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On some conjectures connected with complete
sentences

by
J. A. Makowsky (Ziirich)

Abstract. Some conjectures on the finite axiomatizability of complete K;-categorical
theories are discussed and related to open problems in group theory. A problem of
Chang and Keisler is solved.

0. Introduction. In this paper we want to discuss some questions and
conjectures connected with the finite axiomatizability of complete theories.
The oldest ones within this context may be found in Vaught [25] and
Morley [16]. They are:

QuusTION 0.1. Is there a complete, finitely axiomatizable theory,
categorical in every infinite power?

QuEsSTION 0.2. Is there a complete, finitely axiomatizable theory,
categorical in every uncountable power?

Sinee most of the mathematicians who have attacked these questions
tried to give a negative answer, they tried to prove stronger statements, e.g.:

STATEMENT 0.3 (*). If T is a complete theory which has an infinite
model and s finitely awmiomatizable, then T is unstable (or T admits
a definable order relation).

This conjecture was inspired by the classical example of a complete
finitely axiomatizable theory: any complete extension of the theory of
dense linear orderings. Variatio delectat, so others tried:

STATEMENT 0.4. If T is as in Statement 0.3, then T is not supersiable.

SeATEMENT 0.5. If T is as in Statement 0.3, then T is not w-stable.

For the appropriate notions of stability one can consult Shelah [22],
Morley [16] or Sacks [21].

A gimilar connection between some Stone spaces associated with
a complete first order theory and finite axiomatizability was formulated
by B. Jonsson (cf. Ehrenfencht and Fuhrken [8]):

(*) This is conjecture C(b), p. 424 in [26].
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StaTEMENT 0.6. Let T be a complete theory. If for all n e w Fu(T) is
atomless, then T is not finitely awiomatizable.

For the notation see Shoenfield [24].

Clearly we have (0.3)= (0.4)=> (0.B)=> (negative answer of 0.1 and
0.2). Ehrenfeucht and Fuhrken [8] disproved 0.6, giving a counterexample
which is unstable. Since the assumptions of Statement 0.6 imply ouly
that T is not w-stable, one might ask how low one-can get in the -degree
of stability (unstability) of the counterexample. Now we shall prove
in § 2.

THEOREM 2.15. There is o theory which is

(i) complete, :

(il) finitely aziomatizable,

(iil) superstable,

(iv) for all n e wFy(T) is atomless.

This disproves Statement 0.4 and hence also Smtement 0.3 and
improves the result of Ehrenfeucht and Fuhrken [8]. Further we shall
prove two theorems relating Question 0.2 with unsolved problems in
group theory and the theory of division rings suggested by H. Léuchli
and A. Macintyre. I would like to thank them for the permission of
ineluding these: theorems in this paper. Statement 0.5 remains open,
but we conjecture it to be false.

In § 3 we shall give a partial negative angwer of Question 0.1 which
is related to almost strongly minimal theories (cf. Baldwin [1], [2] o,
for their algebraic characterizations, Makowsky [14]):

TaeorEM 3.3. If T is a complete, %,- categorical, almost strongly minimal
theory, then T 4is mnot fmztely axiomatizable.

Vaught independently found a weaker version of this theorem, with
strongly minimal in place of almost strongly minimal (oral commmuni-
cation).

Unexplained notions and notation may be found in Bell and Slom-
son [4], Sacks [21] and Shoenfield [24].

In § 1 we shall discuss several methods of proving mnon-finite
axiomatizability of complete theories. We shall also relate the finite
axiomatizability of theories with some algebraic properties of their models.
Theorem 3.3 was proved in the author’s diploma thesis [12] written under

the gnidance of professor H. Léuchli (*). Since the proofs remained. .

unpublished for some time and M. Dickmann was preparing a survey
article on the subject, he included our proof of Theorem 3.3 in it [b].
Therefore we shall discuss in § 3 the original proof without going too
mnch into the details. But we shall relate our results to the approach to

(*) The result was announced in [13].
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non-finite axiomatizability results indicated in § 1 using the characteri-
zation of almost strongly minimal theories in Makowsky [14]. This will
yield a new proof of Theorem 3.3.

