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able but the negationless interpretation of A may be different from
that 4% Thus the Dialectica interpretation does not succeed in showing
that every negationless acceptable statement which is provable using
non-acceptable formulae has a derivation which only uses negationless
acceptable formulae.
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On nonmonotone inductive definability

by

Yiannis N. Meschovakis (*) (Los Angeles, Cal.)

Abstract. The paper studies the class of relations on a set 4 which are defined
inductively by nonmonotone operators in some collection & satisfying certain minimal
structural conditions. There are several conerete applications, including the construction
of some interesting admissible sets.

The purpose of this paper is to apply the methods of EIAS (%) to
the study of nonmonotone inductions.

In the first three sections we have attempted to codify the most
basic properties of nonmonotone induction. These are general versions
of tricks and methods which have been well known to the researchers
in this field for some time. Many of them were formulated in similar
abstract forms independently by P. Aczel, see Aczel [1973].

After the basics, we apply the theory of Spector classes of Chapter 9
of EIAS in Sections 4, 5 to obtain a characterization of the class of in-
ductive relations relative to a “typical, nonmonotone class of operators.”
This is Theorem 15, the main result of the paper.
~ In Section 6 we consider in some detail the important examples of
inductive definability in the higher order language over a structure —
ie. XP- and ITP-inductive definability, m=0 and k>2 or m,k> 1.
The significant but “atypical” case of II-induction is discussed briefly
in-Section 8. . .

Finally, in Section 7 we apply the theory of companmions of Spector
classes of Chapter 9 of BIAS to characterize various nonmonotone in-
ductions in terms of admissible sets with related, interesting properties.
The main result here is Theorem 21. There are also some applications

(*) During the preparation of this paper the author was partially supported by
NSFEF Grant = GP-27964.

(#) By EIAS we will refer to Elementary Induction on Abstract Structures, Amster-
dam 1973.
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to the theory of admissible sets; for example, we construct the newt

IT-reflecting set (k> 3) and the newt admissible set Mo which is MoT-stable.

The starting points for this work were the fundamental pa,persi
Grilliot [1971] and Aczel-Richter [1971]. The more recent Aczel-Richter
[1973] was not available to me until the manuseript of this paper was almost
finished, but I have attempted to introduce references to this rather
than the earlier Aczel-Richter [1971], whenever possible. In addition
to various references to these papers in the text, there is a brief discussion
of the relevant results of Aczel and Richter at the end of Section 7.

1. The basic notions. Let A be a fixed infinite set, the domain on
which we will study inductive definability. A second order relation on A is
a relation with arguments elements and relations on 4, say

@(Z, ?)Qq’(mla vy @y Yy oy Yi)

where #; (1 <4< %) ranges over A and ¥; (1<j< k) ranges over the
r;-ary relations on 4. The sequence

= (N, Ty, ey %)

is the signaiure of the second order relation . If » is of the form (n, n),
80 that ¢ has » individual arguments and one n-ary relation argument,
then ¢ defines naturally an operator on the n-ary relations on A,

2(8) = {z: o(z,8)}.

We call a relation ¢ of this type operative and we define the &th dferate
of (the operator associated with) ¢ in the usual way, by the transfinite
recursion

Ii—-—_- Uiv{z: oE UJID}.
. 7<é n<é
Putting
=y,

n<é
the basic equation above becomes
If, =I3}u (& oz, Iy,
The fized point of ¢ or the set built up by @ is
qu = LEJ Ii

and the closure ordinal of ¢ is the least stage at which we throw no new
elements in T, ‘

lloll = Teast & such that I = IS¢,
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An n-ary relation R is defined inductively by the operative relation ¢
with signature (k-+n, k+n), if there are constants @=a;,:.,ax in 4
such that for all Z,

R(@) (@, 7).

The main aim of the theory of inductive definability is to deduce
properties of the fixed point I, the closure ordinal |lg] and the relations
defined inductively by an operative relation ¢ from some assumed (simple)
form of definition of ¢. For example, we may take the case when ¢ is
elementarily definable on some structure

A= (A, Ry, ., BD

with domain 4, or when ¢ is 2} on ¥, i.e. definable by a prenex second
order formula on ¥ with only existential relation quantifiers. In EIAS
we studied the situation when @(%, S) is definable by an elementary
formula. of some structure 9 with only positive occurrences of §, so
that ¢ was monotone, i.e.

SCT &g, 8) =93, T).

Here we are concerned with some nonmonotone examples which we will
list at the end of this section. For the purpose of developing a theory
of fairly wide applicability, it is best to assume that we are given a col-
lection §§ of second order relations on 4 satisfying some minimal con-
ditions and then derive general properties of the relations defined in-
ductively by the operative relations in §.

Tt will be convenient to call a collection of second order relations
on A a class of operators. There is a slight abuse of langnage here, since
nonoperative relations do not correspond directly to operators, but allow-
ing relations of all signatures in classes of operators will make the
axiomatic approach we prefer much easier. (It is simpler to describe the
closure properties of the class of X} second order relations than those
of the subclass of X operative relations.)

If % is a class of operators on A, the §-fived points are the relations I,
with @ an operative relation in F. We call B C A™ §-inductive if there is
an §-fixed point I, and constants @ = a;, ..., o in 4 such that

R(@)(a,%) el,,

we call B §-coinductive if A"—R is §-induective and we call B §-bi-
inductive or §-hyperdefinable it B is both §-inductive and % - coinductive.
We denote these classes of relations on A by

%-IND, §-COIND or ~I§-IND, §-HYP
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respectively. The closure ordinal of ¥ is the supremum of the closure
ordinals of the operative relations in §,

151 = supremum{lgl: ¢ €T, @ operative} .

Let us now describe the main examples that we intend the present
theory to cover, the classes of X7~ and II7-inductive relations over
a structure 2.

The set of types is defined by the induction

0 is a type,
i Tyy s T are types, then the tuple (vy, ..., w) 95 @ fype.

For a fixed set A, the set T%(4) of objects (or relations) of type v over A is
defined by the corresponding inductions

T4) =4,
if T=(Tyy ey Tn)y then R e T(A)<>RC TA)X ... X T(4) .

For example, the objects of type (0, 0, 0) are the ternary relations on 4,
the objects of type (0, 0, (0, 0)) are the second order relations of signature
(2,2) over A4, ete.

The full higher order (or higher type) language for a structure 9
= (4, By, ..., B> has relation constants for = (identity on 4) and
Ry, .., B, and an infinite sequence of variables of type = for each type 7.
Terms of type 0 are the constants from A and the variables of type 0 and

terms of fype = # 0 are just the variables of type v. The prime formulas
are of the form

=1, Ri(tu reny tm) ’ T(Y?, ey X 9

where the #; are terms of type 0 and Y, ¥, ..., Y are terms of types
7= (7, 2 Tn)s Tay oy Tn YeSpectively. Formulas ave constructed from
these using 71, &, v, — and both sorts of quantifiers of every type.

We define truth (or satisfaction) for formulas of the higher order
language for % in the obvious, standard manner.

The order of a type v is defined by the induction
order(0) =0,
order(tyy ..., ) = supremum {order(z,), ..., order (z,)} +1

a.?d t(zihe order of an object of type 7 is the order of 7. (Clearly relations
g £ order 2 are exactly what we have heen calling second order relations.)
imilarly, the order of a variable of type = is the order of 7.
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A relation B of any type is m-th order definable over % if there is
a formula ¢ = @ (¥, e Y,) with the appropriate type free variables
and all bound variables of order <<m which defines R, i.e.

.R(Y‘l, vy Y)W E@p(Xq, .y ¥g) .

To define the finer classifications of X7 and IT relations we must
take cases on m =1 or m=0.

For m = 1 and k > 1, a relation R of any type is X} over U if there
is a formula ¢ which defines R and which is of the form

Q) (2)(AZ) ... (B2,)(VE)(VE) ... (VZ,,) ... (AZ) (QZ) - (QZR) v,

where the Z! are variables of order m and v has no bound variables of
order >m: i.e. p starts with % alternating blocks of mth order guantifiers
beginning with @ and continues with a formula having no quantifiers
of order =m.

A relation R is II" (m>1,k>1) if 1R is IF, ie. if B can be
defined by a formula ¢ of form dumal to (1).

A relation R is Hj over % if there is a formula ¢ which defines E and:
which is of the form (1) with the Z} of type 0 and ¢ quantifier free. These
relations are interesting from the model theoretic point of view, bub to
study inductive definability, we must also look at another, indirectly
defined class of relations.

Reeall from Section BA of EIAS the definition of a coding scheme
G = ¢NC, <%, ( Y® on A with decoding relations and functions SeqC,
11°, ¢°. A relation P-of any type is restricled on U relative fo C if it can be
defined by a formula in the language of the expanded structure

@, C) = (4, By, ..., By, <&, Seq®, 1%, ¢
in which all quantifiers are of type 0 and oceur in one of the following
two forms:
)z <ty &..], (Vo)o<ly—.I.
Notice that the expanded structure (U, C) has functions as well ag re-

lations, so complicated terms like Th(g(w, %) occur in prime f(frn?ula;s.
We say that R is 2§ on U relative to C or 2(C) on A if R satisties an

equivalence - *
2) R(Yy, ) Ya) ‘
o (H2D) ... (el ) (VE) .. (V47,) - (Q2Y) oo (QEE) Py Yoy ey Xn)

where the & ave variables of type 0 and P is restricted relative o C: ie.
R can be defined by applying a string of % alternating blocks of 0-th order
quantifiers beginning with @ to a restricted relation.
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As above, R is IT} on % relative to C or I[3(C) on A if TR is IYE)
over ¥, ie. if B can be defined by an expression dual to (2).

The main examples we intend to study are 27* and II7* inductionsg
with m, k>1 and ZY(C), IIY(C) inductions with % > 2 and € a hyper-
elementary coding scheme in the structure % (we will show that the
theory of these classes of operators does not depend on the particular
hyperelementary € we choose). However the general theory we will
develop has many other applications and we will discuss some of them
in section 7. Many of the results will also apply to II%(C) — this is a very
interesting class of operators and we will consider it briefly in section 8.

2. Elementary results. Let us consider some reagsonable conditions
on a class of operators § which will insure that the theory of §-induction
is not trivial. Throughout, § is a collection of operatorg (second order
relations) on an infinite set 4.

ConpDITION (A). & contains all second order relations on A which
are definable by (first order) universal formulas of the trivial structure (4.
By a universal formula of (4> we mean one of the form

(Vay) oo (Vam)p,
where y is quantifier free, i.e. built up from. prime formulas of the form
=1, Y(t17“‘)tn)

(the # constants from A4 or individual variables, ¥ an n-ary relation
variable) by the propositional connectives 7, &, v, —.

This first condition already puts nonmonotone operative relations
in § and excludes the case ZX(C). The other two conditions we need now
are minimal closure properties. . ‘

COXDITION (B). § 4s closed under & and v, i.e. if ¢(%, T) and (&, Y)
are in § with the same signature, then the relations

o(Z, 7) &y(z, ?) y @@, Y)VW(Q—% 1_7>
are also in §.

