Infinitary equivalence of abelian groups

by
Paul C. Eklof (%) (Stanford, Cal.)

Abstract. Necessary and sufficient conditions are given for an abelian group to
be Deoy oquivalent to a free group or, more generally, to a direct sum of eyelic groups.
As applications, examples are given of groups of cardinality w, which are Doy, equiva-
lent but not isomorphie. Also, generalizations are proved of some theorems of abelian
group theory about free groups and direct sums of cyclic groups.

0. Introduction. In this paper we use infinitary logic to generalize
and put in perspective some theorems of abelian group theory viz., Pon-
tryagin’s criterion (1.3), and theorems of Baer (1.6), Prufer (2,5) and
Kurosh (2.7); and, conversely, we make use of abelian group theory to
exhibit some natural counterexamples in infinitary logic viz., counter-
examples to a generalization of Scott’s theorem to L, (1.9) and (2.10).

Our main theorem from which the above results follow as corollaries
is anecessary and sufficient condition for an abelian group to be L., equiva-
lent to a divect sum of cyclic groups (1.1) and (2.2). The principal tool
of the proof is the “back-and-forth criterion” for L,-equivalence which
was developed by Ehrenfeucht [6]and Fraissé [8] for finitary languages,
by Karp [15] for L, and by Benda [3] and Calais [4] for L, for » > w.
(Recall that L, is a language whose formulas are those congtructed from
function and relation symbols by taking conjunctions over arbitrary
sets of formulas; applying the negation symbol; and quautifying over
seby of variaples of cardinality < ». See, for example, [7], for more details.)

Tn order to state the back-and-forth criterion, leb us first define
A partial isomorphism from a structure A to a structure B to be an iso-
morphism f: A'-B* where A’ (resp. V') is a substructure of A (resp. B).
A set 3 of partial isomorphisms from % to B is called a x-extendable
system if whenever f: %'—B' is a member of 3 and X (resp. Y) is a subset
of the universe A of 9 (resp. of B)then there exists f': A"~ B’ such that
FCf" and X C A" (vesp. Y CB"). Now we can state the back-and-forth
eriterion: B
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W i8 Lp,,-equivalent to B if and only if there is a x-extendable system
of partial isomorphisms from 9 to B.

Then Scott’s Theorem (in a weak form) says:
If Wand B are countable and A =, B then ¥ is isomorphic to B [19].

1. Groups equivalent to free groups. Throughout this paper “aroup”
will mean abelian group. A direct sum of a copies of a group A will be
denoted A®, Z(p™) denotes the cyclic group of order p™ and Z denotes
the infinite cyclic group. A group 4 is a direct sum of cyclio groups,
denoted X'-cyelic, if it is isomorphic to

@Z(p%)(ap,n) ® A
f X0

for some cardinals o, and .

The symbol » will always denote an infinite cardinal. 4 is %~ gener-
ated if it is generated by fewer than x elements. 4 is x-3- ayclic (resp.
«-free) if every »-generated subgroup of 4 ig X- cyclic (resp. free). Thus
A is x-free if and only if it is »- Z-cyclic and torsion-free. Note also that
for uncountable , 4 is »-generated if and only if 4 is of cardinality <
thus for uncountable », our definition agrees with the nsual one (ef. [107,
P. 94). For x= w, 4 is x-free if and only if 4 ig torsion-free,

A subgroup § of 4, is called x-pure if for every subgroup @ of 4 sueh
that 8§ C G C 4 and @/8 is »-generated, 8 is a divect summand of & (see [9],
§ 27). An w-pure subgroup is called, simply, a pure subgroup; 8 is a pure
subgroup of 4 if and only if for every n < w, n8 = (nd) ~ 8. Obviously,
a direct summand of a x-pure subgroup is =-pure, and S is a x-pure
subgroup of 4 for all » if and only if § is a direct summand of 4.

- We are going to give a criterion for a group to be L,-equivalent
to a X-eyclic group. We take up first the simpler case of a torsion-free
group. )

1.1. TasoreM. 4 is L, - equivalent to a Sree group if and only if every
%-generated subgroup of A is contained in Sree, n-pure subgroup of A.