Some of the-results of § 2 and the main theorem of [14] were obtained
during the anthor’s stay at Warsaw University as an exchange student
under the Swiss-Poligh-exchange program (*). It was then that I first
met professor Mostowski who, together with his research group, turned
my stay in Warsaw into a mathematical adventutre. I am happy to contri-
bute this paper at the occasion of his 60th birthday. '

1. Finite axiomatizability and complete theories in I,,. Let T be
a theory in I,,. From the literature several criteria of non finite
axiomatizability of T are known.

A set § of sentences is an axiom system for the theory T if it is con-
sistent and its deductive closure equals 7. The elements of § are inde-
pendent if for every pe S (S—{p}) v {1¢} is consistent. By an abuse
of language we will call § independent if its elements are independent.
From Godel’s completeness theorem for L, one easily gets the following

ORITERION A. A theory T is mot finitely axiomatizable iff there is an
infinite independent awiom system for T.

Keisler (cf. Bell and Slomson [4]) translated this into the language
of ultraproducts and proved, using G.C.H.:

CRITERION B. T is finitely axiomatizable iff Mod(T') and iis comple-

ment (with respect to the appropriate structures) are closed wnder the formation
of wultraproducts.

Shelah [23] in the meantime has eliminated G.C.H. from the proof.
These two criteria apply to arbitrary theories in I and many finitely
axiomatizable theories are known.

From Ehrenfeucht’s game theoretic characterization of elementary
equivalence [6] one eagily gets a criterion for complete theories:

COrITERION O. Let A be an infinite structure. Th(A) is finilely axio-
matizable iff there emwists n e w such that for all similar structures B with
W =n B we have WA = B (assumwng the language is finite).

One could try to-get non finitely axiomatizability results for complete
theories msing a similar criterion as for decidability results by means
of* interpretability (cf. Mostowski- Robinson-Tarski [17]). For example is
the following true?

CrITERION D. Let T be a complete finitely axiomatizable theory having
infinite models only. Let @ be a formula with one free variable and U be
a model of T. Let B be the definable substructure A|p(A). Then Th(B) is
also finitely awiomatizable.

(*) Por the later period the author was also supported by ETM-grant No. 200752.
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The example discussed in § 2 disproves Criterion D, and shows that,
unlike for decidability problems, the situation for finitely axiomatizable
complete theories is much more complicated.

The compactness of L, plays an important réle in questions about
finite axiomatizability. For, assume a theory T ig' provably not finitely
axiomatizable. Let us form a new language L* which is the Boolean
closure of L,, v {y} where Mod(yp) equals Mod(T) and ypeL,,. L* is
a proper extension of I, and still satisfies the Downward-Léwenheim-
Skolem Theorem, so by Lindstrom’s celebrated theorem [9] L* cannot
be compact. All the criteria A, B, C have np to now been applied to prove
non finite axiomatizability of particular theories. What we are inberested
in are theorems of the following type (cf. Makowsky [15]):

(*) TLet A be an infinite structure of finite signature, P, P,, ..., P,
some algebraic properties of . If every model of Th(N) satisfies
- Py, Py, ..., Py then Th(A) is not finitely axiomatizable.

Candidates for such algebraic properties are:

(i) Saturatedness, (ii) homogeneity, (iii) local finiteness, (iv) analo-
gues of the Steinitz theorem in the theory of fields, (v) being closed under
substrnctures, (vi) being closed under direct produects.

Theories with (v) ate called open (universal) theories, theories with (vi),
after their characterizations by Horn (cf. Shoenfield [24]), Horn theories.

‘We call a sentence (a theory) complete if its deductive closure is com-
plete. We call a sentence (a theory) semi-complete if it has an infinite model
and all its infinite models are elementarily equivalent.

