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Proof. (i) For 2 € w, set
by = {<n>} v {ps| p has the property stated in the definition of [
with respect to @} .

Then each b, has points at every level < oF, so it remaing to prove that
by is linearly ordered. Obviously, @ <,y for new and Y € by.

So assume that p and p’ have the properties given in ¢ with respect;
to @, and suppose that palp, for some new. We seek a contradiction.

First we prove that p,,|p,, for m = n. If not, let m = n be such that
Pl P DUE Py gy Proys - Lt 2 be the largest 2 <y Dony Dy 20 Lot
¥ <1 Pmtay 1#'] = |2]. (Notice that 2] = 1.) By our agsumptions about P
and p', f(2') <y Py Prp- Bt this is impossible, since f(&') >n 2

So let 2 be the largest 2 <<, Py Doy, T0r m = n. By the same argunent
we must have

I’gnl > Izn—l.ll > |zn+2[ > ?

which is impossible. ‘

(i) If # # y, then @, # y, for some ». But then, by (i), 7' will con-
tain two different of'-branches, which is impossible by Claim 4. Q.E.D.

Now, (a) in the theorem is trivially satisfied by @. From (i) in Claim 9
we obtain Hap(x)—V s I, which is equivalent to (b). (¢) is exactly (ii)
in Claim 9. In M[a], () holds, so (d) is clear. (GCH ig implied by V = L%.)
(e) is clear from the absoluteness in the construction (or simply by Shoen-
field’s absoluteness theorem). The proof is complete.
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Banach spaces and large cardinals

by
Jussi Ketonen (Berkeley, Cal))

Abstract. The purpose of this paper is to introduce a new type of a basis-notion;
sets of indiscernibles, for Banach spaces. A structural theory for Banach spaces generated
by sets of indiscernibles is developed. It is shown that any Banach space of the cardin-
ality of a Ramsey cardinal has a set of indiscernibles of the same cardinality and that
consequently it has a big subspace admitting non-trivial projections. The behaviour
of linear operators on spaces of large cardinality is also studied.

0. Introduction and motation. Our intent is to stady the applications
of the theory of large cardinals to Banach spaces. The cardinals we choose
to work with, Ramsey cardinals, are of a fairly high order. It is
shown that the notion of sets of indiscernibles, which usually ariges
in the theory of Ramsey cardinals, has a natural interpretation in the
context, of Banach spaces. Chapter 1 is devoted to the study of the
structural theory of Banach spaces gemerated by sets of indiscernibles.
No large cardinality assumptions arve needed here except that we do
require the density character of the spaces in question to be uncountable.
It seems from the many counterexamples one can construct that the
countable case has very little coherence. Tn the remainder of this paper
we then invoke laarge cardinality assumptions in order to get sets
of indiscernibles; the general idea behind all of our proofs being
that every big enough Banach space has a big, fairly homogeneous,
subspace.

The author wishes to thank Professors Flaskell Resenthal and Per En-
flo for many helptul discussions. This research was conducted during the
author’s stay as a Miller Fellow at the University of California.

The notation and terminology conforms to that used in [1] and [2].
For example, cardinals are initial ordinals, Ordinals are denoted by small
Greel letters a, 8, ... The cardinality of the set X is denoted by |X|. The
finite linear span of the set X (if it makes sense) is denoted by [X].
Operator always means bounded linear operator.
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0.1. DEFINITION. A cardinal x is Ramsey if

(1) # is regular, )

(2) if [%]<® denotes the set of finite subsets of x, and f: [»]<"—4,
where 1<C %, then the function f has a homogeneous set of cardinality »;
ie, it 8,8 CX and 8,8, have the same finite ordertype, then
F(81) = F(8)- o .

It is well-known that every Ramsey cardinal is inaccessible and
that every measurable cardinal is Ramsey. For more, see J. Silver [1].

0.2. DemnrrioN. Let B be a Banach space. A set X CB is a SOI
(set of mdzsceambles) in B if X = {®) a< %} (indexed by a cardinal »)
is a linearly independent family so that for every finite set I C %, order-
preserving map m: F—x, scalars a, (« e F)

H e, | = H Zaawﬂ(,,)
ael’ aell

and

e =1 (a<<2).