'?0 sta?e Cf)ndition (C) we need the notion of a trivial, combinatorial
fﬂ.nGtIOI.l mty individual or relation values, see BEIAS 9A. If f(&, ) is
& funetion with values in 4, we call it trivial, combinatorial if the relation

P(Z, T,z)@zzf(?z;‘, )

is deﬁnab}e by a quantifier free formula of the trivial structure <4),
a8 we defined these above. For example, the function

Jlz, V) =z2[Y(0) &2 = V[ Y (2) & 2= a]

icm®

On monmonotone inductive definability 45

is trivial combinatorial. Similarly, if f(%, ¥) is a function with m-ary
relations as values, we call it trivial, combinatorial if the relation

@(E, Y, 21y oy 2m) (21 oory 2m) € F(Z, T)
is definable by & quantifier free formula of {(4). For example, the function
flw, ¥, Z) = {(p, u, v): X (u,2)VZ(v,2)}
is trivial, combinatorial, since
(t,uw,v) eflw, X, Z)et =10, &[Y (u, 2)VZ(v, 2)].

ConprrioN (C). § is closed under trivial, combinatorial substitutions,
6. if W(Bry s By Way ooy Wi) ds in § and fi(E, Y), ..., falZ, Y),
0(Z, T)y ey gu(®, Y) are irivial, combinatorial with the appropriate soris
of values, then the relation @(%, Y) defined by

o (%, ?)°W(f1(§; ?): ey Iu(Z, ?), 9@, X), ooy gu(Z, —))

is also in . . o

Tt will be convenient to call a class of operators § which satisfies
conditions (A), (B), (C) reasonable, nowmonotone. It is clear that the
classes 27, [T (m>1,k>1) and ZAC) (k=2), IGE) (k= 1)- on
a structure 90 are Teasonable, nonmonotone. There are many other obvious
examples that ecome fo mind, e.g. the class of {z operators on a structure
a3 we defined them in Section 1 (k > 2), the similarly defined class of Vi
operators (k> 1) or even the class of all elementarily definable operators
on a structure. ‘

TaroREM 1. Let § be a reasonable, nonmonotone class- of operatorson A,
suppose (T, 8y, cory Sn)y Pol@as Siy ooy Sn)y ooy PulZny 8.y .y Su) are rela-
tions in §, where Ty is an ri-tuple of variables and Si ranges over - ary
relations and define the sets J%, ..., J¢ by the simultaneous recursion

_ . = 7<é <&

T e Jie @ eIV (L I dn)
— = < <&

%, eJﬁewn EJ:EV%,(-'EMJ1 yeesdn)s

where
JE = UL s I = U T3

n<& n<¢
Let also :
Jo= U, e da= téJJf.«
3
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Then Jy, ry In are all F-inductive. In fowt there is an operative relation o*
in § and sequmces of ‘constants Ty, ..., Cn Such that for all &,

Ty e Jies (G, By) € ILs
Fp € I (Cn,y Tn) € Is,.
(Definition by simultaneous induction.)
Proof. For simplicity take 7 = 2 and assume that
By=y, E==~,%,
ie. % ranges over elements of A and %, ranges over pairs from A. Put
tp*(t, %, v, )
st =0 &u=0,&eqiv, {0 8(eo, oy v}, {(w', 0): 8(er, u'y 0)}|V
v [t =0 &%(q{'” 2, {0 (o, 60, ¥')}, {(w', 0): By, o'y 'U’)})] ’

where ¢, ¢, are distinct members of A. Clearly ¢* is an operative relation
in ¥ and an easy transfinite induction on & shows that .

Yedie (o, 0,9) ¢ Ii' ’
(7, %) eJie (0,2, %) e 5. W
Definition by simultaneous induction is the basie tool for constructing

complicated inductive definitions. We put it to use at once to prove the

elementary transitivity and closure properties of the classes {-IND
and F-HYP.

Recall that a second order relation (%, ¥y, ..., ¥rn) is monotone if
@) Yy ooy Yn) & Y. C 2, & .. & Yo C Zn > @(T,y Zyy ovey D) -

THEOREM 2. Let§ be reasonable, nonmonotone on A, lot (%, Xy, euey Y, )
be a monotone relation in F, let Ry, ..., Ry be §-inductive relations and
define ¢ by

?(@, 8)<=p(Z, By, ooy B, 8);
then 1,48 §-inductive and ||p|| < |l (The Monotone Transitivity Theorem.)

Pro of. By hypothesis, there are operative relations Yoy ooy Y D F
and sequences of constants @, ..., @, in 4 such that

RJ(EI)Q(ala Z)e I.,l ’

....................

icm®

On nonmonotone inductive definability 47
Congsider the system of simultaneous induction

1Ty Byy Byy ey By Spi) =9 (%, %, 8) ,

Py By 15 ooy Sy Bipid) S P0(Ty Ty 8, , )
Pm1(Zy B1y ey By 15',,,4_1)@1,0(5, {z.: 1(“17 Z)}
vy (Bt BBy Td}y Snra) -

Clearly all the g¢s are in §, hence in the notation of Theorem 1, each
Ji is §-inductive. It is immediate from the definition thab

J’,‘:=Ii{, t=1,..,m,
so that

= {Zn: (@m, Tm) €Im} .
First we verify by induetion on £ that
) Fedb =>Tel;
because
& eJ;;H; Z el Vo(E, (& (@ %) €50 ey Tnia)
=% e IS8Vy(E, By, oy By I,F) (ind. hyp. & monotonicity)
=T e IS Vo(Z, I
=>Teli.
Also by induction on &,
(2) Fell=Fedpnn;
because
Zell=>T eI Vy(E, Byy ooy By I
=>Fedgh, V(@ B (@, ) eI, vy IS4

(choosing A large enough and using the induction hypothesis and
monotonicity)

>ZFedmy -
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Now (1) and (2) yield I, = J 4, 80 I, 18 %-inductive by Theorem 1.
Also if ¢* is the operative relation which combines the system g, ..
as in Theorem 1, then

*1 P

Fel, > ey, forsomeé< ¥ by (2);
>zel}, for some £<<|¢¥| by (1),
so that [lgl| < [l¢| < [Fl. =

As an immediate corollary of Theorem 2 we obtain the closure pro-
perties of the class F-IND.

THEOREM 3. Let § be reasonable, nonmonotone A, suppose p(%,Y,,...,¥y)
is a monotone relation in §, Ry, ..., R are §-inductive and

P@)"’P(z’ Ry, ...y Bn);

then P is §-inductive. In particular §-IND contains all the first order
relations in § and is closed under &, v,V and trivial combinatorial substi-
tutions. (Closure properties of F-IND.)

Proof is immediate by taking
(&, X1y ooy Yoy B)=9p(Z, Yy oory T,
(%, B)<y(Z, Ry, ..., Bm, 8)

and noticing that I,= P. The special cases mentioned are trivial, e.g.
taking

(@, ¥y, ¥,) = Y1(T) & Ty(T)
to show closure under &. m

The restriction to monotone v in Theorem 3 is necessary, since we
do not expect F-IND to be closed under ~}. We can remove this re-

striction when we relativize to §- hyperdeﬁnable relations, as in the next
two results.

THEOREM 4. Let § be reasonable, nonwmonotone on A and for each sequence
Q = Qu (L] Qm

of first order relations on A, let Rel(%; @) be the class of all second order
relations @(%, Y) such that for some p(Zy, .., I, %, ¥) tn § we have

@@, Y)Q‘lp(Q,E, )-

Then Rel(F; Q) is a reasonable, nonmonotone class and if Q,, ..., Qm are
all § - hyperdefinable, then :

§-IND = Rel(§; @)—IND
13l = Rel(F; QI -

{The Nonmonotone Transitivity Theorem.)
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Proof. That Rel(F; @) is reasonable, nonmonotone is trivial.
Since § C Rel(; @), clearly. §-IND C Rel(; @)—IND and ||
< |Rel(F; QNI+ '
By hypothesis, there are operative relations wp, .., s, in § and
constants @y ..., Jpy Such thatb

Q@) = (T, Ty) EI § ey Qm(Tm) <> (@ y Zm) ermg
T1Qu(F) & (Fppy1y Ty) € V"nH-l’ o 1Qn(Fn) > (Bogy T € Ipm

I ¢(®,8) is any operative relation in Rel(§; Q), choose some
9(Zyy ey Zmy By 8) in § such that

o(Z, S)¢W(Q1) ey @y Z,y 8)
and consider the following system of simultaneous inductions:

(T, By Spy ey 8y > w(%y; By )

Pon(Wsm s Tm 5 8,y ey Qomy S) 9o (Usmy Ty Som) 5
Poms1(Es S1y ooy Sam) 8) <« (VE)[8,(8y, T)VBmi1(@msas Tl

& (me) [Sm(am, "—z'"') V'Szm(a'zm’ Em)
&W({El: 84(@1, B}y ery {Fm: STy 51»)}1@‘8) .
These relations are all in ¥, and in the notation of Theorem 1 we have

immediately

Jl - JZm V:m 2
s0° that ‘

Q.= {&: (@, %) €1}y ooy Q= {Zm: (Gmy Em) €Im} s
Y —]Ql {xl (am+1’ xl) EJ—m+1}7 .y ij = {Eg’m: (dm, Em) EJZm} .

Tt follows that for each ¢ =1, ..., m and all sufficiently large £

3 (V&) [(@s, B) € TEV (@mrns ) € Tied]

and that if £ 48 good for §; in the sense that (3) holds, then
) | = {@u: (@, B0) 5%

Let -

1 = least & which is good for @1, ..., Qm;

4 — Fundamenta Mathematicae, T. LXXXII
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v;re have ‘easﬂy that )
J2m+1 @ for &<, o
@ L =TI, : ’
so that .
Jompr =1, +

and I, i§ §-inductive by Theorem 1.

T]us argument shows that every Rel(g; Q)-fixed point is § - inductive,
so that every Rel({¥; @)-inductive relation is F-inductive. The second
assertion of Theorem 1 together with (4) tells wus that the §-induetion
which combines the simultaneous inductions for Jy, ...,y has closure
ordinal > [lgll, so that [Rel(; Q) <IFll. m

This ‘yields again immediately the closure properties ‘of the class

F-HYP.
TEEoREM 5. Let § be reasonable, nommonotone on A, suppose
9(Z, X1y .y Tn) is a relation in §, By, ..., Bn are §-hyperdefinable and

PE)eyp(®, By ooy Bn);

then P is §-hyperdefinable. ‘ ‘
In particular §-HYP contains all the first order relations in § and
g closed under all the elementary operations 1, &, v, -, V, H. (Closure
properties of §-HYP.)
Proof. Let us first observe that if P ig a first order relation in §,
then P is §-hyperdefinable; that P is §-inductive is trivial and that
1P is §-inductive follows by considering the system.

olt, 8, 8y ) t=a,
@, By, 8y, 83)< P(7), '
oy 81y 8y &) <> 8,(a) & 71 8,(3) v
and verifying that J,=J) =P, Jy=Ji= "] P.
Now, given v(%, ¥, .., ¥n) and R,.., Ry as in the hypothems,

apply this observation to ‘{y Rel(F; By, ..., Rp) to infer that P is
§*-hyperdefinable and hence - hyperdefma,ble by Theorem 4. m -

* 3. Structure theory. We go now to those results about & -induetion
which deal with the stages I% of an inductive definition. Ax in ETAS 24,
if ;9 are operative relatlons, put’

Rl

<ty TeTeI, &[7¢I,VIEL, <I3),],
E<,,feecl, &[yﬂ vigl, < 17,1,
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where, of course
||, = least & such that % e I,

and similarly for |7],. A very slight weakening of the Stage Comparison
Theorem: of BIAS holds for nonmonotone inductions with an entirely
different and easier proof.