The following theorems, which are all easy consequences of well
known results, may illustrate ().

TeworeM 1.1. Let T be semi-completé and open. If T has an infinite
locally finite model A, then Th(A) is not finitely awiomatizable.

A structure is locally finite if every substructure generated by a finite
set 'is finite.

Proof. Take an ultraproduct of all the finite models of 7.

In [18] Palyntin proved the following:

LeMma 1.2. If T is an open 8,-categorical theory, then oll the models
of T are locally finite.

TerorEM 1.3. If T is an open ,-categorical theory, then Th(A) ie
not finitely axziomatizable for each infinite model A of T.

TrroREM 1.4. If T is an open %, - categorical theory with a locally finite
infinite model N, then Th(A) 4s not finitely amiomatizable.

To prove these theorems we simply observe that every »x-categorical
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theory, x» an infinite cardinal, is semi-complete by Vaught’s test (ef.
Shoenfield [23]) and apply again criterion B. Similarily we get:

. THEORBM 1.5. Let T be a semi-complete Horn theory with a finite model
of power greater them 1. Then Th(N) is not finitely amiomatizable for infimite
models A of T.

Ag in Theorems 1.3 and 1.4 we can replace semi-completeness by

. x-categoricity for some infinite cardinal x.

Some more refined theorems of this type will be proved in § 3.

2. Graphs of groups with variations. In the sequel we study a very
special class of theories to get counterexamples for several of t-he state-
ments of § 0. I am very much indebted to H. Léunchli who pointed out
the possible importance of such theories.

Thema (Air). Let @ be a countable group and R—F—@G a countable
presentation of @ (ie. & ~ F/R, R, F free and countably generated).
We construct now a structure g in the following way: Let ( f2‘i)1"\E‘ICm
be a set of generators for F, (r)exco 107 B. Let fop, = f3! and let f; be
unary function symbols for every ¢ e I. Now let Ue = {4, Forfas s Jerde>
be such that for all @ ¢ A and all ge G with g = froy i) - Frtmy W ‘hav’e
Fetty Tcey oe Titmy (@) = @ iff g e R. For group theorists this strueture is

» JE(m) N
known as tﬁa graph of the group @ (cf. Magnus-Karras-Solitar [11]).

1. Variation.

PROPOSITION 2.1, If Ug 4s infinite then [Te = Th(U¢) is ,-categorical.

Proof. Clearly the graph of @ i3 a model of T¢. Since it is generated
by one element, it is prime in the sense of A. Robingon (cf. [19]). Now
it is sufficient to prove that any substructure of a model of T'¢ generated
by one element is isomorphic to it. But this is clear, since T'q ensures us,
that all the inequalities of the graph must be true in any substructure
of models of Tg, by the homogeneity of the graph.

OOROLLARY 2.2. T¢ is a universal theory.

Proof. Apply the F0§-Tarski theorem (cf. Shoenfield [24]).

OOROLLARY 2.3. T¢q 4s model complete.

Proof. By Lindstrém’s theorem on modelcompleteness applied. to
theories categorical in some infinite power (cf. Lindstrom [10] or Ma-
kowsky [14]).

COROLLARY 2.4. Tgq admits elimination of quantifiers.

Proof. By Corollaries 2.2 and 2.3.

2. Variation. The following theorem was suggested by H. Léuchli.

THEOREM 2.5. Assume @ is infinite, finitely presentable and has only
a finite number of conjugacy classes. Then Te is fimitely axiomatizable.
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Proof. Let E—~F-—@ be a finite presentation of @ Let T, be the
following set of axioms:
IE (r)icum( £ <k@) generate B (respectively F),
o fomy- Then Vo(Fi, Fiay o Fimy®@) = @) is in " T,.
Fact 1. If A is an arbitrary subgroup of @, the graph naturally as-
sociated with G/H is a model of T,.
Fact 2. By the homogeneity of the graph we have also:

I vammfi&) -'-f:(m)(m) = @) H“(fi(l)ﬁm ...ﬁ(m)(w) = ).

