly T*is A} in (f, T). To show the reverse,
it is enough to show that A3(T) < A3 T™). Note that since T'is A%-pointed,
T is A% in T*, and we are done. ‘

Suppose T* C T is A}(T)-pointed and of the same A3-degree as (f, T).
Since T is Al-pointed, any ge T* has A3(T) < 4y(g). Hence (VgeT¥
(T* is 4% in g). - :

Tmvma 9. Tet T be AY(T)-pointed and A3-pointed. Let o < < A3(T)
be closed under addition. Then there is a Ay T*)-pointed T*C T of the
same At-degree as T, such that (VfeT*)((f, T) 4s A-minimal over T).

Proof. Choose one-one g: A—c such that g e L(T), where o= A T).
By Lemma 4, let T be a perfect subtree of T, T*eL,,4(g, T), and
(VfeT*((f, T) is A-minimal over T). Clearly T* is 4} in T. Since T is
Ai-pointed, T is 43 in T*. Since T* e L(T), clearly T* is AY(T)-pointed.
Hence T* is AYT*)-pointed. ,

Tmmma 10. Let T be AYT)-pointed and A3-pointed. Let B be a recursive
predicate. Suppose that for some feT, f¢L(T), F(R,f) is defined. Then
there is a ANT*)-pointed T*C T of the same Aj-degree as T, and an
B < AYT), such that (Vf < T(F(R,f) = f)-

Proof. By Lemma 6, choose a perfect T* C T, 4;in T, and g < AYT)
such that (Vfe T*)(F(R,f)= p). Then T* is 43(T)-pointed. Since T is
Ab-pointed, T is 43 in T* Hence T is A3(T*)-pointed.

DeriNiTIoN 7. Let T be a perfect tree, s« 7. Then T, is {t e It s T
or 1Cs}. For se2<%, define §* = s v {(dom(s), 2>}

TmvmA 11. Let T be AYT)-pointed and Ay-pointed, and let s e T
Then T, is AYT,)-pointed, and of the same A;-degree as T\

Proof. Left to the reader.

Levma 12. Let g, h, T, T* e L((ga)), L((ga)) F B< 1. Them g is 4;
in b iff T((ga) kg is A3 in b5 p=AYg) iff Lilgw) kv = 4kg) T is
B-pointed iff L((ga)) & T is B-pointed; (VfeT*)((f,T) is p-minimal

icm
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over T) iff L{gn) F (Vf e T*((f, T) is p-minimal over T); (VfeT)
(F(R, ) = o) iff I((gn)) F (Vf e I)(F (R, f)= a).
Proof. Use the absoluteness of X3 assertions.

TrrorEM 1. Let (gn) be a sequence of functions in o® whose range K is
Turing closed. Then there is a perfect tree T, e L((ga)) such that (Vfe To)
(f ¢ UL(gn)—>T is Aj-minimal over {ga: n > 0}). Furthermore, (Yn)(Vf

€ Tp)(gn is 4% in f), and (Vf e To)(f ¢ | Dlgn)—~>44f) = 43(E)).

Proof. Let K = {gn: n >0}, 44(K)=a, and let (i) eLi{(gn)) be
a sequence of ordinals with limit o, each closed under addition, obeying .
0 < dn< AYgn). Let (Rn) €I((ga)) be an enumeration of all 4-ary re-
cursive predicates.