Proof. The necessity of the condition follows from the fact that the
condition is expressible in L, and true in a free grouwp, (Alternately,
one may use the fact that there is a x-extendable system J of partial
Isomorphisms from 4 to a free group F; thus for any x-generated. sub-
group 8 of 4 there is an feJ which is an isomorphism between an ex-
tension 8’ of 8 and a x-generated divect summand of I'; the x-extend-
ability of J insures that 8’ is %-pure in A). To prove sufficiency, notice
first that if 4 is x#-generated, then 4 is free; hence any A satigtying the
hypothesis is »-free. We may then agsume that A is not % - generated;
let F' = the free group of rank x. Let J = the set of all partial isom(‘mphimnﬁ
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f: 8—T where 8 and T are x-generated, x-pure subgroups of A and F
respectively. Given a subset X of A of cardinality <=, there is by hypo-
thesis & free, »-pure extension 8’ of § containing § and X; 8’ can be
taken to be x-generated. Then 8'= 8@ 8" for some free 8’ because
8 is »-pure in 4. Since I has rank > », we can find a 7" isomorphic to 8’
and such that T ~ T = {0}, Thus we can extend f to f': @ 8"
-1 @ T". Since we have used only properties common to 4 and T,
we can also prove that we can extend fto include any given subset ¥ C P
of cardinality < in its range. Therefore J is »-extendable and the theorem
iy proved. ‘ »

When we take » = w in the above theorem, we obtain the following
three corollaries, all of which were previously known:

1.2. CoROLLARY. A group is L,-equivalent to a free growp if and
only if every subgroup of finite rank is free. ‘

Proof. For any w-generated subgroup § of 4, {a e 4: na <8, some
n < w} is a pure subgroup of finite rank, hence free. Thus by the theorem,
A is Dy,-equivalent to a free group. Conversely, if 4 is Z.,-equivalent
to a free group and § is of finite rank let {a, ..., ax} be a maximal in-
dependent set of elements in 8 and let B be the subgroup generated by
{ay, ..., an}. By the theorem B iy contained in a pure, free subgroup B';
then § is also coutained in B’, so § is free.

1.3. CoromrArY. (Pontryagin [17]). A countable group is free if and
only if every subgroup of finite rank is free.

‘Proof. Apply Scolt’s theorem to Corollary 1.2.

The logical significance of Pontryagin’s criterion has been observed
in different forms by a number of persons, among them J. Barwise,
E. Fisher, and G. Sabbagh.

1.4, COROLLARY (Kueker)., 4 group is L, equivalent to a free group
if and only if i is w,-free. ‘

Proof. It A is w,-free, then every subgroup of finite rank, being
conntuble, iy frec; so A is Lg,-equivalent to a free group by 1.2. Con-
versely, if A 8 Dy,-oquivalent to a free group, by 1.2 every subgroup
of finite rank is free, so by 1.3 every countable subgroup is free.

Applying the theorem in the case x = w,, to the Specker group z°
we obtain the following (Z° denotes the product of o copies of Z).

1.5. COROTILARY., Z° is 10t Ly, equivalent to a free group.

Proof. Z“ is an o,-generated subgroup of Z¢ If & is any countable
extension of Z® in Z, there exists ae {7 (! ZYC Z® such that a¢G. If
H is a conntable extension of G containing ¢ and such that H/G 'is pure
in Z%@, then G is not a direct summand of H, because 0 7 a+@ is .(1.1V1-
sible by all integers in H/G; but Z® has no non-zero elements divisible
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by all integers. Hence H/G is not isomorphic to a subgroup of Z° Thus
we have proved that Z hasno w,-generated (Le. eountable) wy -pure
extension, and the corollary is proved.

1.6. CoroLrLARY (Baer [1]). Z° is not free.

In order to apply the theorem to give non-trivial examples of groups
which are L,-equivalent; to free groups, we make use of known results
in abelian group theory. For example, it is known that Z* ig wy-free
(Specker [20]; see' also [10] Thm. 19.2). Henco by Corollaries 1.4 and 1.6
we have: ‘

1.7. CoroLrArY (Keigler-Kueker). Z° 4s Loowequivalent to a free
group. The class of free groups is not definable in Lyp-

A is a Fuchs 5-group if every infinite subgroup of A4 is contained
in a lirect summand of 4 of the same cardinality (cf. [9], p. 96, Problem 5).