X is a GSOI (generating set of indiscernibles) if [X] is dense in B.

0.3. DmrrNrTIoN. Let B be a Banach space. A family X = {»,| o< »}
is an wunconditional basis-set for B if there is a congtant C so that

” Z‘ 8,08, || < O ” 2 Cuy

for all (s,) with ¢,= 41 and all (c,) where ¢, is a scalar with ¢, # 0 for
only finitely many o’s.
The following simple proposition gives our fundamental observation.

0.4. ProrosrrionN. If x» is & Ramsey cardinal, B a Banach space of
cardinality x, then B contains a:SOI of cardinality =. As a matter of fact, every
set of norm-1 elements of B of power = has a subset of power s which is a SOI
for B.

Proof. Let {b,] a<< x} be a collection of distinet, norm-1 elements
of B. For each set F' ¢ []< define a norm |||l on the Buclidean space S7!
(8 denotes the field of scalars) by setting

1<ty ..r @y = H 2 "
ant and o< a4y < ... < an. Define a function G: [%]<

where F = {g, ...

sn
- |8 by G(F)=|-|lp. Let X be a homogeneous set of cardinality »
n<w

for @G. Then {b,| a € X} is the required SOI for B. m
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1. Sets of indiscernibles in Banach spaces. In the following, fix a Banach
space B, a set of indiscernibles X = {,| < »} for B, where x is a regular
carchnzblﬁ =w;, and set D= [X]. We can then deﬁne Iinear functions
k(@) = % (a) (a << %) for e D s0 that

&= 2 z (a) -,
a<#®

Define the support of # for #<.D to be the set

(zeD).

Supp(z) = {a| #(a) % 0}.
Given an order-preserving map m: Supp(4)->x, define
a¥(@) = Zw (@) @y
a<z

Thus, if @: %x—>» is order-preserving, =* is an isometry and hence can be
extended in an unique fashion to [X]. Define projections p4 for sub-

sets ACx by
= 25 (a)-2.
aed
The above notation will remain fixed throughout this paper. Also,
let g, = s—p & and
Oa=[{n] acdf] (ACx).
1.1. Prorosition. If X is a GSOL for B, then no proper subset of X
generates B; for any a<<x
Zod Oty -

Proof. By way of contradiction, assume that a << » and @, ¢ 0,_¢,.
Pick g >a, e>0, Let ¢, i, ~D so that

lo—zll<e.
Let 7, Supp (o) v {a}—== (z: 1,2) be order-preserving maps so that
id on a,
Ty =
g ou {a}
and
id on awv{a},
Ty = .
m,  otherwise.
Then
llwa(@)— 2|l = llma(— )| < &
and

llea(@) — ] = [l < e .
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Hence, for any ¢ >0
l[2a— @4ll < 2¢

ie. &, = @ a contradiction. @

As an easy corollary, we obtain:

1.2. PrROPOSITION. Hach k, (a<x) is a bounded linear functional
and hence can be extended in a unique fashion to D. The Family

{<mgza kyﬂ ¥ <}

forms a bounded biorthbgonal system.

Hence the Jefinition of the support of an element naturally extends
to D. We can also define the support of a linear functional T

Supp (T) = {a| T, # 0}.

This definition leads us to the key technical concepts of this paper:

1.3. DeriniTION (1) A linear functional T is restricted with respect
to X if there is a v < » so that

Supp(T)Cy .