In this paragraph, we work entirely within L((gn)). We will define
two functions G: 2<°—2<¢ H: 2<°—P(2<%) by recursion. In the next
paragraph we will work in reality, and show that the definitions by re-
cursion given in this paragraph totally define @, H. Set G({ X)= )
H(< >) = 2<°. Suppose G(s), H(s) have been defined, so that H(8)es
= H(s), and H(s) is a A;(H(s))-pointed tree. Let dom(s)=n, and
H(s)= T. If n = 3k, define T*C T to be AYT)-pointed and of the same
AL-degree as (gy, T), and choose incomparable 7,1 e T* Define G(s%0)
=r, G(s*1) =t, H(s*0)= T}, H(s*1) = TE. If n = 3k-+1, define I"C T
to be AYT*)-pointed and of the same Az-degree as T, such that
(Vf e T*)((f, T) is A-minimal over T}, and choose incomparable 7,1t e I™.
Define G(s*0) = r, G(s*1) = t, H(s*0) = Tr, H{(s*1) = T}. It n = 3k+2,
define T*C T to be AYT*)-pointed and of the same A;-degree as T,
snch that for some a< AYT), (Vfe I™)(F(Bx,f)=a], if there is such
a T* T*= T otherwise. Choose incomparable r,te T* and define
@(s*0) = r, G(s*1) = t, H(s"0)= T}, H(s*1) = T}.

‘We now prove by induetion that for each s, () G(s), H(s) have been
defined so that H(8)gu = H(s), (ii) if 3%-+1 < dom(s) < 3k+3 then
H(s) is of the same A}-degree as (o, ---, gx), (iil) H(s) is AYH (s))-pointed
and A4;-pointed.

@), (i), (ili) clearly hold for s= { >. Suppose they hold for s. Let
dom(s)=mn, H(s)=T. Then T iy AyT)-pointed, A-pointed, and
TG‘(&) = T.

Assume 7 = 3k. Then T is of the same A3-degree 28 (foy -y Jg—1)-

" By Lemma 8, there is a Aj(T™)-pointed T*C T of the same 43-degree

as (gx, T). By Lemma 12, this assertion holds in L{(gn)). Hence G(s*0),
H(s*0), G(s*1), H(s*1) are defined. By Lemmas 8, 12, the T* used in
the definitions of H(s*0), H(s*1) in L((g) must be AL T*)-pointed,
A}-pointed, and of the same Al-degree as (gx, T). Hence by Lemma 11,
H(s*0), H(s*1) obey (i), (if), (ii).
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Agsume 7 = 3k--1. Then T is of the same 43}
1 bhe &% s-degree as (g,, ... .
Hence 4x<< 43(T). By Lemma 9, there:is a A%(T™)-pointed g(’)*,C &’g’i))f
thg game A;-degreela,s T, such that (Vf e T*)((f, T') is Ax-minimal over 7).
By *Lemma*lz, this assertion holds in IL((gs)). Hence G(s*0), H(s*0)
G(s 1),*H (s*1) fre flefl'ned. By Lemma 12, the 7™ used in the (1efinitionfl.;
of1 H(s*0), H(s*1) in L((gs)) must be AYT*)-pointed and of the same
Az—(iegree zms* T. So clearly T is also A%-pointed. Hence by Liemma 11
H(s*0), H(s"1) obey (i), (ii), (iii). ' ’
Assume # = 3k--2. Then T is of the same Ai-¢
y m n , ; . 2-degree as (gy, ..., gx).
Tt is obvious that G(f*O), H(s*0), G(s*1), H(s*1) are defined. 1\1(’):7‘00 ,1:1!1’:31;
by Lemmallzi the T used in the definitions of H(s*0), (s*1) in L((gn))
mus? be .412(1’ )-pointed and of the same A4;-degree as 7. So clearly T*
is also 4}-pointed. Hence by Lemma 11, H(s* s ey (i
. » H(s70), H(s*1) obey (i),
We have just shown by induction that the definition i
. ' 1 nition in I of
G, H totally define &, H. We thns speak of the functions ¢, H a; (Eﬂ;%j)t)acts
i’ L((ga)). '
Let To= {t €2<“: tC G(s) for some s}. Then T, i
. . is a perfect tree
in L((ga)). We presently show that T, is the desi o i
. Llgn). Ve prese o ds ired tree for this Theorem.
Let feT,. Since fe H(s) for infinitel y ii), (iii
f ely many s, by (i), (iil) above
we have that (Vk 3 i i i 1 ot
e e 1.(‘V' 6)(gx is 43 in f). This establishes the second chnclugion