A direct sum of countable groups is a Fuchs 5-group. It was proved
by Hill [13] that there is a P~group which is a Fuchs 5-group and is not
& direct sum of countable groups. Then Griffith ([11]; see algo [12],
Thm 147) used the idea of Fill’s proof to congtruct an example of a non-
trivial torsion-free Fuchs 5-group; Griffith’s proof shows the following:

1.8. TEEOREM (Griffith [11]). There is o torsion-free group @ of cardin-
ality o, which is a Fuchs 5- group and which is w,-free but not free.

Now a Fuchs 5-group @ obviously has the property that for any
uncountable x, any x-generated subgroup of @ ig contained in a %~ gener-
ated, x-pure (even a direct summand) subgroup of @ Hence as o cor-
ollary of 1.8 and 1.1 we have the following:

1.9. CororLARY. There is a group G of cardinolity w, which is Lo~
equivalent, but not isomorphic, to o free group of cardinality w,. The class
of free groups is mot definable in Loy (1)-

. The following corollary was suggested by R. Tisher.

1.10. CoroLLARY. If 4 is Lo, - equivalent 10 o free group and A {s
@ %-pure subgroup of B such that A, Sy B then A <, B.

Proof. Wemay assume Card (A) = x It suttices to prove that for any
x%-generated. subgroup 4’ of 4, 4’ is contained in some A" C.4 such
that the identity map 4 ,.: 4" 4" belongs to J, the system of partial
isomorphisms defined in the proof of 1.1, But given 4’ wo can take A’
to be any %-generated, -pure subgroup of A4 containing 4’5 7, is in
J because A’ is also z-pure in B ([9], p. 89).

) Ref:ently Hill (New oriteria for Sreeness in abelian groups, preprint) has shown
that there is a non-free group 4 which is Loow, equivalent to a free group. This proof

does not determine whether A has cardinality , or Ng.
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2. Groups equivalent to 2Z-cyclic groups, We turn now to the more
general question of when an arbitrary abelian group 4 is T, -equivalent
to & X-cyclic; this matter is more complicated in that there are very
many different direct sums of cyelie groups to which 4 could be equivalent.

2.1. LmmmA. (1) If A is isomorphic to @ Z(p™»" @ Z® then the

»n
cardinals o, , and B are uniquely determined by A. In fact, p (tresp. aw})
= Aif and only if A contains a subgroup (resp. pure subgroup) isomorphic
to Z% (resp. Z(p™%). : : .

(2) Let A be amy group and O one of the i%deaompqsable cyc.lw grmgas
Z(p™ or Z. Let A== sup{y: A contains a pure sz.abgrmlop womorp(h)w to OW}.
If 8 is a pure subgroup of A, there is an ewtension S =8® 0V, for lsome
y < A, which is pure in A and which has no extension of the form 8'@® ¢
which is pure in A.

Proof. (1) follows from the fact that = the maximal number.of
independent torsion-free elements in 4 and a,, = the (n—1)st Ulm in-
variant of A = dimp" *A[p]/p"A[p] (wheve p*A[p]={aecd: pa=0,

= pth, some b e.4}). )
‘ ](92?71;1 8 does nc};i)l have the property desired of S'Z then th.ere ex_lsts
an extension Sy == § @ 0 which is pure in 4; we contm}le by mductxop:
8,1 = a pure subgroup of 4 of the f.orm 8,® O if there is one; OL]JGI:WISAB |
8,py=8,= 8" It ¢ is a limit ordinal, 8, = J§,, ‘which is pure in

<0

({107, p. 114 (£)). Thus 8, is isomorphic to § @ G 0 and is pure in A.

ny

By the definition of A we must have 8, , = 8, for some 'u.< it ,

2.2. TuroreM. Let % be an infinite cardinal. An abe?mn group A is
Lo~ equivalent to a direct sum of eyelic groups if and only if overy - gmle.r—
ated subgroup of A is contained in a x-pure subgroup of 4 whm.:h is Z-oye z.c.