Now let (¢;);.; be representative members of the conjagacy classes. To
ensure that the only model generated by one element is, up to iso-
morphisﬂrln, ths graph of @, we add to T, for every i< !'an axim
Vm(ﬁ(l)fi(z)"'fi(ci)(w) #* 95) where ¢; = fyuy figy -+ Finy t0 get Tj.

Fact 3. If g,,9,¢ G are conjugate clements, g = fy, fu - Fiomy»
92 = fynFizy -+ Fimy a0d Uy is 2 model of T, then

Ay k Vo(Fiy iy - Fiem@) = @) < V5 (Fiay Froy - Fremy(®) = @) .

and 7y = fio, fya -

T, has only infinite models by Fact 3 and, by the same argument ajs‘ in
the proof of Proposition 2.1, T, is N, -categorical, hence complete by
Vaught’s test.

In the light of Morley’s question the theorem also reads:

-THEOREM 2.6. If there is mo finitely axiomatizable complete %, -cate-
gfrrojeal theory then the following s a theorem in group theory: (%) Hvery
Jinitely presentable group with a finite number of conjugacy classes is finite.

Specialists in group theory informed us that the truth of (%) is still
an open problem.

3. Variation. Similarily we can define finite presentations of a ring:

DeFINITION. A Ring R is finitely presented if R FJ where I
= Z[X, X,, ..., X,] in non commutative variables and J is a finitely
generated ideal. .

N
I am indebted to A. Macintyre who suggested the following

TerorEM 2.7. If there is an infinite division ring D which is finitely
presented, then there is a theory Ty which is fimitely aiomatizable, complete
and - N, - eategorical.

Remark. In the commmutative case no infinite sneh ring (i.e. a field)

exists, but in general nothing is known about the existence of finitely
presented division rings. ‘

Pron. Vectorspaces over division rings behave very much the same
as over fields. If the division ring D is finitely presented we can code it
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in a finite language as for graphs above. The models will be abelian groups
with additional functions acting on them.

4. Variation. We ‘consider now structures of the form (Ug, Py,
P,, ..., Py, where G is a countably presented infinite group, e is as in
Proposition 2.1 and Py, Py, ..., P, are nnary predicates on Ug.

ExampLe. Let G be Z@Z, then the dominos of R. Robinson [20]
can be thought of as structures of the described type.

ProposITioN 2.8. Th({Mg, Py, Py, ..., Pn)) is model complete.

Proof. Look at the reducts to models of Tg.

ProrosiTioN 2.9. Th({MNe, Py, Py, ..., Pu)) = T 45 superstable.”

Proof. Call a submodel (of a model of T) which is generated by one
element a component of a model of 7. Every component is countable
and every model of 7' splits into disjoint components. There are at most
continuum many non-isomorphiec components of models of T, hence the
result. : :

ProrosiTioNn 2.10. If T from Proposition 2.9 1is open (universal),
then the following are equivalent:

(i) T is w,-categorical,

(ii) T is w-stable (= totally transcendental).

Proof. (i) =(ii) holds generally by Morley’s theorem [16]. To prove
(ii) = (i) we observe first that all components are locally isomorphic
(i.e. every finite part of it may be isomorphically imbedded in any other
component). This follows from Ehrenfeucht’s characterization of ele-
mentary equivalence [6] and the fact that every substrncture (= com-
ponent) of a model of an open theory is itself a model.

Now assume T is not s;-categorical. Then there are two components
A, B in some model of T which are not isomorphic. But by Proposition 2.8
A and B are elementary submodels, and since they are generated by one
element, they are minimal. So 7' has no prime model, which contradicts
o -gtability.

COROLLARY 2.11. T has either continuum many isomorphism types
of countable models or T' is w;-categorical.

Proof. By Bhrenfeucht’s theorem [7] and the fact T has no prime
model unless it is n,-categorical.