(2) A Tlinear functional T' is finitely restricted with respect to X if for
every 6 >0 the set
{a] |Ta, > 8}
is finite.
Thus every finitely restricted funectional has countable support.
1.4. PROPOSITION. (1) If T' is restricted and x <D, y < x, then

1T (@) < |T1|-ll] -
(2) If T is finitely restricted, ¥ C » a set so that
G fel, a<f->|a,p)=0wn.
then for any finite FC Y, w e c,
IZ(2n())l < 1T)[laf] -
Proof. (1) Given the T, let 5 < » so that Supp (T) C 7. Lot m: x>z

be an order-preserving map so that @ = id on y and g [y, 2)—>[n-1, »).
Then for any s <D

T (p (@) = |T(#*@))] < |7 -lr*(w)]
= Tl |l -
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(2) Fix T, F and ©¢ Oy ~D. Let »n= [Supp(z)|. and &> 0. Since
T is finitely restrieted, we can find an order-preserving map z: Supp (z)—=»
so that = =id on F ~ Supp(z) and for any a e Supp () n ( =F)

‘ng;(a)l < €.
Then
|Z(2sl@))] < |2(n(@))| 4
< Tl +-&-m .
Letting ¢—0 we get the claim. m
It turns out to be useful to subdivide SOI’ into two different types:
singular and non-gingular gets of indiscernibles according to whether or

not there are non-restricted linear functionals. The importance of thig
distinetion is borne out by the following result:

1.5. THEOREM. There is a non-resiricted linear functional if and only
if there is a non-finitely restricted linear functional if and only if there is
a M << o so that for any @ eD

PXICIEE AR

a<#

Thus, the functional

(@)= Yd(a)

a<x
can be in this case ewtended from D to a continuous Uinear functional with
SuPport = .
Proof. Suppose that the functional 7' is not finitely restricted.
Then there is a sealar ¢ 0 so thabt for any & >0 the set

A6= {(XI leu_” < 6}
is infinite. Given any zeD, ¢ >0, let =: Supp(z)—~4, be a order-pre-
serving map. Then

-1 = |l (@11 T = |7 ()|
e

(

wheve n = |Supp(@)|. Letting e—0 we get the claim with M = ||Z||/|{|. =

The singular ease can be subdivided further: From now on till the
end of this chapter we will agsume that X is a GSOI for B.

1.6. TurzormMm. Suppose that X is a singular SOIL (i.e. there are non-
restricted linear functionals). Then either B = 1Yx) (i.e. there is a continu-
ous one-to-one onto linear operator from B onto 1(x)) or for every T eB*
there is a (unique) scolar Ap so that T—ApIT is restricted. '

2 - Fundamenta Mathematicae, T, LXXXI

|
>| E:ﬁ(a))’—a-n,

a<<u
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It is easy 1o see that the map T Ay is a continuous linear Junctional
of morm 1 on B*.

Proof. For assume that there exist scalars w = 1, ¢ 5 0 so that for
every ¢ >0 the sets

b= {a |To,—t|<s} and @, = {qf [Tz, —u] < &}

have cardinality . Given weD, &>0, and a finite subset 7 C %, let
H = Supp(#) and z: H->x order-preserving so that -

w HnF—+P,, a H-F->Q,.
Then, if ¥ = |H|,
120 -llel) = 21| lea™ ()]

> ’(255(&)) + (Zﬁ(a))-u,——a-l\r.
ael a

e

Letting e—0 we find: There are constants A 1, M < co 50 that for any
2 e D, I C x-finite

[ Yé@)+( i) 4| < u-jal

ael . ach
and

|Zé(a)}< M e .

a<xn

Applying these two inequalities with F — {a| &(a) >0} we get: There is
& constant O so that for any z e D o )

D13 (@) < C-al.

a<x

Hence B ~ I'(x). m

By P;oposﬂuon 1.4 every projection p, is norm-1 continuous on B in
the non-gingular case.

.1.7. TaroreM. If X is a non-singular SOI, X s an wnconditional
basis-set: For all scalars a, {a<<n), finite sets I'C @

|
| See]<] Su
aeh ag@

g Proof. If X ig non-sipgul&r, every linear functional ig finitely re-
smcted. by Theorem 1.5. Given # ¢ D and a finite I C %, select an order-
breserving map z: Supp(z)—» so that for a, B e Supp (=)

a< f—|(n(a), a(f))|=w.
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Let T e B* so that |[T]| =1 and

[T (pala"(@))| = |[pal="()||
where H = z(F). Then, by Proposition 1.4

ol = [|pal=*@)]| = | T(2a{="@)|
< (@) = flal -

Thus, in this case every zeB is uniquely determined by the se-
quence {k,x| a<< x> and for every 4 C » theprojection p4 is continnous.
Consequently Ca~ Up={0} for 4, BCx» 80 that 4 ~ B = 0. We shall
now show that the above-mentioned facts almost hold in the singular case.