THEOREM 6. Let § be a reasonable, nonmonotone class of operaiors on A,
and suppose that @,y are operative relations in §; then both < ,,<<,, are
§-inductive. (The Stage Comparison Theorem.)

Proof. Consider the system of inductions
P, 1, 82, Ss) (7, 8Y),
@75 S15 oy So) (7, 8) .
Pa(®y F5 S1y 8oy )0 (F, 81) & 718:(7) -
These relations are obviously in ¥ and a trivial induction shows, in the
notation of Theorem 1,
‘ ‘ F=I, J=J
hence
(@, 9) e Ji= (@, ) ¢ J5*VIp(E, IT5) & T1(F € I59)]
< (Z, ) eI SVEe L&y ¢ I3,
which implies by a trivial induction that
“wzw =dJ;.

The proof for <;M is a slight variation. =

Using the Stage comparison theorem, we can obtain appropriste
versions of all the results in Chapter 2 of EIAS by shght variations of
the proofs there, so we shall be brief.

TrEOREM 7. Let § be reasonable, nonmonotone and let ¢ be an operative
relation in §. Then for euch &< the set IS¢ ds §- hyperdefinable, and

" the fized point I, is §- hyperdefmable if and only if gl < IF|. (The Closure

Theorem.)
Proof. If &= |fj|, for some operative in § and some 7, € I,, then

ZTe I;E @ T<p Yoo 1T Sy z),

50 that I<'S is §¥-hyperdefinable. In particular, if [¢f = £ <|Fll, then

I, =1I3 is §-hyperdefinable.

4%
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Assuming now that I, is %-hyperdefinable, consider the system
oy(%,y 81, 8o, 81),
@alty 81y Sa)= (VE){Z e Iqa = 8,(Z)},

where @, ¢, are obviously in the class of operators Rel (§; L,). Tt is easy
to verify that in the notation of Theorem 1,

Ji=1I,, foralé,
a0 E E<lel
Pl it gl ‘

so that if ¢* is the operative relation which combines the simultaneous
induetion by Theorem 1, then "l = el +1 > llgll . But ¢* is in Rel(F; L),
hence using Theorem 4,

I3l = IReL(; I = llp"] > lell . m

Recall that if < is a wellfounded relation, then rank(<}) is the
smallest ordinal on which we can map the field of < and carry < to the
usual ordering on ordinals.

THEOREM 8. Let § be reasonable, nonmonotone on A. Then
1§l = supremum {rank(<]): << is an F-hyperdefinable prewellordering
. on some A"},
= supremum {rank(<<): < is an §- coinductive wellfounded relation
on some. A"}
Moreover, none of these suprema are attained.
Proof iy exactly like that of Theorem (2B.5) in EIAS and we
omit it. =
Recall from Section 9A of ETAS that if I' is a collection of first order
relations (of all numbers of arguments) on A, PC A" and o: P2 is
a norm on P, we call ¢ a I'-norm if there are relations J,, J, in-I" such that

JeP=>(VE){(ZeP&o(T) < o(f)]eJ(E, §)edoF, §)} -

For'I’ closed under &, v and trivial combinatorial substitutions, this is
equivalent to assuming that both relations

<] §=3e P& T[FeP&a(h) < o(®)],
T<;jo3c P& T\[feP&o(F) < o(z)]
are in I', by the argument given in 3A of EIAS.

|

icm®

On nonmonotone inductive definability 53

TeEoREM 9. If § is reasonable, nonmonotone on A, then every §-in-
ductive relation admits an § - inductive norm. (The Prewellordering theorem.)

Proof is exactly that of Theorem (3A.3) in ETAS and we omit it. m

From the Prewellordering theorem we get immediately the Reduction
property for F-IND and the Separation property for the dual class
1%-IND, exactly as in (3A.4) and (3A.5) of EIAS. Some versions of
the remaining structure results in 3B, 3C of BIAS go through in this
situation too, but not all, since their proofs often use closure of F-IND
under M. i

4, Typical, nonmonotone classes of operators. Here we strengthen the
hypotheses on & so that we can show that §-IND is a Spector class in
the sense of BIAS 9A. A class of operators § on A is typical, nonmonotone
if it satisfies Conditions (A), (B), (C) of Section 2 and also the following
additional three conditions.

ConpITION (D). & contains all second order relations definable by
existential formulas of the trivial structure (A).

ConDITION (B). There is an ordering <C AX A, isomorphic o the
ordering on o and a one-lo-one function f: AX A~ A which are & - hyper-
definable.

CoxprroN (F). For each n > 1, there is an §-inductive (n-+1)-ary
relation U™ which parameirizes the n-ary §-inductive relations, i.e. for
RC A", .
R ¢F-IND < for some acA, R= U= {& (a,7) e U"}.

T4 is not hard to verify that Condition (F) is implied by the following

Conprrion (F'). For each signature v= (T Tyg oory 7i) There @8 a re-

lation p(a, T, Y) in §F of signature (n+1, %), ..., r5) which parametrizes

the v-ary relations in F, i.e. a v-ary @ is i F if and only if there is some & € A
such that
(&, Y)eyl(a, T, Y).

This is perhaps & more natural condition than (¥) and in most cases
we will verify direetly that (F') holds. There are interesting exa‘ump.les
where we prove (I') by showing that (F) holds for some class §" satisfying
F-IND == §-IND., o

" These conditions leave out the case of JI3(C)-inductive definability, but
they include all the other examples of Section 1 on “n{ice” structures.
There are grounds for thinking of JIH(C) as an “aptypical” case. )

In the remainder of this paper we will use heavily the_a ma,ter.la.l on
Spector classes de\%eloped in Chapter 9 of ELAS. Recall, in particular,
the Parametrization theorem for the self-dual part 4= I'n I of
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a Spector class I, 90.8 of EIAS: for each n > 1, there is a set I" in I'—4
and (n41)-ary relations H, H™ in I' and ~]I" respectively, such that

(i) it R C A", then B is in 4 if and only if there is some a e I" such
that B = H" = {z: (a,%) e H"},

(il) if @ eI" then H?"= Hj. v

A second order relation ¢ of signature (n, 7y, ..., ) i8 [ on 4 if the
first order relation

‘7’#("27 Y1y oeny yk)‘??/l eI"&... &yy € Irk_&”P(E7 H,Ifllu ery H;’;)

is in I'— this is independent of the particular choice of 4 parametrization

(I, B, 87, ., by (90.9) of EIAS. We call p 4 on 4 if both ¢ and g

are I' on 4. Several closure properties of these classes of relations are

listed in (90.10) of EIAS and we will refer to them often in the sequel.
Recall also that if A is a class of relations,

o(A) = supremum {rank(<7): < is a prewellordering in A} .

LemmA. If § 4s o typical, nonmonotone class of operators on 4, 9
=0Qy, .., Qu are F-hyperdefinable and P is inductive on the structure
(A, Q1 s Qm), then P is §-inductive.

Proof. By Exercise 1.15 of ETAS we have
 P@e(a,%) el,
with a sequence of constants @ and ¢ definable by a disjunction of simple

®

existential and universal formulas of <{4,Q,,..,Qu», so that P is’

Rel(§; @)-inductive by Conditions (A), (D) and hence §-inductive by
Theorem 4. ®

TarorEM 10. If § is a typical, nonmonotone class of operators on A,
then the collection of relations I' = F-IND is a Spector class, o(4d) =T
and every second order relation in § is A on A.

Proof. Condition (E), Exercise 1.7 of EIAS and the lemma imply
immediately that there is a coding scheme in I'= F-IND and Theorem 3
yields all the necessary closure properties for I' to be a Spector class.
Theorem 9 then implies the Prewellordering property for I' and the
Parametrization property is immediate by Condition (F).

That o(d) =§|| is an immediate consequence of Theorem 8.

Finally, to prove that every relation in § is 4 on 4 we imitate the
a:rgun_mnt in the proof of Theorem 5. Choosing ¢ (%, ¥) of ‘signature (n, 1)
for siraplicity in notation, find operative relations v, w., v, such that

ael<w(5,a)el,,
(a,1) e ' (S50, ) e I, ,
(a,1) § H'e> (85, a1, 1) € I,
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and consider the system

(s 0y 1y oony Se) (g, 0, 8y)
@oTyy @y ty Syy oory So) > a(Tha,y 6,8, 8y)
@alTisy @y by B1y woey Se)>pslis, a, %, 8),
P& @y S1y -ovs 8g)<> 84(C1, ) & (V1) [8,(T, a, 1)V 85(Gs, @, )]
&op(Z, :{t: 8525 4, 1)})
@5(@y 2y 1y -eny Sg) > 81(C1, 0) &2 = d & (VH)[8u(G, @, 1)V 84(G, &, 1)]
@e(Ey @y Siy +ory Be) e Ssa, @) & T18,(Z, a) .

Clearly @i, ..., @s are all in §§ and it is easy to verify (in the notation of
Theorem 1) that :

(%, a) EJ4©¢EP&(]J(E,H},),.
(Fya)edgwael'& TeE,HY). =

This result yields many useful closure properties of §-IND for
a typical %, in particular those that follow from the closure properties
of the class of relations 4 on 4 and the caleulus of inductive second order

. relations, see Theorem (9C.10) of EIAS..

We now verify that the main examples discussed in Section 1 (except
for II°-induction) lead to typical, nonmonotone classes. )
THROREM 11. Let U = (A, Ry, ..., B> be an almost acceptable structure,
i.e. o structure which admits a hyperelementary coding scheme.
(i) For m, k== 1, the classes of X and 11‘,’:" operators on U are typical,
nonmonotone.
(i) If C is a hyperelementary coding scheme on A and k= 2, then
the classes of Z3(C) and I13(C) operators on A are typical, nommonotone.
(iii) If G, C' are hyperelementary coding schemes on A and k& = 2, then

1) ITY(C)-IND = IIY(€")-IND ,
@) iIR(e)) = I1IXe)

and similarly for ZYC), ZHC).

Proof. To prove (i) and (ii) we must verity Conditions (A)-(F) for
each of the classes of operators in question. Of these (A)-(E) follow
trivially from the results we already have. To prove (F) for § = X (for
example), let A = (A, <, f), Wwhere < and f are guaranteed by con-
dition (B) and recall that %' admits a hyperelementary coding scheme,
by Exercise 1.7 of EIAS. If Seq, lh, ¢ are decoding relations and functions
of such a coding scheme and if we further expand U’ to A" = (W', Seq, th, q),
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it is not hard to verify by well known methods that the class F' of Xn
operations on U satisfies Condition (F’) and hence Condition (F). But
%-IND = §-IND by the Lemma and Theorem 4, so that § also
satisfies (F). ’

Proof of (ii). The definition we gave in Section 1 for the relations
on a structure B which are restricted relative to a coding scheme C makes
perfectly good sense if B has functions as well as relations,

B= <B,P17 --'7P7ugl7"-7gm> .