Until the remainder of the proof, fix fe T,, f ¢ | L(ga). Then obvi-
ously (V%)(gx is 43 in f and f is not 4% in gg). "

l.‘o.r Dom(s) = 35+ 2, note that L((gn))'h(erH(s))((f,H(s)) is
Ak-an}mal over H(s)). Hence by Lemma 12, (stH(s))((f,E(s)) is
Ax-minimal over H (s)). Now for each % there is an s with dom (s) = 3k--2
feH(s). Hence for each %, there is an s with (f, H(s)) A-minimal ove’
H(s). By clause (ii) above, we see that for each k, there is an hy A% i(n 50 o
element of {g,: n > 0} such that (f, k) is Ax-minimal over h: v e

§}1ppose F(By, f) is defined. Let f e H (s), dom(s) = 3%4-1 'H(s) =T
By (iii) above, T is A3(T)-pointed and 43-pointed. By (ii) abov"e f¢1—}—(1’ '
Hlence by Lemma 10, there is a A3 T*)-pointed T*C T of ’tixe sam)(;
4;-degree as T, and a < AT) such that (Vfe I")(F (B, f) = ). So
by Lemma 12, this statement holds in L((gn))- So again by ’Lemma.' 12

?

the T™ used in the definitions of H (s*0), H (s*1) obeys (Vfe T)F (B, f)
?

= ﬂ)l for some < 43(T). Now fe H(s*0) or feH(s*1). Hence F(R,, f)
< 4y(T). By (ii) above, we have F(Ry,f)< A3(K). So the union ofk‘;h
range of F(R, f) as a partial function of R is < 43(K). Since each g, i A?
in f, we have by Lemma 5 that AYf)= A},(K).Z ' i
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“We have now established the hypotheses of Lemma 3. We conclude
that f is 43-minimal over K. ‘

TEMmA 13. Tet E C ® be countable and Turing closed. ‘Assume that
for no g ¢ K is K CL(g). Then there is a pefect tree all of whose paths are
Ak-minimal over K.

Proof. Let (g,) ennmerate K, and choose T, as in Theorem 1. Each gn
is 4} in every fe T,. Hence (Vf e To) (f ¢ UL(ga))- So (Vfe To) (fis A}-mi-
n

nimal over K).

Tavva 14. Let K C o® be countable and Turing closed. Let ge K,
K CL(g). Suppose that for some a, K CLJ(g) and L(g) Fa <'wy. Then
there is an f that is Ay-minimal over K. Furthermore, if o° ¢ L(g) then
there is a perfect set every path of which is Ak -minimal over K.

Proof. Let p= A}K). Then L(g)kf< w,. Choose y least such
that 8 << y and [L(y)—L(ﬁ)) A o® # @. Let b e L(y)—L(B). Set f= (g, h).
Then AYf) >y > f. Furthermore, each element of K is 4} in f. Suppose
f*is A% in f, each element of K is 4; in f*, and not vice versa. Let f* ¢ Ly(9),
S leagt. If < p then f* is 4 in g, coutradicting the way f* was chosen.
80 p< 4. Hence y < 0. Theu it s easy to see that f is Aliu f*, since g is 43
in f*. We conclude that f is 43-minimal over K.

Suppose «® ¢ L(g). In this case we can mnse Theoremn 1 to
good effect. Since L{g) k< w,, there is a (gn) € L(g) enumerating
E*= {h: h is 4% in some element of K}. By Theorem 1, let T,eL(g) .
be a perfect tree with (VfeTo)(f ¢ U Lign)—f is Ai-minimal over K).

n
Hence (VfeTy)(f¢L(g)—~f is AL-minimal over K). Let & ¢ L(g). Since
T, eL(g), it is easy to constrnct a perfect T C T, such that (VfeT)
(f ¢ L(g)) with the aid of k.