COROLLARY 2.12. T' has either only one or continuum many isomorphism
types of components. ‘

Proof. By the same theorem of Ehrenfeucht, if 7 has no prime
model then for some n ¢ o, T has continunm many n-types, hence con-
tinunm mavy noun-isomorphic componeunts.

CoROLLARY 2.13. In T mo linear order is definable.

2 — Fundamenta Mathematicae LXXXI
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Proof. By a Theorem of Shelah [22], if T admits a definable linear
ordering, T is unstable, which countradicts Proposition 2.9.

Application. We now take ¢ = Z@ Z and interpret it as a domino
in the sense of R. Robinson [20]. Robinson proved (private communi-
cation) the following theorem, which relies on a domino set similar to
the domino in [20]:

THEOREM 2.14. There is a finite set of domino awxioms A such that

(i) A has only mon periodic solutions (= components),

(i) two solutions are locally isomorphic and

(iil) there are continuum many non isomorphic solutions.

TEEOREM 2.15. There is a complete theory T such that

(i) T s finitely awiomatizable,
(if) T is super-stable and

‘(iii) for every new Fo(T) is atomless.

Proof. Take any solution of the domino set in Theorem 2.14 and
interpret it as a structure as in Proposition 2.8. Let us denote this structure
with gy, and = Th(Agy,). T is supel stmble by Proposition 2.9. Let T,
congist of the axioms asserting, that T, %, §, " are functions and relating
these functions with the domino predicates as prescribed through the
domino set. Clearly T, is finite. Using Bhrenfeucht’s characterization of
elementary equivalence T is complete by Theorem 2.14 (ii) and the fact
that T, has no finite models by 2.14 (i). Hence T ig finitely axiom-
atizable, Since T, is open, by 2.14 (ii) and (iii), T has con‘umuum many
minimal models, hence for all n e w Fu(T) is atomless.

Remark. In Theorem 2.14, (iii) already follows from (i) and (ii) if
the domino set has, up to 1somorphlsm, more then one solution, just by
Corollary 2.12.

If we restrict a minimal model of 7' to one of the domino predicates,
say P;, one sees easily, by Criterion C, that the complete theory of the
resulting structare is not finitely axiomatizable. So we have

COROLLARY 2.16. T of Theorem 2.15 is a counterexample to criterion D.

3. Categoricity and non finite axiomatizability.

Derivirions. A complete theory T is almost strongly minimal if
there is a prineipal extension I" of T with a strongly minimal formula ¢
such that for every model 9 of 7" we have % = cl(p(%)). A theory T' (not
necessarily complete) has the weak intersection property (w.ip.) if for
every model % of T and for every two submodels B and € of ‘l{, BnNE
is either finite or a model of T.

Almost strongly minimal theories have been introduced b¥ Baldwin [1].

They form a special class of x,-categorical theories. Tn [14] we proved
the following:
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THEOREM 3.1. Let T be a complete w,-categorical theory. Then the
following are equivalent:

(i) T 4s almost stromgly minimal;

(i) some principal extension T*' of T* has the w.lp.

T* denotes the full ezpansion of T (cf. Bell-Slomson [4]).

Let T be a complete almost strongly minimal x,-categorical theory
and let %, B and € be models of T. From the results of Makowsky [12]
(cf. Dickmann [5]) there is a function f: w—w such that (i) f is monotone
almost everywhere on w, (ii) for A< €, B< € and A ~ B| = n then
N B =y, C So nsing Criterion C of § 1 we get:

TeEOREM 3.2. If T is complete, categorical in every imfinite power and
has w.ip., then T is not finitely axiomatizable.
or

TEEOREM 3.3. If T is complete, almost strongly minimal and N,-cate-
gorical, then T is not finitely amiomatizable. .