The prime formulas are more complicated in this case, as we can uge
iy -y §m 0 construct complicated terms. We define II}(C) and Zi(C)
for such structures as before. If @, is the graph of a function &,

-

(@, )= h(@ =Y,
then the frivial equivalences X
p(h(®) = (Ty) [Gu(@, y) &o ()] (VYIE(E, 9) > (W)], -
(Vi <) (@y)o (i, y) == (Fy) (Vi <)o (i, (v)y)

imply easily that every ﬂv‘,’c(G) relation on B is I[HC) on the associated
structure

B’ = (B, Pyy vy Py Gy v G5

Suppose now that we are given two hyperelementary coding schemes
Cand ¢ on U= <4, Ry, .., R) with associated relations and functions
N, <, Seq, Ih, g and N', <, Seq’, 10/, ¢'. It is easy to verify that the
unique isomorphism g of (¥, <> with (N’, <’) is hyperelementary on %I,
The trivial equivalences :

(Vi < §)pli) < (@m)]g (m) = j & (Y < m)p(g (n)]
< (Vm)[g(m) = j = (Vn < m)gp(g(n))]

and their duals allow us to replace restricted quantification on <’ by
restricted quantification on <, so that easily, IT%(C’) relations on 9 are

© ILC) on A =<4, Ry, ..., B, <, Seq’, I/, ¢, g> and hence they all are
IE) on W' = (4, R,,..., By, <, Seq’, Gy, Gy, @». This means thab
IR(C")-inductive relations on U are II%C)-inductive on A’ and hence
ﬂ;egy[ are II}(C)-inductive on 9, since A’ is & hyperelementary expansion
of A ‘

The same argument works for X and then (2) follows by (ii) and
Theorem 10. m
In view of this result we will refer to X2- and IZ-induction on an

almost acceptable structure 9, meaning Z3(C)- and IIY(C)-induction for
any hyperelementary C.
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5, Structural characterizations. We aim here to characterize the class

g-mD for a typical nonmonotone % as the smallest Spector class I" such,

that every relation in{ is 4 on 4 and which further satisfies a natural
weflection” or “compactness” property relative to .

We call a Spector class I' compact relative fo § or §-compact if for
every relation B in I' and every @(Y) in § and every R"CR, R’ in 4,

@(R) = there evists R* e 4, R°C R* C R, such that ¢(E¥).

1t is convenient to prove §-compactness ‘equivalent to two other useful
properties. . ‘

TemorEM 12. Let T be a Spector class on A and let § be a reasonable,
nonmonotone class of operations on A. Then the following propositions are

equivalent: .
(@) I is &-compact.
(i) For every Ry, -, Ry, in I' and every @(Ty, ..., ¥a) in § and every
0. .y By i 4, RICRy, ..., By C &y,
@(Ryy -ory Bn) = there exist RYy ., BE in 4, BRC R C Ry, ..
vy RRC RECR,, such that ¢(Br, ..., RY.
(iil) For every relation R in I' and every I-norm o on B and every
p(¥) in ‘ |
p(R) = there evists &< o(4) such that p{Z e B: (@< £).

Proof is round-robin style. . .
Proof of (i)= (ii). Stippose for simplicity of notation that B, C A4
and R,C A% Choose distinct constants a, b in A and put

w(T)oly: (@ a,9) e Th {(@,0): 0,2,9) < T),
R={(a,a,y): y e B} v {(0,2,9): (#,9) € Bl
R = {(a,0,9): ¥ e R} v {(b, 2, 9): (%, 9) eRg} .

. ‘ R
Now p(Y) is in § and y(R) holds, 50 by (1) the?rehls son.xe‘R* € 4, R°CR'CR
such that y(R*) holds; the conclusion of (i) is satisfied with

) #
B ={y: (a,0,9) B}, Ei={@y) (b, @, 9) e B}
Proof of (ii)= (iii). Assume the hypotheses of (iii) and put

P(¥, 7, Wyeg(Y) & (Va) (VY € Y = [(7, )  ZV(7, %) € W]|
& (VE (V[T T&E ) eZ]:Je Y].
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Clearly v(¥,Z, W) is in § and p(R, <J,<}) holds, so by (ii) there are
relations R* CR, Q’;_C_ <z Q;§<: in 4 such that (R*, QF, Q3) holds,
Sinee -

GeR'=(5,7) cQiV(7,7) e

and for 7« R* we cannot have (%, %) <@ & (¥, %) €@, as this would

imply <} 7& 7 <} & we must have

ge R = (V8)[Z <} 7017, §)].
Thus
JeR* &z <} j=>TecR*.

This together with the Covering theorem 9C.6 of EIAS implies immediately
that there is some £ << o(4) such that

R*={ZeR: o(&) < £},
which proves (iii). o

Proof of (iii)= (i). Assuming the hypothesis of (i), that R is in
I, BC R and R°is in 4 and ¢(R) holds, choose a I“norm ¢ on R and
using the Covering Theorem 9C.6 of EIAS choose some % < o(4) such that

‘ R'C{ZecR: o(Z)< n}.

Z<, 8o, 5 R &[0(F) < nVo(®) < o(F)]
and verify easily that there is a I-norm v on R such that
. - T B e (E) < T(®).
The point.is that for this =,

ZeR' =7(%)=0.

Assuming without loss of generality that R - @, choose %, ¢ R and notice

that ¢(E) & %, ¢ B is true; hence by property (i) there is some & << 0(4)
such that

¢({Z e R: ©(Z) < 5}) & 7(Zp) < &
is frue and the conclusion of (i) follows immediately by taking
*={ZcR: 1(B)<&. m

) It is: convenient to break the proof of the characterization we seek
in two parts which have some independent interegt.
TEEOREM 13. Let ¥ be a ¢

ypical, nonmonotone class of operators on
o set A, Then §-IND 8. - compact. .
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Proof. Assume that
. R(s‘c)e(a,g)ezw

js an {-inductive relation, that RCR, B <§-HYP and that ¢(¥) is
some relation in § such that ¢(E) holds. Consider the following system
of simultaneous induction in Rel(F; R%):

(%, T, Sy, 8p)ep(@, x, 8y),
ult, 81, Syt = b & (VA)[B'@) = 8,(2, 2)] & ¢{{Z: 84, B)}) -

In the notation of Theorem 1 we obviously have J,=1I,, s0 t‘ha,t
{&: J(a, )} = R and by the definition, b ¢J,. Thus fhel:e is Em_orduial
A< |Rel(§; ROl = [IBll = o(4) such that b eJi. Put R* = {%: (@, T) iJ1 t
and notice that R* is §-HYP by Theorems 1, 4 and 7. Clearly R CR
and ¢(R*) holds, which proves (ii). = .

TaeorEM 14. Let I' be a Spector class on A and ¢(Z, S) an operalive
relation which is A on A, let = o(4). Then the set I7* is in Iy each Iz
for £< n s in 4 and the norm

o(@) =3, (E<I) ;
is @ -morm. If I' is also § - compact for some reasonable § which contains @,
then |gl| < %, so that I, = IZ* is in T. .

Proof. Given I' and ¢ satisfying the hypotheses, define the seeondv
order relation (Y, Z), with ¥ varying over binary relations on 4 and Z
varying over (n-+1)-ary relations, by

w(Y, Z)< Y is a prewellordering
& (V1) |t e Field(Y)= (V&) [ (t, 9= [Es <y 2 (5, DV
vz, 7 (Es<g ) Z(s, VIR
where naturally

‘ s<pte Y(s, )& 1X(E,5). |
Glearly p is I' on 4, using the hypothesis and (6A.1), (90.10) of HIAS, io
fixing a parametrization {I", H*, HY,,, of 4 a8 described in Section 4,
the relation ‘ .

W (a, by aec P &b e I &y(He, Hy™)
is in I . ] )

It H2 is a prewellordering and terld(H‘i), let us temprox('laaéllly. tg;an
note by {tTa the ordinal (the rank) of ¢ in H2. Tt is clear from the defini
that for prewellorderings H, .

. — =\ — T¢
e Fidld (B2 & £ = [l, &9 (HS,y Z) = Zy= (& Z( B} =To-
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An easy transfinite induction on [¢|,, using the version for Spector classes
of the Collection Theorem (6D.3) of ELAS shows that for each % ¢ Field(Hz)
there is some Z ¢ 4 such that

(Vi<, u)(VE)[ 2, B) [(Ls <, 1) Z(s, F) Vo(3, {7 (Es < )Z(s, )],
where of course s< %< (s,7) < H,. Then another application of Collec-
tion gives

(Va){[a e I* & HE: a prewellordering] = (Eb)y™(a, b)} .
Thus if »= o(4), .
& e I*es (Wa) (D) [y*(a, b) & (A1)[¢ « Field (H?) & HyH(t, 7)]]

and the set I5* is in I :
A gimilar argument shows that the function

is @ I-norm on IS* since e.g.

< §<= (Ta) (E0) {y*(a, b) & (Ft)[t « Field(H?) & HJH(¢, 7)
' & (V8)[s <q = 1 Hpt(s, PI]} .
This of course implies immedi‘ately that for each &< o(d4), the set Iﬁ
ig in 4. '

Now assume the extra hypotheses for the second part of the Theorem,
We have v . .

#(2, I7*) = for some &< %, ¢(%, I*) by §-Compactness

=for some §< %, Zelf,

80 that [l¢f] < » and the proof is complete. m
These two results give immediately

TamorEM 15. If ¥ 45 a typical, nonmonotone class of operators on A,

then .‘{y-IND is the smallest & -compact Specior class on A such that every
relation in § is A on 4. m

6. Tl¥e mam examples. We aim here to characterize I73-, X3-, IT™-
and J7-induction on an almost acceptable structure in terms of two
very natural model theoretic notions of compaciness and reflection.

A Spector class I' is V- compact (k > 1) if for every V; formula ¢(Y)
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of the trivial structure (4} (i.e. with no relation constants other than =)
and every Rel, R°ed, R°CR,

p(R) = there evists R* ¢ 4, R°C R*C R, such that ¢(R*).

This is simply to say that I' is compact relative to the class of all operators
which are definable by Vi formulas on (4). We define H,-, Z*- and
I -compactness in the same way.

If B is a set in some Spector class I and R C B" is a relation on B,
we say that E i¢s 4 on Bif both R and B*—R are in I'. (Notice that this
does not imply that B is in 4, unless B is in 4.) A Spector class I" satisfies
the X7 reflection principle or is Z7-reflecting (m, % > 1), if for every B
in I" and relations R, ..., R; which are 4 on B, for every B°C B, B°< A
and for every X7 sentence 8 of the structure 8 = (B, Ry, ..., R,

(B, Ry, ... B F O=there ewists B e A, B°C B*C B such that
(B*, R, | B, .., Ri| B 0.

The notions of IIy-, Hy- and Vi-reflection are defined similarly.
We first establish the connection between these two notions.

TaEOREM 16 (i). If I' is a Spector class on A, and m, k > 1, then
I is 2T -compact<>I" is X3 -reflecting
I' is ITf - compact<I' 4s II7 -reflecting .

(ii) For each Specior dlass I' and each % =1, the following conditions
are equivalend.

(@) I' is Vx-compact.

(b) I' is 'V yy-reflecting. )

(¢) For each Ry, ..., Ri in A and each coding scheme C in A, I' is com-
pact relative to the class of operators

% = all IT3(C) operators on A= (4, Ry, b...,RD .