Proof. Note that the condition is e.quivalel_nt to.: A is - X-cyclic
and every x-generated subgroup of A is eontmngq in a fﬂ-g_enelraitei,
x-pure subgroup of A. The necessity.of L:he condition — as in 1. "
follows from the fact that it is expressible in I, and true in a- X-cyc ic,
or from. the existence of a »-extendable systen‘l J from A ﬁo a Z‘—.cy‘clllcé
For sufticiency, leti {Un: n<w} enumerate t.he mdecqmppsa]ﬁ)e GYG?G;,( z)
In(d) == {y: A contains a purve subgroup isomorphic to O} and
=sUpLy(d). Let 8§ == {n < 0: In{d)<x} and let

A= @ 0P @@ 0.
ned - n¢8

Notice that 4’ satisties the conditions stated in the theorem anc;t that
for each n << w either Mp(d)= In(4d") =dn Or In(d)> = a-Jnd };Z(th— ) >A;f.
We shall use only these facts about 4 and A’ to prove that 4 =, 4"
There are two cases.
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Case 1. Cofinality of » > . Then 3 Ju(A) < % and

ned
def
’

B = 2 Ot

ned

is %-generated. It follows from Lemma 2.1 (1) and (2) and the hypotheses
of the theorem that 4. containg a subgroup B isomorphic to B’ which ig
%-pure in 4 and has the property that for every = ¢8& there is no pure
subgroup of A of the form B @ ¢,. Now fix an isomorphism g: BB’
and let 3 be the set of all partial isomorphisms, f: §~~8, extending ¢ and
such that § and 8’ ave x-generated, »-pure subgroups of 4 and 4’ respec-
tively. If X is a subset of A of cardinality < w, lot I' be a x-generated,
#-pure subgroup of 4 which contains § and X. By the definition of B,
T ig of the form 8§ ® @ 0% where 7, < ». One may prove that if §' is

n¢s )
any x-generated subgroup of 4’ and n ¢ & that there is an extension
8" @ Of™ which is pure in 4’. (We use the fact that An(d’) > % > 7,
and apply Lemma 2.3, following the proof.) Thus there is a pure sub-
group of 4’ of the form 8’ @ @ O, Let T be a x-generated »-pure
n#d
subgroup of 4’ econtaining a subgronp of the form 8 @ @ €% which
n#é
is pure in 4", Since I"/§’ contains a pure subgroup isomorphic to @ O
nh8
we see, using Lemma 2.1 (1), that 7" hag a direct summand of the form
8 @ @ 0. Hence I iy x-extendable.
néé

Case 2. Cofinality of » = w. In this case we have to modify the
argument if YAn(A) = % We let I = the set of all partial isomorphigms
H

ne
f: 88" where § and 8’ are x-generated, »-pure subgroups of A and A’
respectively such that for each n e 8§,

(¥)  if 8 containg a direct summand isomorphic to 0% then § (vesp. &)
hag no extension of the form § @ Oy (resp. §' @ O,) which is pure
in 4 (rvesp. 4°).

Let f: §—T be a member of J. If X is o subset of 4 of cardinality <,
let 8, be a x-generated, x-pure subgroup of A which containg § and X 5
say 8, i3 oT-generated where o < ». Lot § == {n e & 8, containg a direet
summand isomorphic to 0$»}. Using Lemma 2.1 (2) wo see that there
ig an extengion of §, of the form go = 8, ® @ 0¥ which is o*-generated,

. ned
pure in 4 and has no extension of the form §, @ Cn, n €&, which is

pure in A. By hypothesis there is an extension 8 of 8, which ix o*-gener-
ated, X-cyclic and »-pure in 4. Moreover we may assume S, hag prop-
erty (). (If necessary i.e. if for some % ¢ §— &, 0% is a divect summand
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of §;, repeat the construction above; after at most a countable number
of repetitions one must obtain a o*-generated extension with the desired.
properties). Since S is x-pure we can write §; =8 @ 8,, where 8, is
Z-cyclic and such that for any summand Oy of S,, €% is not a direct
summand of 8. In order to show that f can be extended to 8, we must
prove that there exists §;= 8’ @ §; which is »-pure in 4, satisfies (),
and 8 = 8,. Let
8'=@ 0, 8= @ ¢,
7 n