1.8. Prorosixron. If X is a GSOI for B and every p, (a << x) i§
continuous, then every element ¥ e B is uniquely determined by the sequence
(| a<< %),

Proof. First of all, since X iz a SOI, there is a constant M so that
lpJl < M for every a<< = Given x s 0, let o be the least ordinal so that
P& # 0. Then a must be a successor-ordinal: For if o is a limit, select
yeD so that |ly— | < & where

e = |p,al/221 .

Then there is a f< a so that p,y = psy. Therefore

Ipo2ll = NP 2— ppaell < ||D@— DYl Dpy— 2ol < 2Me

a contradiction. Therefore there is & y << a 80 that a = y-+1 and p,2 = 0.
Hence Lo 0. ‘

1.9. Prorosition. If X is a GSOI for B with every p, (a<< x) dis-
continuous, then for every T e B* there is a scalar Ap so that T— Ay Il is
findtely restricted.

Proof. We can argue as in the proof of Theorem 1.5. If the claim
were not true, then we can find a T ¢ B* of norm 1 so that there exist y < »
and a sealar £ 5= 0 go that every >0 the set

A, = {a| |Tz,—1 < &}

is infinite and Supp(7T) Cy. Given any @ eD, ¢ >0 we can therefore
find an order-preserving map z on Supp (#) so that Supp(z) ~y is mapped
into A, and = is otherwise the identity. It follows that the functional

Hy{” = 20’:‘((1)
a<y
o
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is a continuous linear funetional on B. But this implies that , 18 con-
tinuous: For if # « D and T ¢ B* hag norm 1 so that IT(p,(2)] = llp @),
by Proposition 1.4 (1),

Mz’ﬂ(py(m)”"f— I(T* Ap ) (py(m)H

l2,()] <
< L]+ (14 -l -

1.10. THrOREM. Let X be o GSOI for B.

(1) There is a b e« B so that the following statements are equivalent for
any weB "

(a) there is a A s.t. @ = Ab,

(b) there are A, BCx, AnB=0 st. m¢C4n Oz,

(¢) for every a<C s, k=0,

(4) for every restricted T, Ta = 0,

() for every finitely restricted T, Tw = 0,

() if @z w2 ds order-preserving, n'(r) = x.

(2) If any of (a)-(f) hold for o & =+ 0, there is a A so that the family
{,— x| a<< %} (when normalized to 1) is a non-singular SO in B whose
span has codimension one.

L.1. CororrARY. If B is reflemive, then o] o< 2} (or {Iym| a< u} o
v {1} in the singular case) generates B If X is a SO in B, then there
%5 abeB so that X—b = {o—b| 2 € X} is a non-singular SOIL

Proof of Corollary 1.1. Given X, , there is a b € B and a sequence 4,
(k< o) of natural numbers 5o that #4—b weakly. Therefove kb = 0 for
any a <. Theorem 1.9 now implies the claim. @

Proof of Theorem 1.10. (1) First of all, it is easy to see that the
all of the statements (b)-(e) imply (¢) and that (f)~>(b). For example, sup-
pose that (b) holds. Let o e 04~ Opand A nB=0.1£ . ex. a ¢ 4, then k— 0
on Oy and therefore ko = 0, ' s

We can (by Proposition 1.8) without a losg of generality. assume
that X has the properties stated in Proposition 1.9.

(e)-—>(f): Lot M= {®| If T eB* is finitely restrictod, Tl - 0} By
Proposition 1.9 this space is at most one-dimensional. Tf g Ko 2t I‘-»
Oﬁder-preserving and T« B* ig finitely restricted, so is T o #*. Theratore
7 () € M for every & ¢ M. Since x is an isometry, n*(x) == @ for every @ ¢ M.