Proof. We prove only (ii), since the proof of (i) is similar agd a bit
gimpler. In fact, t0 simplify notation let us just show the equivalence
of (a), (b) and (¢) with k= 2, since this argument is perfectly general.

Proofs of (a)= (b). Given B = (B, By, ..., Bi> with B in I" and &;, ...
w.yRi, P,= B"—R,, ..., P;=B"—R; in I' and given a V. sentence

0 = (V) (L7 (V2)yp(T, ¥, 2, By, ..., Ry)
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(with  quantifier free) such that %k 6 and given also some B° in 4,
B°C B, put
9( X, Y,y Zay ooy Zoy Wayioey W)
= (VB X") (V7 e XM, §) ¢ Yo (02 e X°)T19(F, §, 2, Zy, oy Z)]
& (VZ e X™)(Hy e X™)[(Z, 7) ¢ Y]
& (V& € X™)[Zy(%) < 71 Wy(T)]
& (VE e X[ Z(Z1) < 7] Wi@)] .

N,OW @ is ¥V, on the trivial structure <4y and I' is V,-compaet and
(B, C, Ry, ..., By, Py, ..., P;) holds, where

Z,J)e0>ZeB"&JeB" & (Uze B ) 19(T, 7,2, Ry,y .., By) s
? 0 .

also B, Ry, ..., By, Py, ..., Py are in I' and. so iy ¢ — this is the significant
observation. Now choose (%, B}, ..., B}, PY, ..., P} in 4 so that ¢(B*, 0%, ...)
holds and B°C B*C B and verify easily that

R =R, | BY .., B =R, | B*,
Te (B, je(BY"=>[(@,7) c O* < (Hz e (B*Y) (%, 7, %, By, .., B
and finally ‘ '
(BYEIB,.,Ef | B0,

Proof of (b)= (c). We need two lemmas.

Lemua 1. Let 8= (B, R, vy By gy,
with functions, let p(%) be a
There is an H, formula ¢'(
“no functions

wy gmy be a structure, perhaps
quantifier free formula in the language of B.
) in the language of the associated Structure with

B'= (B, Ry, .., R, G, ey @y >
such that for every substructure of B,

({ Fo(@) e C Fe'@) .
Proof is frivial, using the substitutions

ot @)« (Ty)[6a(t, y) & o (y)]<> (Vi) [6aF, y) = )] -
In applying this observation we sho \

of B are (by definition) cloged
the substructures of B’

uld keep in mind that the substructures
: under gy, ..., g, S0 they correspond to
which satisfy the V, sentence

(V&) (Ey) G, (7, 1) & ... & (V&) (TY) G, (Zpn, ) -
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LemMa 2. Let I' be a Vy-reflecting Spector cluss and assume that B e r,
Ryy ooy Brare 4 on B, gy, ..., gm are functions in 4, Cis a coding scheme -
on B with associated relations and functions <, Seq, Ih, ¢ in 4 and 0 is
a ITY(C) sentence such that
B="(B, Ry ey By yyueyfmy<,S0q,h, 0>k 6,

Then for every B°C B, B in A there is some B* in 4, B°C B*C B, such
that B* is closed under ¢, ..., gm,h, q and the coding < >C, and

B* = (BB, B*, .., By ] B,y | B, .
vy O | B* <, Seq, b | BY, g B*> k0.
Proof. Assume for simplicity that )

with v quantifier free, the argument for this case being perfectly general.
Define on B

Py7, 7,1, 2« (Vj <i)Py%,7, 4, 2)

and notice that P, P,, P; are 4 on B. Let

& (Vao) (V) (BLy) Gy, 4, 9)

& (B = (B & (Vu) (Vo) [Seq (1) = (Ev)[Seq (v) & v = " )],

" where 3’ is the 0L, formula associated with p by Lemma 1. Since 6’ is V,,

there is some B* ¢4 such that B°uNCB*CB (v = ﬁ’ield(<)) a;d
such that the restriction of B’ to B* satisties 6. Since B*1s closed pnt l(ir
the functions gy, ..., gm, W, ¢, it induces a su}astructulre B* of B ai in kz
statement of the lemma and then the definition of 8" and Lemma 1 ma.
it obvious that B*k 6.
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To prove now (b) ={¢), assume that I'is Vy-reflecting and &, ..., B,
€4, C is a coding scheme with associated relations and functions <
Seq, Why, ¢ in 4, (¥) is II}C) on A= (4, R, .., B} and ¢(R) holds’
for some R in I'. We must show that for each R°C R, R® in 4, there ié
some R* ¢ 4, B C B* C R, such that p(R*). Say

p(X)< (Vu)(Ho)y (%, 7, ¥),

with y quantifier free. We aim to apply Lemma 2 with a suitable B
Take .

" By= {£0,%: ted},
B, = {1, #: R(®)},
B=B,uB.

This B will be the domain of the structure 8. Notice that B eI The
projection map

(1) = (s

gives a one-to-one correspondence of B, with 4 and we can use it to

represent A as a reduct of a substructure of B. For each relation P and
function g put

PX@yy oony o)< Plov(@y) ..., 7(ms)
G @1y voey B5).= W—l<9(ﬂ(~’01): cevs ()

and, to begin with, put in B th i i g
seq”" o , P e relations and func‘umns BZ, .., B}, <7,

Choose 2 Inorm o on E and define @, on (B,)"x B, by
Qa(<0, 1., w3 K0, 8>, (1, zy) < (1, vy n) eR & (g ey ) < o(Z) .

Easily @, is 4 on B.

Seqt B;Vuﬁ];ly &liz i’ be ai; codglgf scheme on B with associated relations <%
on & and functions 4/, ¢’ which are in 4 — i i y
hard to construct such a G’ using € and ’n — and take 11 ot

B = (B, B, By, R}, -, BE, <7 Séq", =, ¢, Q. Sed”, W, q>.
We can define R” by an o, formula of B,
B Wy s g Bla(yy), ..., w(yn))

= (EZ)[R(3) & o(m(yy), ..., 7 (Yn)) < o (7))
<> (U2)Qu(Yyy vvy Yn, 1) .
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TUsing this definition we can express in B the fact that p(R) holds by
the sentence ’

= (Vi e (-Bo)a)’("z[5 € (Bo)t)"l’“("—’/, 7, {7: (Lo)Q,(7, w)}) ’

where ™ comes from y by replacing 2ach relation constant P by P* and
each function symbol g by ¢*. We can find a II)(C') sentence 6’ equivalent
to 6 by advancing the quantifier () past the restricted quantifiers in ¢*
via the trivial equivalence

(Vi << ) (B (3, 2) = () (Vi <" )z, (2)7);

in fact 0 is equivalent to 0’ on every substructure of B closed under ¢ >,
Now apply Lemma 2 to 8B and 6’ to get some B* e 4 such that the
induced subtructure B* & 0 and such that

Byu {(1,%: TR} CB*,
and take
R* = {7: (U&)[<1,Z>eB*&o(f) <o(@)]}.

Clearly R* ¢ 4, R°C R* C R and the fact that B* satisfies 6 simply means
that (V#)(H7)9 (%, 5, R*) holds, which is what we needed to show.

The implication (¢)=(a) is trivial. m

Some of the annoying technical details of this proof would not be
necessary if we had. allowed structures with relations and functions in
the definition of Vy-reflection. Perhaps it is worth doing this extra work
to get as elegant a characterization of II-IND as possible, espeeially
since the definition of this class is a bit complicated. .

TrrorEM 17. (i) For each k> 1, a Spector class I' is My, - compact
if and only if I' is Vi-compact.

(ii) Bvery Spector class is' Hy-compact. (Bssentially Grilliot [1971])

Proof, (i) is completely trivial; if ¢(¥) is &y, on {4y, ie.
oY)« (EPyF, Y)
with (7, ¥) a Vy relation and if @(R) holds for some B eI’ and R°CE,
R in 4, then. '
¢(R)= for some §, (7, B)
= for some 7 and some R*e4, R'CR*CR and (7, R")
(by V- compactness)
= for some R* ¢4, R°C B*C R and ¢(R").

5 — Fundamenta Mathematicae, T. LXXXII
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Proof of (i). By Theorem 16, it is enough to prove that every
Spector class is V,-reflecting, so assume that B « Iy By, ..., By are 4 op
B°CB, B'e4 and ' ’

0= (Va)(dy)y(z, )
is a V, sentence such that
' B=(B,Ry,..,R>E0,

(We are assuming for simplicity of notation that 6 has one V and one [
quantifier, the more general case being only a bit messier.)
. We may assume that B is not in 711, since otherwise we can take
B"=B. Let.o: B-0(4) be a I-norm on B, put
) B = {zeB: o(a)< £
and for each &< o(d) define
F(&) = least n< & such that (Va € B<¥)(Hy e By (m, ) .
To see that f(£) < o(d), put
Quyv)<>uecB&veB & o(u) < o(v)
& (Vo< u)(@y <} o)y (s, y)
& (Vo) o) < o(v') < o(v) > (Lo < u)(Vy <¢ ) y(e, )],
‘a‘.nd verify easily that Q is in I' and

| QM v) = flo(u)) = o(v).
Thus to show &< o(4) = f(&) < o(4),

it is enough to verify that fo 1
% € B, (Hv)Q(u, v), which ig immediate ’ ields

since the contrary hypothesis yields
v e B @) o(@)< 0(u) & (Vo)[ly € B & p(a, ) = (y < v)]]
which implies that B ig in - ‘ |
The Covering theorem for ' i pli
: pector classes, 90.2 of BIAS j
that there 'is some 7 such that B°C p<n, Put, o AR, dmpties
.50‘: ) §n+1 =f(§n) y  E= limity, &, .
Again < 0(4), sinee otherwise l

v e B (@n>2)(Vu){(Vi < n—1)Q((u)

: - i+19 (“)i—}-z) =7 ((%),,, <: /U)}
which implies B iy in 11\ Now take
B* = B<¢ — U B<és

: k3
and verify immediately that ¢B*, R, | B*, ..., B, [B*>E0 m
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Grilliot proves in his [1971] that a specific Spector class satisfies
(essentially) property (c) of Theorem 16 with %= 1. Hig argument is
perfectly general but more complicated than the one above, since he is
verifying directly” the more complex property of compactness rather
than reflection. o

A Spector class I' on 4. is Z7- admissible (m, & = 1) if every Z7 second
order relation on the trivial structure 4 is 4 on 4. Clearly; the corre-
sponding notion of II7-admissibility is equivalent to X7-admigsibi-
lity.

TaeorREM 18. Let W = <A, R, ..., B> be an almost acceptable structure
and take all inductions below om 9.

(i) 23-IND = the smallest Specior class I'on A such that R, ..., Ry « A
= the class of all inductive relations on 9.
(ii) For each k = 2,
II-IND = 2}, -IND
= the smallest Vy-compact Specior class I' on A4 such
that By, ..., Bied
= the smallest 'V, ,-reflecting Specior class I" on A such
that By, .., Rie d.

(iii) For each m,k = 1,

ZR-IND = the smallest Z7- admissible, ZT-compact Spector class

I' on A such that Ry, ..,Ried
= the smallest Z7- admissible, Z7-reflecting Spector class

I on A such that Ry, ..., Ri €4,
IT-IND = the smallest II7- admaissible, I17-compact Spector class

I' on A such that Ry, ...,Ried
== the smallest II7- admissible, 113~ reflecting Spector class’

I on A such that Ry, .., R;ed.