By a result of Baldwin (private communication) not every ;-ca-
tegorical theory is almost strongly minimal, even if T is §,-categorical,
but there is no obvious way of generalizing the methods of [12]. Analyzing
the proof, one sees easily that it focuses around algebraic properties of
the models of almost strongly minimal theories, from which we do mnot
know if all models of theories categorical in every infinite power share
them.

DerFINITION. T has the unbounded weak intersection property (n.w.i.p.)
if T has the w.i.p. and for every % ¢  there are models %, B and € of T
such that AC €, BC € and A ~ B is finite but of cardinality >n.

THEOREM 3.4. If T is semi-complete and has the n.w.i.p. then Th() is
not finitely axiomatizable for infinite models A of T.

Proof. Choose A, B C &, all models of 7T, such that f(n)
= card (Wn » B,) is finite and f is an increasing function of ». (This is
possible because T has u.w.ip.). Let F be an ultrafilter on o which is
not principal. Now set U= IIUnF, B = IIB,/F and €= IIC, [F. We
have A ~ B = Iy ~ By/F and A ~ B is infinite, so A ~ B = ¢, since
T is semi-complete. Now the result follows by Criterion B.

LevmMA 3.5. If T is categorical im every imfinite power and has the
w.ip. then T has the n.w.ip.

Proof. Let (%,),., be 2 basis for the strongly minimal set of some
countable, model A of T. Put X, = {w;] k<< n}. From the proof of
Theorem 3.2 of [14] we know that cl(Xn) = cl(Xn v {B| & >n}) ~
A el(Xp v {@pq] B >n}) where card(cl(X,))>n but finite by Ryll-
Nardzewski’s theorem (cf. Shoenfield [24]).

Lermma 3.5 gives ns new proofs of Theorems 3.2 and 3.3. For Theo-
o .
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rem 3.3 one has to consider the reducts of the models of the full expanmon
of T to the original similarity type.
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The boundedness principle in ordinal recursion
by

Douglas Cenzer (Gainesville, Flor.)

Abstract. An application of Spector’s boundedness principle to ordinal recursion
yields, for a recursively regular and f < a: (1) Any a-recursive functional total on S P (B)
can be defined without the search operator. Let la/ﬁI be the closure ordinal of the class of

a-recursive inductive operators over f. For example, an operator over o is w;-recursive '
iff it is A}. A new prootf of the fact that |4}] is recursively singular follows from the more
general result (2) |a/B| > @ iff |a/B| is singular. Characterizations of closure ordinals are

obtained in terms of projectibility. For example, (3) |a/8] = aiff ¢is absolutely projectible
to B.

1. Introduction. The boundedness principle, due to Spector [6],
is basically that any X} set of well-orderings is bounded below ;. We
apply this principle to ordinal recursion to obtain several results regarding
funectionals and specifically inductive definitions on sets of ordinals.

We assume that the reader is familiar with the concepts of inductive
definitions and of ordinal recursion as ouflined in [1].

Briefly, an inductive operator I' over a set X is a map from P(X)
to P(X) such that for all 4, A CI'(4). I' determines a transfinite se-
quence {I*: £e¢ORD (ordinals}), where I*= U{I": o< £} for £=0
or & a limit ordinal and I**!= I'(I*). The closure ordinal |I'| of I" is the
least ordinal ¢ such that I®*!= I, The closure I' of I' is I'7l, the. set
indnctively defined by I

The definition of the a-recursive functionals and the primitive
ordinal recursive (p.o.r.) functionals is a natural generalization of standa-d
recursion over the natural numbers. We list in § 3 some basic facts about
ordinal recursion essential to this paper.

In this paper we congider the notion or ordinal recursive inductive
operators on sets of ordinals. Given recursively regular ordinals a and B,
B < a, let |e/B] be the closure ordinal of the class of inductive operators
over 8 which are a-recursive in parameters less than g; let |(aff)| be the
closure ordinal of inductive operators over § which are a-recursive in
parameters less than «. (The latter are called weakly a-recursive.) For
example, |w/w| = |(w/w)| = ». In this paper we consider only countable

‘a and B.
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