If 70 >0 then o,<As by (%). For any = such that 7, >0, let 6,

= max{on+1u, o) }. Then 8, < %, oy < 1y 50 there exists a x-generated

pure subgroup of A’ isomorphic to @ €. It 8;" is a »-pure, »-generated
Tn#0

subgroup of A’ containing 8’ and @ 0%, then by a cardinality argument,

Tn#0
using Lemma 2.1 (1) 8; has a direct summand of the form

8= 8 © @ 0.

Therefore J iy »-extendable and the proof of the theorem is complete.

2.3. LuMMA. Leb x > o and let B be a »-generated pure subgroup of A
and 0= @ 0, a pure subgroup of A. There ewists 8C » of cardinality »

<% .
such that Bn @ C,= {0} and B ® @ 0, is pure in A.
veS velS

Proof. Let us fix # > 0 and b eB and consider ¢ e ¢ such that n
divides b--¢ in A but #+bd and n +e. Then n + ¢(v) for some y, < x.
If ¢’ is another element of C such that n|b--¢’ then n]e— ¢’ 80 ntc'(w).
Hence there exists v, , € » such that if T = %—{»,}, then for ce 62 c,,

ve

nlb4+c<en|b and nle. So we may take 8= x—{»,;: n<w; beB}

Theorem 1.11 has a series of corollaries parallel to those of Theorem 1.1.

2.4. OOROLLARY (Barwise-Eklof [2]). 4 p-group A is L,-equivalent
o a direct swm of eydlic groups if and only if it has no (non-gero) elements
of infinite height.

Proof, In order to prove that a p-primary group without elements
of infinite height is Lg,-equivalent to a X-cyclic, it suffices, by the
theorem, to prove that every p-group of finite rank without elemen?s
of infinite height is finitely-generated, hence X-cyclic. To prove this
first note that for any p-group @, if for each & we choose {w;: ¢ EIk}t
such that {p"s,,} generate p"G[p], then by an induction on the order p
of g € G one can prove that g is in the group generated by the x4, <<t
therefore @ is generated by | {my,: i € Ix}. If & is of finite rank, then

k<w L
clearly for each & < o, p*G[p] is finite, and so we may take Iy to be finite.
3 — Fundamenta Mathematicae, T. LXXXI
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Moreover, since p*G[p]2 p*"'G[p] there is an m such that p™G[p]

= p™+'@[p] and since @ has no elements of infinite height, p™@[p] = 0.

Therefore & is finitely-generated, in fact generated by |J) {m,,: i« Iy}
Ie<<m

2.5. CororLARY (Prufer [18]). A countable p-group 48 a direct sum
of eydlic groups if end only if it has no (non-vero) elements of infinite height,

Proof. Apply Scott’s Theorem to 2.4,

Remark. One may check that the proof of 2.2 iy simpler for the
case x == o and uses only the fundamental theorem of (finitely-generated)
abelian groups. Thus the proof of 2.5 depends only on this result.

Let I' be the maximal torsion subgroup of []Z(p"). T is an uncount-

n
able group without elements of infinite height. In a manner similar to
the proof of 1.5 we can prove:

2.6. COROLLARY. T' s not Ly, -equivalent o a direct sum of cyclio
groups.

2.7. CoroLLARY. (Kurosh [16]). ' is not ad irect sum of eyclic groups.

2.8. CoROLLARY. The class of direct sums of eyclic p-groups is mot
definable in L, .

.As we mentioned above, Hill proved that there was a non-trivial
p-primary Fuchs 5-group. In fact he proved the following:

. 29 TeeorEM. (Hill [18]). There is a p-group @ of cardinality o,
which is a Fuchs B-group and which is o,-X-eyclic but is not Z-cyelic,

2.10.. OORQLLARY. There is a p-group G of cardinality w, which s
Lml.- equ‘walent, but not isomorphic to a direct sum of cyclic groups of
?ardLmalny w;. The class of direct sums of cyclic p-groups is not definable
in

We also have the following analogue of Corollary 1.10.