Proof, To prove (i), notice that on the one hand X7-IND is a Spector
class on 9 by Theorems 11 and 10 and on the other hand every Spector
class I" on 4 such that By, .., Bye 4 is compact relative to the class of
Z3€) operators on N (C w hyperelementary coding scheme on A) by
Theorems 17 and 16 and bence containg Z2-IND = Z}(C)-IND by Theo-

" rem 15. The proof of (ii) is equally simple.

Proot of (ili). XP-IND is ZP-admissible and X7-compact by

Theorem 15, Tor the converse assume that I' is Z7-admissible aind

m-compact and Iy, ..., B e, let ¢(F, T) be a second order relation
which is X7 on U == (A, By, ..., Byy. Then

o (&, TVey(By, .., B, 7, Y)
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with v some X7 relation on the trivial structurfa <Ay and relative to any
parametrization -of. 4, .

‘P#(ﬁy §)¢1p#(71, v 11, By 7))

with 7y, ..., 7 codes of Ry, ..., E;, so that ¢ is 4 on 4. A very similar
argument shows that I'" is compact relative to the class of all 27 operators
on ¥, so that ZP-IND CI' by Theorem 15. m

To prove that these Spector classes are all distinet, it is convenien
to introduce the natural notion of inaccessibility. A. Spector class I" is
27-inaccessible (m, k= 1) if for every Red there is a X compact
Spector class I™* such that

Rel™C4.

Similarly for I7}-, Vi- and H;-inaccessibility.

THEOREM 19. (i) For each k = 2, if a Speclor class I' is V- compact,
then it is Hy-inaccessible.

@ If o<m<m',k, k=1 and I' is ZP-admissible and Z¥- or

IL3% -compact, then I' is Zp- and IIP-inaccessible. ‘

(i) If m>1 and 1<k<¥ and I is ZP-admissible amd Z0- or
IT3%-compact, then I' is T~ and ITP-inacoessible.

Proof. Suppose I' is V-compact, & > 2, let R e 4 , let G be a coding
scheme on 4 in 4 and put

I = all Z3(C)-inductive relations on (4., R.

Clearly ReI™ al:d I™ is @g-compact by Theorems 17 and 18. Tt remains
to prove 1:_hat F C 4 and for this it is enough (by Theorem 14) to show
that if ¢ (&, 8) is ZYC) on <4, Ry, then |¢g| < » = o(4). Given such a @y
the set I iy in I' and the norm

o (@) = ||,
is a I'norm by Theorem 14, aud since I" is Vs -compact, it is' compact

by (¢) of Theorem 16 relative to the class of IT_.(C) operators on 4, Ry,

hence, easily, it is compact relative to the class of ZY(C) operators on
{4, R). Hence we have ll¢ll < % by Theorem 14 and

(V&) [p(Z, 1) = & e I5%]

holds. But this is a II(C) condition on <A, Ry and I' ig cdmpac't relativo

to the class of IT(C) operati i
for some g o C) operations on (4, B, again by Theorem 16, so that

(Vo) o@, )=z I,

Le. ol < A< .
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This proves (i) and the proofs of (ii) and (iii) are similar and a bit
gimpler. M
Theorems 18 and 19 give the following sequence of proper inclusions

for the Spector classes obtained by elementary nonmonotone induction
on an almost acceptable structure :

IND = Z}-IND ¢ IR)-HYP ¢ JI3-IND
= Z3-IND ¢ I)-HYP ¢ I18-IND = ...

In particular we have the increasing sequence of ordinals
w* = || Z3-IND]| < ||lIz-IND|| = || Z3-INDJ| < I3 -IND|| = || £}-IND|| < ...

These theorems also imply that on an almost acceptable structure 2
and for I<m<m or I<m=m" and L<k< ¥,

Zp-IND © ITp-IND ¢ Z-HYP ~ I -HYP

and the corresponding inequalities for the closure ordinals. A very simple
reflection argument (like that in Theorem 19) together with Theorem 18
shows that the classes Z7-IND and [I12-IND are distincet, and in fact
their closure ordinals are distinet and we have

Zp-INDCHOP-BYP o IIp-INDC ZP-HYP.
But it appears to be independent of the axioms of Zermelo-Fraenkel

set theory which of these inclusions hold.- Aanderaa [1973] showed that
on the structure N of arithmetic,

IE-IND ¢ 3:-HYP,
Zy-IND ¢ IT;-HYP,
if V=1, then I-IND CI-HYP,
it D, then IT3-IND ¢ 53-HYP,
where V = L ig Gidel's axiom of constructibility and PD is the rather

esoteric hypothesis of Projective Determinacy -— see Aanderaa’s paper
and the references given there for a discussion of these notions. m

7. Computation of companions. Suppose 4 is a transitive, infinite seb
(e.g. an ordinal) and § is a typical, nonmonotone class of operators on 4
which contains the membership relation e | 4. In this case we can apply
the theory of companions developed in Chapter 9 of EIAS and characterize
F-IND and | in terms of suitable admissible sets having A as a member. _
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Changing slightly the terminology in Section 9E of EIAS, we call
a companion of a Spector class I' on. a transitive set 4 any pair {6, 4>
with the following properties:

(i) 6 is a transitive set and A e b

(ii) 4 is the collection of Zj(I) relations on AG, for some relation
R on . ) '

(iii) J is admissible, resolvable and projectible on 4 velative to R,

(iv) o(AM) = o(4).

(v) If PC A", then P is in I'«>P iy in 4.

The Companion theorem (9E.L and 9.3 of BWIAS) asserts that every
Spector class I on a tramsitive set has exactly one companion {A6(4), 1™y,
where in fact .

(vi) M(4) = {#: S is admissible and for each X C 4, if X ed
then # e Mo}, :

We call M(4) the companion set of I" and I the companion class of I

Just knowing that the companion exists gives us almost no infor-
mation about a particular Spector class. The Companion theorem. is
useful because. it often helps us to find concrete descriptions of the com-
panions of specific Spector clagses. This was illustrated in the compu-
tations of the newt admissible set and the newt strongly Q-admissible set,
Theorems 9F.2 and 9F.3 of EIAS. Here we will compute the companions
of §-IND for a typical nonmonotone § and I79-IND (k z=2), Z¢-IND,
I} -IND (m, k>1) on an almost acceptable structure 2.

If A6 is admissible, A ¢ M and @ is a second ovder relation on .4, then
¢ is the restriction of @ to A, ie.

@1y ey @y Ty ooy Yi) o Xy oy Y€ So & (@, on, 055 Vo onn, Ta)

For each class of operations § on 4, the 4,(§F) relations on A6 are simply
the relations which are Ay, .., @) for some gy,...,pn in §, and
similarly for the Zy(%), JI(F) and 4,(F) relations.

We call Mo admissible relative Yo § (or §f-admissible) if it satisties
Ay(§) - Separation and Ay(§)- Collection, i.e. the schemes 4y-Sep and. /,-Coll
of 9D of EIAS with ¢ in 4,(§).

We call U compact relative to §§ or & - compact, it for every relation B
on 4 which is Z(F) on J6 and every ¢(¥) in § and every E° C R, R e S,

¢ (R) = there exisis some B* ¢ A6, B* C R* C R, such that p(R*).
First an analog of Theorem 14.

’I‘IEF‘OI;E}I 20. Let § be o reasonable, nowmonotone dlass of operations
on the mfzmte, tramsitive set A, such that ¢ | A is in T and let A6 be an
&-admissible set with ordinal » = o{UMb) such that A e A If (%, S) is an
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operative relation in F, then each IS8 for &< % is a member of o and I
is Z\(F). If A ds also §-compact, then ||jp|| < %, so that I, =I* is Z(%).

Proof of the first assertion is easy by standard arguments on admis-
sible sets and we will omit it — cf. Theorem 9D.5 and Lemma 9F.1 of ETAS.

To prove the second assertion, notice first that every §-admissible,
§-compact set has the following property: if B C A™ is Z(F) and
ot B—0(d) is a Zy(F)-norm (i.e. both <} and < are Zy(F)) and ¢(R)
holds for some @ (X) in ¥, then there is some & << x so that ¢ ({Z € R: (&) < £})
holds. This is quite easy by repeating the proofs of (i) = (ii) and (i) = (iii)
of Theorem 12 in the context of an admissible set. Using this we can
eagily finish the proof as in Theorem 14. m

Using this simple result and the key Theorem 15, we can now com-
pute the companion of §-IND.

THEOREM 21. Let § be a typical, nonmonotone class of operators on the
tramsitive, infinite set A, such that ¢ [ A4 is in F. Then the companion set
of §-IND s

Mog = () {Ab: A is §F-admissible, ‘fy-comp}wt and A e Mo}
Vi
and the companion class of §-IND is

F-IND* = all Z,(F) relations on Mg .

Moreover, Moy is F-admissible and §-compact.
Proof. Let (M*, Z)(R)> be the companion of F-IND. Theorem 20
and the definition of A* imply immediately that

S6* C Mg -

If p(Y) is in §, with ¥ varying over subsets of A™ and {I", H", ',
is a parametrization of 4 = §-HYP given by Theorem 9C.8 of EIAS,
then for Y e A%,

(X)) (Hae Ad){aeI" & gHa) & ¥ = Hy}
o (Ha e Ad){aeI"&¢Ha) & (Vo e Y)[AYa, 2)]
& (Vo e A)[H"a,w)= v e Y]};

since 1™, H", 7] fl”, ¢¥ are in I' (the last by Theorem 10) and all rela.ti(.)x%s
in I" are %,(R) on J¢* by the Companion theorem, this means that ™" is
Z(R) on AG*. The same argument works, of course, when ¢ has more
than one relation argument and also arguments in 4, and it also works
for the negation ~T¢ of any relation in §; thus all relations in &a;re —41(32
on AG* and then a simple induction proves that every Ao(F) relatwa.z on ./K,
is 4,(R), hence every X () relation on Mo*is Zy(R). This implies immedi-
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ately that f0* is §-admissible and also §-compact, since I" ig & -compact,
so that

dﬂ)g= c/ﬂJ*

and by Theorem 20 every §-inductive relation on .4 is Zi(F) on Mg
Since My is admissible relative to § and algo admissible, resolvable
and projectible on A relative to R and since for P C 4",

P ig Z\(F)< P is F-inductive « P is Z\(R),

Lemma 9E.2 of EIAS guarantées that for every relation P on "
Pig Zy(F)e P is 2i(R)

which completes the proof. m

In particular, this computation characterizes ||| as the ordinal of
the next §-admissible, F-compact sef, i.e. the smallest F-admissible,
&-compact set which has 4 as a member.

_ For the main examples of induction in the higher order language
over a structure, we can reformulate the characterization of Theorem 21
in terms of more familiar reflection properties. We do this first for JI2-in-
duction, & = 2. -

A sentence 6 in the language of a structure (6, e | A6 is %, i8 0 is
of the form (¥x)(Vy)y, where y has only bounded quantifiers (o € v),
(Vu ), i.e. where y defines a 4, relation, The X} and /7, sentences are
defined similarly for all % > 1.