( c).—+(e). Suppose that for every a << u k,w = 0. Lot m: %—>2% he order-
preserving so that for a< g ](n(a),n(ﬂ)”z . Let g = a*x). Then
ky=0 for every a< x Let T be finitely restricted and &> 0. Pick
?e Cp where F Cw(x) is finite so that le—yll < e. Then, by Proposi-
tion 1.4 we have: ( ’ ‘

|T2] = [7(p(2)— pa()| < |11 Jo—y]l < |7 6 .
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Letting eé—0 we find Ty = 0. Therefore #*(z) ¢ M. If & =£ n*(z), then
a*(w) # «*(«*(w)). But this is impossible by the preceding. Hence
2 = 7" (w) eM. m

(2) By part (f) of (1), n*(@) = & for every order-preserving sz. There-
fore {x,—®| a< %} is a SOI for B. Select # so that ITz = 1. Then we
are back in the non-singular case, for otherwise there would exist a con-
stant M so that for any y e¢D

Hlyl < M -|ly— (I2y) |

letting y— we get a contradiction. m .
The following result shows that we can always transform a SOT into
an unconditional basis-set.
1.12. TuworEM. Suppose X is o SOIL with B 2 1(x). Let m: %—>x be
an order-preserving map so that m(a) > o for every a<< x. Then X,
= {,— Cpyp| @< 2} (when normalized to 1) is a non-singular SOI.

a<< % 80 that
B> a>Tay= Tu,—~ T (@~ t,5) =0 .

2. Some applications and examples. For the duration of this chapter,
let B denote a Banach space of the cardinality of a Ramsey cardinal .
The following theorem is a direct consequence of the results of chapter 1.

2.1. TrEOREM. (1) B contains an unconditional basis-set of cardinality .

(2) If B has no subspaces isomorphic to 1(x), then B contains an UNCON~
ditional basis-set {x,| a < x} with the associated projections

pF(Za‘awa) - Zaawa
ael
of norm 1.

(8) If B is uniformly convem, then every subset of B of cardimality x
contains a subset of cardinality x which s an wunconditional basis-set of
the type described in part (2). ’

Next we. shall study linear operators in spaces of high ecardinality.

2.2. TuporEeM. If T is a continuous linear operator on B so that
|T(B)| = , then there is a subspace M C B of cardinalsty x so that for some
6>0 .
IZal > 8lla| ~ on M .

Proof. Let X = {w,| a< x»} be a SOI for B so that X is an uu-
conditional basis-set and for each a <z Tw, #% 0. For a< »,

4, = {y| k(Tz,) # 0}.
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Then we can find ¥ Cx, A Cx, f: A—R, § >0 s0 that |¥|== % and for
every a,fe ¥, a<f,
[ Ta,)| = &
“and
b(Tay=f(y) for yed.
and
A, ~n4;= 4.

If A 50, let y e A. Then, for any finite FC ¥, scalars a, (a< x)
W | 3 a2 |5 3 atn) | = ifo01-| Y a
ach aell ael’

a contradiction. Hence 4 = 0.
Thus, without a loss of generality we can assume that theve is a 8, > 0
80 that for any ae ¥ we can find a y,eA4, so that
k, (Tw,) = 0,.

Let 8 = {y,] a<<«}. Then for any FC ¥ finite, scalars a,
“ ZaaTma = 60“20&“%
ael ael

In the particular case of a Hilbert space this theorem reads:

2.3. THROREM. If w is Ramsey and T a continuous linear operator
on P(x) so that |T(%(x))| = w, then there isa 6 > 0 and a set ¥ C x of cardin-
ality » so that

’

> [ 253 07

aell

|Tof = Sllaf] ~ om ().