TEMMA 15. Let K C o® be countable and Turing closed. Let ge kK,
K C L(g). Suppose that for no a do both K CL(g) and L(g) F a<< o, hold.
Then there is a perfect tree all of whose paths are A3-minimal over K.

Proof. It is clear that under these hypotheses, L(g) ~ «” is count-
able. Let (gs) enumerate K, and choose T, as in Theorem 1. There must
be a perfect T C T, with (VfeT) (de(g)). For such a T, (VfeT) (f is
A3-minimal over K).

TramoreM 2. Let K be countable and Turing closed. Then there is an f
which is Ay-minimal over K.

Proof. The hypotheses of Lemmas 13, 14, 15 exhaust all possibilities.

TegoreM 3. Let K be countable and Turing closed. The following are
equivalent: (a) o®C (JL(g), (b) for some geXK, o”CL(g), (c) there 1is

X
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an f that is Ay-minimum over K, (d) there is not a perfect tree each path
of which is A;-minimal over K.

Proof. We leave (a)—(b) to the reader. It (b) holds then the same f
of the proof of Lemma 14 is seen to be A3-minimum over K by the same
argument. That (¢)->(d) holds is obwvious. To see (d)—(a), agsume (d).
Then by Lemma 13, let ge K, K CL(g). By Lemma 15, for some g,
K CL(9) and L(g) F a< w;,. By Lemma 14, »°C L(g). Hence (a).

The following is obvioug from Theorem 3.

TeEROREM 4. If o* ¢ L(g) for all geow® K is Turing closed, then
no f is A3-minimum over K.

DEFINITION 8. We say that ois f- siable iff (L (f), €)is a- Z-elementary
substructure of (L(f), €] We call a stable iff o is @-stable.

Levmwma 16. The first f-stable ordinal is Ay f). If a 4s f-stable then
a s stable. )

Proof. These results are in the folk literaturve. A basic point is that
L, = {z: (TO({#}), ¢ = (@, R) for some R4} in f}, for a = AL(f).
THEOREM b. If 0® C L then not every countable stable ordinal is of the

Jorm AYf) for feow® If w® ¢ L then every constructibly countable stable
ordinal is of the form AYf) for fe w®.

Proof. For the first statement consider the wth stable ordinal. For
the second statement, let o be a constructibly countable stable ordinal.

Case 1. There is a y < ¢ such that « is the first stable ordinal
after y. Let feL(a)—L(y), f: o—>w. Then ALYf) = a.

Case 2. Case 1 does not apply. Let (a,), (y,) be two strietly incre-
asing sequences of stable ordinals with limit a, such that a, is the firgt
stable ordinal after y,. Choose (¢,) € I such that g, ¢ L(a,) —L(y,), Ot
w—o, and (g,) has Turing closed range. Then Ai(g,) = a,. By Theo-
rem 1 there is a constructible perfect tree such that for every non-
constructible path f, 4% f) = . Since w® ¢ I, this tree must have a non-

. constructible path. Hence for some f, 45(f) = a.

- LeMMA-17. Let o be f-stable, and let g: w— o be generic over L(f) using
the one-one finite partial functions from w into a under inclusion as the
conditions. Then for f > a, B is f-stable if and only if pis (f, ) - stable,
and B is a cardinal in L(f) iff B is one in L((f, ).

Proof. Let P(x, ..., #n, g) be a true X-statement in L((f, g)) about

Byy ooy Tny eLﬂ((f, g)). Let 71, ..,7, be terms in the forcing langunage
~over I(f) such that 7,= @ of rank < g holds in L((f, )} Let ¢ C g be
such that ¢4 P(7, ..., 7, ¢). Now it is easy to see that forcing on
Z-statements is X. Hence the statement g+ P(z,, vy Tny g) must hold
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when the quantifiers are relativized to Ls(f), since (Lﬂ( ), e) is an Z-ele-
mentary substructure of (L(f), ¢). After relativization, the statement is
seen to become ¢ 4*P(1y, ..., T, g), Where 4* indicates forcing over Ly(f)
ingtead “of over L(f). Since ¢ is generic. over L(f) it is generic over
Ly(f). Hence P(vy, ..., T, g) holds in Ly(f, ¢)). So P(@y, ..., %n, g) holds
in Ly((f, ) The final conclusion is well known.