An admissible set A6 is Zp-reflecting it for every Xy sentence 0 of
the language of (6, e | J),

(*‘) Moy [ M) E.0= there ewists a transitive w e Mo such that {wye [ wp ko’

;t is implicit in the notation we use that if constants Wy, veuy Wp OCCUT
in Q, then w,, ..., wr are all members of w, otherwise 6 would mot be
defined in <w, & | w). The notion of ITy-reflection ig defined similarly.

We will need a lemma which relates this notion of reflection to {§ - com-
pactness.

. THEOREM 22. Let A be a tramsitive, infinite set, let R,, ..., By be ve-
lations on A such that the structure

91: <A78 r'A’Rlyv-y—Rl>'

is almost acceptable, let C be o hyperelementary: cods
o o, o ) yp entary coding scheme on N and

& = all IT}(C) second order relations on €A
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() If Mo is a IT,, - reflecting, admissible set such that A, By, ..., By € Ao,
then M is §-compact.

(ii) The companion set of II-IND ds Il -reflecting.

Proof. We take k= 2 to simplify notation.

Proof of (i). Suppose (Vo e A)(Hy ¢ 4)p(z, ¥, R) holds, where ¢ is
restricted on % (velative to €) and R is %, on A6 and let R ¢ A, R°C R.
Then

W e R« (L) y(2, W)

with some 4, formula y and hence (A6, s | M5 satisties the sentence
= (Vo e A)(Hy < A)y(w,y, {5 (Hz)z(2, B)}) & (V@ e B')(Lz) 5 (2, B} -

We can prove § equivalent to a II; sentence by advancing the quantifier
(Hz) past the restricted “mumber” quantifiers in , using closure of A
under the formation of finite tuples. Thus there is a transitive w e Ao
such that w2 A R, {w,ew)Fo. Now take

R* = {: (e ew)y(s, w)}
and use the absoluteness of 4, formulas for transitive sets to show easily ,

that .
R'CRY, (Voed)(@yed)y(e,y,E).

Proof of (ii). We show first that by has the following reﬂection
property: if 0 is Iy, (Mg, e P og> F O and wle Mog, then there 1s‘s_ome
w* e Mog, w* Cw such that (w*,e|w*yE 0 (w* need not be transitive).

Tet us assume for simplicity of notation thab

0= (V) (E[?/) (Vo) (Vu e @) (T e y)p(®, ¥, 2, %, ),

where ¢ is quantifier free, the general cagse being no harder in prineiple.
Choose a 4, projection of Aty on 4 N

w Do Mg

and define on 4

E(@, 4, )= a,9,7¢ D &(Tuex(o)Evea(@)pla@), =@, w0,
Q@ y, 2, u)=2,9,2, weD &(ﬂ@en(y))w(n(m),n(y),n(z)7ﬂ(u)y 'U)’
S(», y,z,u,ru)@m,y’z,u,'o;eD&ip(zt(w),W(’y)yn(z): n(u),ﬂ:(’v)) :

i ig i i R,Q,8 are all 4 on D,
Making I'= IT°-IND, D is in I' and the relations R, @, :
since lfoth R, E), 8 a,r:d D*—R, D*—Q, D°— 8 are Z; on g The relation B

defined by
sHiews,teD &n(s)en(l)
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is also 4 on D, and the assumption that (Mg, ¢ [ Mg) satisfies § meang
that the structure (D, E, R, Q, 8> satisfies the sentence

(V) (Ey) (Vo) B (@, ¥, 2) & (Vo) (Vy) (Vo) R (z, ¥, )
= (Vo)uBo=Q@,y,z2 u)]|
& (V) (Vy) (Vo) (V)@ (%, ¥, 2, u)
< (o) By & S(2,y,2,u, v)]|
& (Vo) (Vy)(Ve) (V) [S (2. y, 2, u, v)
< y¥@,y, 2,4, )],

where y* is obtained from y by replacing “e” by “B”. This is a 'V, sentence
and I' is V;-reflecting by Theorem 18, so taking

D= {teD: n(t) e w},

there is some set D* in' 4 = II}-HYP, D° C D*C D, such that the structure

D% BE| D' R D* Q| D* 8| D* satisties the same sentence, Now take
w* = {m(t): t e D%}

and verify easily that w®Cw* and (w* s | w*y F 9.

To prove that Jy is IT; -reflecting, given 6 such that Mgy e [ Mog> F O,
take w° to be transitive and having as members all the constants which
oceur in 6 and find w*D w® such that <w*, e} w*> k6. Lot fr w*—w
collapse w* to a transitive set. Then f is an isomorphism of <w*y & | w*
With <w, e w) which leaves all the constants in 6 fixed, so we have
<wyelw) k6 as required. m

This result gives immediatel;or the characterization of II}-IND which
we seek. ;

THEOREM 23. Let A be q transitive,

infinite set, let Ry, ..., R; be re-
lations on A such that the structure

A=<4,. I4, By, ey By
is almost acceptable. (This holds when A s closed under pairing or when
A is an infinite ordinal or when A =V, = the set of all sets of rank <§,
with & > ®.)

For each % > 2, the companion set of ITf-IND on 9 s
W) = ) {Mo: SG is admissible, 11y -reflecting and A, Ry, .., Rie M}
and the companion class of I10-IND s

IR-IND* = all 3; relations on ALY .

Moreover, A+(110) 4s Iy, -reflecting.
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Proof. From Theorem 21 we know that the companion of II3-IND
is (Mg, Z1>, Where

Mog = ) {Ao: Mo is admissible and F-compact and A e Mo},

" with § = all II3(C) operations on %, and C any hyperelementary coding

scheme on A. Part (i) of Theorem 22 implies that mﬁgﬂl"'éﬂ,‘;) ajzd
Part (i) of Theorem 22 yields AT(HR) C Mg, so we have Mg
=UTI). = .

QJ:T(hcf)correspo:acling characterization of .th‘e companions of Z’;,"'IIN:;
and JI7-IND are a bit messier. If A is admissible, 4 e A mi;% ¥ 1;2:1 cct :I s
of operators on A4, the Z¥({) am.i ) formulas of t ee sfonmﬂas
(M, 8 M) are defined in the ObYIOUS way: we allow pngnz'm onmrlas
of the form “p(%, ¥)” with ¢ in § in thg uspall definition of X% ol (l;
formulag. We say that 6 is ZIF)-reflecting if for every Z7(F) sentence 8,

(Mo, € | M6y E = there exists a transitive w e Ao such that {w,e [w)E B,
b

and similarly for IIj-reflection. o ]
THEEOREM 24. Let A be a tramsitive, infinite set, let Rl’ ey By De Te
lations on A such that the structure

U= (A, e A, Ryy ey B>

48 almost acceptable.
For each k,m>1, let

X = all ZP second order relations on A
and put

' V ) 1881 - ting
I = Mor Mo is - admissible,  ZT(T)-reflec
TR and A, Ry, ..., Rie M}

Then AT (ZP) is §-admissible and ZIE)-reflecting and the companion of
moIND on U s AT(ZR), 2T
Similarly, put
! s - issible, IIM(F)-reflecting
) = Mo Mo 45 §5-admissible, LIy
= ' and A, Ry, .., Bre Mo},

i ion 0,
Then AT (A7) is §F-admissible and IINE) -reflecting and the compqnz f
Im-IND on % is ATITR), Z(T)>- ) . .
’ Proof is exactly 1ikec that of Theorem 23, after showing first the

analog of Theorem 22. [


Artur


76 Y. N. Moschovalkis

This characterization of X7- and II}'-induction is really not much
simpler than that given directly by Theorem 21 in terms of §-com-
pactness. We can simplify it, however, by eliminating the relativization
to §¥, if m= k=1 and 4 is countable. :

By X7 and II?-reflection we naturally mean Z3F)- and II7(F)-re-
flection with & the empty set of relations.

TerorEM 25. Let A be a countable, transitive set, and lot By, ..., By be
relations on A such that the structure

U=(A,e] A, Ry, ..., B

is almost acceptable. Then the companion set of Zi-IND on U s the smallest
ZL-reflecting, admissible set having A, R, .., Ry as elements and the
companion class of ZL-IND consists of all Z, relations on the compamnion set.

Similarly, the companion set of II7-IND on % is the smallest II}-re-
flecting, admissible set having A, Ry, ..., Bi as elements and the companion
class of IIT-IND consists of all X, relations on the companion set.

Proof. In view of Theorem 24, it will be enough to verify that when-
ever A is admissible, 2}- or II}-reflecting and 4, R, ..., B; € A, then
every II7 relation ¢ on U is 4; on M. The key for this computation is the
main result of Barwise-Gandy - Moschovakis [1971]. It is well-known and
eagy to verify that there is a fixed II, sentence 6 with no constants, such
that for every transitive set G, ’

A 18 admissible< (MG, & [ JoXF 0.

Thus, if A6 is admissible and IT;-reflecting, then G is (naccessible, i.e. for
each w'e A, there is an admissible w e 6, w® Cw. ’

By Theorem 3.1 of Barwise-Gandy - Moschovakis [1971] (relativized)
or Theorem 8A.1 of BIAS, if ¢(z, Y) is /I} on ¥, then ¢(z, ¥) is in-
ductive on A. Hence by the Abstract: Spector-(}andy‘ Theorem 7D.2 of
EIAS (relativized), there is. a fixed elementary relation ¢(Z, %, ¥) on

an acceptable expansion U'= (U, P, .., P;), with P
elementary on o, such that y Py ey Pr)y with Py, .., Py hyper-

9, Y)< (AZ)[Z is hyperelementary on o, 7) & (o, &, 7). ‘

I\Tf)w v translates into a 4, relation on 6 and by the main result of Bar-
vgset-_(}andy-l\éosehovakls Theorem 9F.2 of BIAS, the hyperelementary
Telations on Y are exactly the members of the smallest issi |
t allest admigsible et AT
having 4, R, ..., E; a8 elements. Put !

Adm(w)ew s admissible ,
Qw, V) Adm(w) & 4, B, ..., By, T ew
& (Vi ew)[(4, Ry, o, By, T €)= | Adm (u)]
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and notice that @(w, ¥) is 4, on 6 and
@@, T (Hw)[Q(w, ¥) & (AZ c w)y(Z, %, ¥)]
= (Vw)[Qw, )= (HZ cw)y(Z,%, T)].

The argument in this proof is essentially the same as that used in
the proof of Lemma 10.6 of Aczel-Richter 1973. .

One of the prime motivations for computing the companions of
Spector clagses is the desire to study and understand the structure of
various kinds of admissible sets. A good example is the main result of
Barwise-Gandy-Moschovakis [1971], Theorem 9F.2 of BIAS, which can
be congidered as a construction of the next admissible set. Similarly, Theo-
rem 9F.3 of BIAS constructs the next strongly Q- admissible set (Q a mono-
tone, unary quantifier on the almost acceptable structure 3= (4,¢] 4>
and BExercigse 9.16 of EIAS constructs the mewxt strongly f set. From this
point of view, Theorem 23 constructs the newt IT, . -reflecting set and
Theorem 25 constructs the newt It -reflecting set and the next Xt -reflecting
set, but only when we start with a countable almost acceptable structure
9% =(A,s| A, Ry, .., R The computation of the companion of ITI-IND
for uncountable % given by Theorem 24 does not yield obviously natural
and interesting admissible sets. There is, however, a generalization of
Theorem 25 which is suggested by a result of Aczel and Richter and
which is worth discussing briefly, as one more example of the applicability
of the methods we have been studying.