Proof. For in this case the A’s are disjoint and for finite F Cax,

scalars a,
= D Sadma)yf= Nt 3 (ary)

—
H 2_/ a Tz,
ael acll'  yedy
— N2 2
=0 (Zaa). ]

aell

Actually, the above method of proof extends to show that Theorem 2.3
is true for every regular cardinal =(29)*. Tt ig trivially false for 2°,

An interesting situation arises when B = IHu) where u is o positive
bounded meagsure and |B] = » where s ig Ramsey. We can then show
that every subspace of B of cardinality » has an unconditional basis-set
of cardinality » with the corresponding projections. of norm 1:

2.4. TamormM. If {f,| a<x} SOI in I\(u), then there is o felMu)
st {f—f| a<< %} (when normalized to one) 1is a non-singular SOTL.
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Proof. For suppese that {f| a< x} is a singular SOI. Therefore
there i8 a @ ¢ L™(u) so that for every a << »

ffaqulu= 1 *

It is & result of Rosenthal ([1], p. 214, Rem. 2) that LY(u) cannot contain

" a subspace isomorphic to I'(x). Therefore for every w e I™(u) there is

a scalar 4, so that there is a oy < % 5.t

[fapdu =12,

The map p—24, is a linear functional on L®(x) of norm 1. By the Radon-
Nikodymin theorem, we can find a function feI*u) so that for every

y e L%(u)

(> ).

lvp = ff"p d/.& *
Therefore for every v e I*®(u) there is a o, s.t.

J—fyan=10 (a>a).
Hence, by Theorem 1.10 {f,—f] a<< »} is a non-singular SOI for B. m
It is perhaps worth noting that not every singular SOI in a Banach

space is translatable into a non-singular one in the above fashion. For
example, if we define a norm on a space generated by the sequence

{z,] a<#n} by
”2%% = §up Zaa

Y<x a<y
then every projection p, is continuous.

3. Measurable cardinals. In the following, let » denote a measurable
cardinal and D a normal ultrafilter over ». (For definitions, and all the
relevant facts and notation, see J. Silver [2]). Given a Banach space B,
the ultrapower IIpB can be easily endowed with a Banach space structure
by setting for f: »—B

ILf1pll = limpf(c) = the real »

80 that
{a] flo)=7r}eD.
For T e B* let T denote the canonical extension of T into ITpB:
For f: »—B, define
T((f1p) = limpT'f (a) -

Note that by a theorem of Rowbottom, for any one-to-one function
f: x— B thete is & x ¢ D 5o that {f(a)| a ¢ X} is a SOIL. Now let O denote
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the set of all constant-elements of ITpB and NS(8) denote the seb of all
non-constant elements of IIpB which yield a non-gingular (singular) SOL.
Then

IIpB=CuN3ug.
The following result is then obvious:

3.1. PROPOSITION. (1) NS = {welIpB| for every T eB* Tpo 0}.
(2) If B is a Banach space of cardinalily >x so that |B¥| < 2% then
dim (N 8) = 2%

An interesting situation arises when {z,| a< %} I8 a GSOI for the
Banach space B. We can construct a subspace M of the space L(B) of
all continuous linear operators by

M = (T eL(B)| {a| Ir,=0}eD}.
The resulting quotient space

def
Bp = L(BM

is then a Banach space. In the cage of a Hilbert space, the arguments
of Theorem 2.3 imply that

Px)p = 17(2%) .
In the general case we can define an embedding into the ultrapower
@: BD}:—;IIDB .
by setting
P([T]) = [(Tw,| a< x)lp.
Obviously, [l¢l < 1. It is also easy to see that ¢''(Bp) C L where
L= {{flo] EX D s.t. supp (F(z,) disjointed (a e X)}.
Actually, in the non-singular case it ig easy to see that
IIpB= (0 QL

where the associated projections have norm 1.

3.2. PROPOSITION. (1) ®"'(Bp) is dense in I.
(2) The following are equivalent:

(a) ¢"(Bp) is closed,

(b) WS >0 so that for any T e L(B)

limp|| Ta]| > 6|7 .

Banach spaces and large cardinals 303
(¢) ¢"(Bp) = L.

(d) There is a 6 >0 so that if e C,, and w2 w;—>x (a << x) are order-
preserving maps with disjoint ranges,
= -1-” Za 7, m ‘
6] a"a

< S
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