THEOREM 6. Let a < << w,, B @ cardinal in L. Then a is stable
iff a= AYf) for some f: w—>w.

Proof. Cage 1. For some y < a, o is the first stable ordinal after y.
Then o is not a cardinal in I, and so a<< f. Choose g: w—y, g generic
over L, using the one-one finite partial functigns from o onto y under
inclusion as the conditions. Since 8 is a cardinal in I, clearly g is generic
over L. Hence by Lemma 17, o is g-stable. Let f(n) = 1 if n = 23" and
g(a) € g(b); 0 otherwise. Then y < 43(f). By Lemma 16, 43(f) < a, 43(f) is
stable. Hence 43(f) = a. Case 2. Case 1 does not apply. Then let (oz), (yn)
be two strictly increasing sequences of stable ordinals whose limits are a,
and such that a, is the first stable ordinal after y,. By iterating the
argument used in Case 1 infinitely often, we obtain a sequence g, with
Turing closed range such that 43(gs) = aa, and g is a cardinal in L(ga),
for each n. It is clear that | ) L(gs) is countable. Therefore by Theorem 1,

for some Fy 45F) = A3({gn: w;z = 0}). Hence 43(f) = a.

TEEOREM 7. If w, is inaccessible in L, then the countable stable ordimals
are exactly the ordinals of the form Ayf) for f e w®

Proof. Immediate from Theorem 6.

Remark. The referee of this paper indicated that D. Guaspari has
observed that «® CL is equivalent to the Aj-degrees being linearly
ordered. This fact can also be obtained (in a strengthened form) through
Theorem 1 by choosing (gs) to be Aj.

For an application of 4}-degrees to a problem in descriptive set
theory, see PUA well orderings of the line, to appear in the Journal of
Symbolic Logic.
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On some conjectures connected with complete
sentences

by
J. A. Makowsky (Ziirich)

Abstract. Some conjectures on the finite axiomatizability of complete K;-categorical
theories are discussed and related to open problems in group theory. A problem of
Chang and Keisler is solved.

0. Introduction. In this paper we want to discuss some questions and
conjectures connected with the finite axiomatizability of complete theories.
The oldest ones within this context may be found in Vaught [25] and
Morley [16]. They are:

QuusTION 0.1. Is there a complete, finitely axiomatizable theory,
categorical in every infinite power?

QuEsSTION 0.2. Is there a complete, finitely axiomatizable theory,
categorical in every uncountable power?

Sinee most of the mathematicians who have attacked these questions
tried to give a negative answer, they tried to prove stronger statements, e.g.:

STATEMENT 0.3 (*). If T is a complete theory which has an infinite
model and s finitely awmiomatizable, then T is unstable (or T admits
a definable order relation).

This conjecture was inspired by the classical example of a complete
finitely axiomatizable theory: any complete extension of the theory of
dense linear orderings. Variatio delectat, so others tried:

STATEMENT 0.4. If T is as in Statement 0.3, then T is not supersiable.

SeATEMENT 0.5. If T is as in Statement 0.3, then T is not w-stable.

For the appropriate notions of stability one can consult Shelah [22],
Morley [16] or Sacks [21].

A gimilar connection between some Stone spaces associated with
a complete first order theory and finite axiomatizability was formulated
by B. Jonsson (cf. Ehrenfencht and Fuhrken [8]):

(*) This is conjecture C(b), p. 424 in [26].
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