If 6, N arve admissible and A46C N, we say that S is N -stable if
for every X; sentence 0 of <N, e[ N whose constants are all in A,

if (N, e[ NYEB, then (Mo, e MDED.
We abbreviate this condition by
So <3N

Theorem 6.4 of Aczel-Richter [1973] establishes that a countable, admis-
sible set A6 is JIM-reflecting if and only if A6 <y, MT, where

MT = the mext admissible set

= the smallest admissible set N such that MeN .

Thus Theorem 25 constructs the next G which is MoT-stable, starting with
a countable, almost acceptable A= {4, e P A, Ry, ..., Bp. We mow

. outline a construction of this set starting with an arbitrary almost ac-

ceptable A.
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" The same quantifier G = G® on a set 4 and relative to a coding
scheme G on A was defined in 5C of BIAS by

(GR) B (2) < {(Vs1) () (V) (HEy) ...} >n/ B(<81y 11y ey Smy tm))

If A6 is an admissible set, then we always take ‘G = G4¢ relative to the
-ordinary set theoretic tuple functions, unless there is notice of the con-
trary. A Gy formula on (M, s | M) is a formula

@ = (Ge)y(2)

where y is elementary on (A,e | A6}, By Theorem 6C.7 of BIAS, the
relations . definable by G, formulas on {6, e | 6> are precisely the in-
duetive relations of this structure.

An, admissible set M is Gy-reflecting if for every G, sentence 0 of
Kfoy 8 T Mo,

KMoy & [ Mo} E O = there is some admissible w ¢ Mo such that {wys [wyFO.

Bets which are Gl-reﬂecting are obviously IT,-reflecting for every m.
THEOREM 26. An admissible set o is Gy-reflecting if and omly if
o <y, AT, (Essentially Aczel-Richter [1973].)

Proof. The argument given in the proof of Theorem 6.4 of Aczel-
Richter [1973] works here too, since it only uses properties of II! gen-
tences on countable admissible sets which hold for G, sentences on all
admissible sets. Notice first that if 6 is Gy -reflecting or ™ -stable,
then J6 is inaccessible.

With each &y formula ¢(%) which has no constants we can effectively

associate a X formula ¢™ (), also with no constants, such that for every
admissible set 6 and Z =, ..., o, ¢ A,

oy e T 6Y F ()< (M, e | ST E pH (7).

The construetion of ¢* is implicit in the proofs of Theorem BC.1 and
Lemma 9F.1 of EIAS. Now if 6 is A6*-stable

of (Mo, s [ Mo}, for Z in A6 we have
Moy o [ HO> F g(@) = (Mt & | S E ¢+ (@)
= (Mo, & | o) F ot(F) since Mo <y, Mo
= (W' & | w' I:rp*(%) for some 0 ¢ A6, since ¢ () is I,
=Wt s [ w*y Ept(E) for some admissible w 2 w, since

9 (%) persists upwards
=Wy [ w) ko).

and @(%) is a G, formula -
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Conversely, with each X formula y(Z) we can effectively associate
a G formula ™ (%), such that for every admissible A6 and & = #;, ..., &y € Ho,

ATy 8 [ M) Ep(B) e (hoy & | M) Fy™(E).

This too is implicit in the uniformity of the proofs of Theorems 9E.1
(especially Lemmas 8, 10) and 5C.2 of EIAS and it implies exactly as
above that if A is Gy-reflecting, then it is AGt-stable. m

TueoreMm 27. Let A be a transitive set and let R, ..., B, be relations

" on A such that the structure

U=(A,e 4,R,, .., R
s almost acceptable. Let

Gy = all inductive second order relations on A .

Then Gy 8 a typical, nonmonotone class, the companion set of G,-IND is
the smallest admissible set M which is Mt -stable and has A, Ry, ..., R; as
elements and. the companion class of F-IND consists of all Z, relations on
the companion set.

Proof (outline). That G, is a typical, nonmonotone class of operators
on A is obvious from the results of Chapter 6 of EIAS.

Choose a hyperelementary coding scheme on 2 and define the game
quantifier G’ relative to this coding scheme as in 5C of EIAS,

(G'2) R (2, &)< {(Vs1) (Ht) (V$5) (Ty) .} \/ B (<815 By ey Sy ndy T) -

new
A relation ¢(Z, ¥) is in § if and only if
@ (T, ?)@(G’z)(p(z, z, Y) )

with (2, Z, Y) elementary on . »

¥ G is an inaccessible admissible set such that A, Ry, ..., By e b,
we can prove ag in Theorem 25 that every inductive ¢(F, ¥) is 4, on .
Letting G be the standard game quantifier on A we also have

(Ge)p(e, B, T)e {(Va)(@t)..} \/ [(Vi< m)[tic A &s, ¢ A] V

mew

VP ({Bey ey tm)'y Ey y)]é (Go)y*(z, 7, Y)

with some y*(z, %, ¥) which is 4, on G, and from this it follows eas:ily
that if 46 is Gy-reflecting, then G is §-compact. Thus the companion
seb Aog, is contained in every G,-reflecting A with 4 ‘,Rl, o e_.M,,
and the proof will be complete if we can show that Jog, is Gl—reﬂectlng.
This follows by the method of the proof of (ii) in Theorem 22, using the
& - compactness of by and we will omit the details. = :
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We end this section with a corollary of Theorems 23, 25 and 37
which yields an easy comparison of these results with some of the theorems
in Aezel-Richter [1973].

An ordinal » is Zy-reflecting if the set L, of sets comstructible before
% is Z,-reflecting, and similarly for ITy-, 2%'- and w-reflection, For
-each infinite 2, let

0, [A] = least Zx-reflecting » > 2 ,

and define m,[1], ofA], »3{A] in the same way.

If A< %, then A is x-stable if Iy <<z L,. We will refer to ordinals x
‘which are »*-stable, where »* = the least admissible ordinal >wx. If ig
well-known. (and easy to prove by an absoluténess argument) that (I,)*
=T, 80 that » is »™-stable if and only if L, is Gy-reflecting,

THEOREM 28. Let A be an infinite ordinal.

(i) For each k= 2, the companion set of IIh-IND on {i,& [ 1) is L,
Cwith = my[A] = oy 0[A].
(i) If A is countable, then the companion set of Z1-IND on <A, e | i»
- 4§ L, with % == o}[1] and the companion set of II+-IND on {A,& [ A> is L,
with » = m[A)]. :

(iii) The companion set of Gy-IND on <{i,e | 2> is L, with

# = least ordinal greater than i which is »*-stable .

{For A= w these results are due to Aczel-Richter.)

Proof is immediate from Theorems 23, 25 and 27 together with the
following absoluteness results: if 46 is admissible and % = o(A), then

Mo is ITi-reflecting = I is II;-reflecting ,

and similarly with X}, I7} and G, in place of I7. All these follow easily
from the fact that the function E—~L;is 4, 0n S, m

Theorems A and B of Aczel-Richter [1973] are (i) and (ii) above
with 1= o, while (iii) with 1= o is immediate from Theorem 6.4 of
“this Aczel-Richter paper. Theorem C of their paper iy an ordinal version
of our Theorem 24 (with 4 = ). The most general result in Aczel-Richter
[1973] (among their results which compare with ourg) is Theorem D.
This is their analog of Theorem 21 (with 4 = w) in this paper. It gives
a somewhat different characterization of the companion that our result.

8. The case of II{-induction, Suppose 9 —= K4, Ry, ..., Ry is an
acceptable structure and we take

& = all II)(C) second order relations on U,

where C is some elementary coding scheme on 9I. Using Theorem 4 we
an prove as in Theorem 11 that the class §-IND and the ordinal [
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do not depend on the particular choice of G, so we can call §-IND simply
°-IND on . ’ ) :
It is well known that on the structure N of arithmetic I7°-IND

_coincides with X2-IND = IND = all II} relations on N. In general,

however, [12-IND need not be a Spector class — we will mention counter-
examples furthér on.

Let us collect in a definition the key properties of a Spector class
which II9-IND always satisfies. A class of relations I" on a set 4 is
a semi-Spector class if the following conditions hold (in the terminology
of Section 9A of EIAS).

(i) I' containg =, =%, and a coding scheme C on 4.

(ii) I is closed under &, v, V and trivial combinatorial substitutions.

(i) I" is parametrized and normed. » '

(iv) Whenever P(y, &), @(y,%) are disjoint relations in 7, i.e.

(Vy)(Va)[ 1Py, z)v 19y, 1,
then the relation R (%) satisfying

R(@) = (V)[Py,z)ve(y, )] & (Ay) P(y, %)

ig in I

In other words, I" is a semi-Spector class if it has all the properties
of a Spector class, except that instead of closure under &, I' satisties
the weaker closure under deterministic & formulated in (iv).

It is very easy to verify using the results of Sections 1-3 that on
each acceptable U, I19-IND is a semi-Spector class. The converse, however,
ig non-trivial and we will' only state it here.

TuzormM 29. If N = (4, By, ..., R is an acceptable structure, then
I-IND is the smallest semi-Specior class I' on A such that B, ..., Ry are
in A. (Essentially Grilliot [1971].)

What Grilliot proved (essentially) in Theorems 4 and 8 of his [1971]
i3 that on an acceptable ¥,

I?-IND = the class fof oll relations on A which are semi-prime

computable in H, Ry, ..., B,

where T is the total type-2 object which represents quantification over 4.
Prime computability is one of the notions of abstract recursion theory
introduced in Moschovakis [1969]. On the other hand, the characteri-
zation of the relations on the reals which are.semirecursive in *F given
in Moschovakis [1973] lifts easily to an arbitrary acceptable structure ‘21
in the following form: the class of relations semi-prime computable in

6 — Fundamenta Mathematicae, T. LXXXII
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E, Ry, ..., Ry is the smallest semi-Spector class I" on A suchthat By, ..., Ry e A.
Thus these two results taken together give a proof of Theorem 29,

Thig proof makes heavy and unnecessary use of the theory of prime

computability. A more direct proof of Theorem 29 can be constructed
by imitating the Grilliot argument in the context of an arbitrary semi-
Spector class rather than the specific class of relations semi-prime com-
putable in #, By, ..., B;. We will not give this argument here since it ig
long and quite involved and since (in the only version that I know now)
it still appeals to same regults about (first order) prime computability.
In this paper, as in ETAS, we have attempted as much as possible to stay
away from recursion theoretic techniques in favor of more “elegant”,
coding-free methods. It would be very nice to have a proof of Theorem 29
in this spirit.

One example where /19-IND is not a Spector class is the structure R
of analysis, see Section 1D of EIAS. Grilliot’s Theorem implies that on R,
I-IND is the class 6f all relations semi-hyperanalytic in some real a,

and this is not closed under # by Corollary 10.2 of Moschovakis [1967].

Examples of countable acceptable structures on which II?-IND is not
a Spector class can be constructed easily from this, using the methods
of Section 8D of EIAS. '

Semi-Spector classes arise naturally in the theory of recursion in higher
types over o and it would be useful to develop a theory of companions
for them. ' ~
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