2.11. CorOLLARY. If A is L,-equivalent to a X-oyclic and A is
a pure subgroup of A’ such that A =_, A" then A oo A

P.ro of. I‘F, suff}ces to prove that any finitely-generated subgroup
of f‘i'm contained in a pure finitely-generated subgroup 8 of 4 which
satlsflles (%) .(see proof of 2.2) both with respect to 4 and with respect
to A’. But m.fzfct, for x = w, it § is any pure X-eyclic sabgroup of 4
(vesp. A') satisfies (%) with respect to 4 (vesp. A4’).

Remarks. (1) Corollary 2.11 is false for x» > e as may be seen by
the example 4 =2Z% @ Z(p)», B= 4 @ Z(p).

’(2) We do n‘ot know if for cardinals » > w, there are groups A of
cardinality » which satisfy the hypotheses of Theorem 2.2 but are not

Z-cyelic. (Of course, a necessary condition on x is that it have cofinality
>, cf. [5], Prop. 5). ‘ (

owy *
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(3) The first counterexamples to Scott’s Theorem for uncountable
cardinals were given by Morley (unpublished, but see [B], p. 45).

(4) It may be argued that 2.10 (resp. 1.9) is evidence that there is
no complete system of invariants for uncountable p - groups (resp. torsion-
free groups) analogous to the Ulm invariants since one would expect such
invariants for groups of cardinality w, to be definable in L, . -We hope
to make this more precise in a later paper.

oowy*

Added in proof. Since thiz paper was written the following developments have
oceurred. The author and P. Hill have proved, independently, that for each n< w
there is a non-free group of cardinality wn which is Zeog,-equivalent to a free group.
A. Mekler has proved that if » is strongly compact then the elass of free groups is
definable in Lg,. J. Gregory has proved that the axiom of constructibility (V = L)
implies that for every regular x» which is not weakly compact, there is a non-free group
of cardinality 2 which is Lgy,-equivalent to a free group. (For references and more
information see the author’s On the existence of »-free abelian groups to appear in Proe.
Amer. Math. Soc.).
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Forcing in a general setting (9

Regu par lo Rédaction lo 27. 2. 1973 ) by
‘ Kemnneth A. Bowen

Abstract. Abstract topological notions of forcing and generic set are presented.
These notions are independent of the general notions of language and structure. Most
partieular notions of foreing in the literature' are subsumed under this notion. The
abstract notion is used to construct notions of forcing for languages containing the
equi-cardinality quantifier, infinitary languages containing dependent quantifiers, and
second-order languages.

The method of forsing was first invented by Oohen [Coh 1], [Coh 2]
to solve questions regarding the logical independence of the axiom of
choice and the continuum hypothesis with regard to the axioms of Zer-
melo-Fraenkel set theory. Subsequently Feferman [Fe] transferred the
method to the settings of number theory and analysis and Robinson
[Ro 1], [Ro 2] extended if the setting of general first order model theory.

Takenti realized that the existence of generic sets in set-theoretic

P forcing could be derived from the Baire Category Theorem and developed

| this point of view in [Ta] and lectures at the University of Illinois during

| 1965-66. This point of view was further developed in [Bo 3] and its ex-
tension to first order model theory was announced in [Bo 1]. The extension
to second order logic was presented in [Bo 2].

In thig paper we develop extremely abstract topological notions of
forcing and generic objects which are entirely independent of the notions
of language and structure. This development is presented in § 2. That
it apparently subsums a great many of the forcing notions already extant
in the literature is sketched in § 3. The extension of the notion of forcing
to langnagoes involving the equicardinality quantifier @ and to infinitary
Ianguages involving dependent quantifiers in the sense of [Ma] is
presented in § 4. )

The formulation of abstract forcing as given in § 2 is more general
than necessary in that in §§ 3-5 we always take the sets X and X, to be
X = {0, 1} and X, = {0}. We hope to use this generality to extend the
forcing concept to continuous model theory in the sense of [C/K] in a future
publication.
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