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Generalizing Vaught sentences
from » to strong cofinality o

by

M. Makkai* (Montréal)

Abstract. We prove a strengthening of C. C. Chang’s interpolation theorem in
volving infinitary formulas with conjunctions of the mize a strong Iimit- cardinal with
cofinality o (Corollary 3.3 below). This yields a strengthening of Chang’s Scott type
jsomorphism theorem involving the same type of formulas (Corollary 3.5). In the last
gection, using game formulas we reformulate J. Green’s X,-compactness proof.

Introduction. In this paper we generalize a part of Vaught's theory [V] -
from L, to a situation involving both L., and L., with » a strong
limit cardinal with cofinality o. As a result, we obtain strengthenings
of Ohang’s interpolation theorem in [C2] (3.3 below) and of a part of
Chang's generalization of Scott’s isomorphism theorem in [C1] (3.5 below).

Although the  generalization from [V] is rather straightforward, it
has perhaps an interesting technical aspect in the use of Carol Karp's
notion of truth in an ascending chain of models (c.f. [Ka]). Using this
notion, we obtain results such as 3.3 and 3.5 which are formulated without
this notion (and without the game sentences of Vaught).

Most of the proofs are only sketched since they are modelled very
closely after existing proofs. .

Copying Vaught’s proof of the Barwise X-compactness theorem,
in § 5 we give another proof of Judy Green’s X -compactness theorem [G].

Games like those underlying the notion of Vaught sentences were
used in [Mo], and in [C-M] they are used in connection with cardinals
of strong cofinality .

§ 1. #-Vaught sentences. Throughout §§ 1-4, x is a strong limit cardi-
nal with cofinality m and {(xs: n<C w) is a fixed sequence of cardinals
such that 2% < ,,, and x= J#. Though everything goes through

n<w
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for » = ¥, (as it is already known), it is convenient to assume that » =y,
and also s, = &. ,

L,, is the first order logic using conjunctions and disjunctions of
sets of cardinality <4 and existential and universal quantifications over
a sequence of length < u of variables. Note that L, and L, are equiva-
lent in expressive power to L.y, and L., , respectively, since » is singular,
However in most cases it will be important for us that formulas are
written as required in L, and L,,.

If one wants to emphasize which relation (and Qpemtion and indi-
vidual constant) symbols are used, one writes e.g. Lm(ij) to denote a logic
using basic symbols in L and the additional symbols in the sequence i?

In what follows, Zs, %y denote sequences of distinet variables, the
length of @, 7a i8 #. A x-Vaught sentence I' is a sentence of the form

VZ,AgoN loe .. V&?’nﬂgnVln €% ... \ne Nt (g i)

where the NT are (for simplicity) quantifier-free formulas of I,, with
the (free) variables indicated. »-Vaught sentences are a direct generali-
‘zation'of the game sentences considered in [V].

Tt is fairly obvious how to interpret a x-Vaught sentence in a strue-
ture. Similarly as in [V], [Ma 1], [Ma 2] ete. we can talk about a game
in this connection. The first move of e.g. the V-player consists of
a sequence a, of elements of the given structure, corresponding to .
For later use we write down a formal definition of truth for a »-Vaught
sentences.

Por this purpose, we need to introduce infinitary predicate symbols
with “arities” <x. Let, for each n< w and each T= oy ey o) €™,
T! denote a predicate symbol of arity sy s+ #y~ w26y %y
(ordinal sum; it is equal to %, ;+%, , if » >0 and to 0 if n = 0). Then,

-

with I" above and arbitrary L-structure 9, 9 k I" iff there are relations T%
on A such that (W, T%),.,7en, satisfies the formula

1) TEAAR< GFBy e By Bg s Gpoy Nlp € Hoe Ay €%
[TL(‘ZO 7??07 ey Ern,—l) gn—l)”"VénE[gnv lyen
Ty ooy Yu) A A\ VB, ey )]

r<N

(here i= oy voey byeyd) -

Next we describe Karp’s notion of truth in an ascending chain of
models (see [Ka]; the notion was introduced and used as early as 1959
in Karp’s thesis). Though Karp did not consider infinitary predicates,
they are essential for us; however, they do not present any difficulty.
Leb % = Un: %< 0} be an ascending chain of models, called hereafter
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o chain-model. A sequence of elements of A= {J Ay is bounded if all its

n<o
elements come from one of the sets A,. For a formula g €L, and for

a bounded sequence a of elements of A interpreting #, we define
A plafa]

by the usual inductive clauses for atomic ¢ and for Boolean combinations
and by the following modified quantifier clauses:

A LE Viplafs)
< for all bounded sequences b (of appropriate length), A F¥pla/s, b/j1,
3 X @y pla/o] < for some bounded sequence b, WK plajz, byl
Any chain model U gives rise to its union, U ¥%x; however in case

n<w
we have infinitary predicates, these will not be defined but for the bounded
combinations of arguments. Whenever we use the symbols % (or B),

-it denotes a chain-model (Mn: 1< @) (0r (Ba: # < o)) and it ¥ (or B) is

used in the same context then it is the union (J%s (or {JBs). Notice

n<w n<e

that for a sentence ¢ in L, A< g Ak g
Tor relations T on A = J4a, (A, T) denotes the chain-model

n<aw

<(Q['IL, T_‘.Fﬁvz): N < (U>'. .
For a x»-Vaught sentence I', we write

ALET
if for some (infinitary) relations Tz:, we have
(—Sﬁ’ T}m)newis"x }:K g

where o is the sentence in (1). :

Intuitively, 3 FX I" involves the restriction of the range of both the
universally and existentially quantified sequences of variables to joognded
sequences of element. Actually, for our purposes only the restriction of
the universal quantifiers is of importance. )

The chain-model <Wyp: n< oy is called a chain-x-model if |Aa|
< (M < o),

§ 2. The game form theorem. A Zi-over-L,, sentence is of the fqrm HRo
where B is an arbitrary list ‘of length at most » of “new” }‘elamon (and
possibly operation and individual constaut) symbols ar_ld o is a sentence
of L”w(ﬁ). One of the basic tools in Vaught’s work is the game form
theorer for L, any Zi-over-Ly, sentence is equivalent for countable
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structures to an (o-) Vaught sentence (Corollary 3.3 in [V]). The corre-
gponding result that we need is

TaeoREM 2.1. For any Xi-over-L,, sentence '&[135 there is o »-Vaught
sentence I' such that Hzﬁa E I and for any structure A of power < x,

A kTR if and only of WE T if and only if there is a chain-x-model
A = Wyt n< ) such that i

AEETD and | JUn=1A.
: n<a

Proof. The proof is very similar to Syenonius’ proof of his theorem
from which Vaught deduces his own (see Theorem 3.2 in [V]). The details
also will resemble those in [Ma 1], [Ma 2]. We will limit ourselves to
giving the main constructions.

(a) To construct I', we first take a set V of variables such that [V| = »,
Let V= {JVa,VaCV,y, and |Va| = »s. We assume o as well as any

n<w

other formula is written with using only &, \/ and finitary conneetives.

Consider all subformulas 6(%) of o; substitute arbitrary variables 4 in V-

for all free variables % in 6 to obtain #(v); let © be the closure of the set
of all these 6(¢) under finitary connectives. Notice that |@| < .
(b) We next take 6, for each n < e such that | )@y =60, 6,C 0, ,,

nelw

10n] < 50, every formula in @, has all its free variables in 7y, and for
every digjunction \/ X in On, | 2] < #a.

(c) Next we exhibit a list of “Henkin formulas”. By induction on =,
we define the disjoint sequences &, , 9, of variables in V' and the set H, of
formulas as follows. Let (&a,y,: « < x> be a sequence enumerating all
members of @, of the form Hay. Let y, for a << », be arbitrary distinet
variables in V,.;—Va.. Let &, be a sequence of variables containing
precisely the variables in Vy— (rn&, v ... w g, .,), and let

?7n =y, a<< ).
Finally, put

H,=H, v {8zy,—>y,(y, for 2): o<z} .

(d) Nex"c we ‘let A/ Z a< sy be a sequence enumerating all
non»empty infinitary disjunctions in @, (if it so happens that &, does
not contain any such, we simply add one to it). Recall that |Z,| < #
for all a < x,. There are " < » choice functions % e [] X, let us index
them as b, (I< ). Define Ho to be -

H, v ULV Z,>hyla): a< ).

i=<n

Toti 20, vees T0; over Iy I
Notice that Hipi C Hloypiwlvi,
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(e) For any n < o, put N5(@o, o, - #n, §) (L = {lo, -, 1)) to be the
conjunction of all finite disjunctions 6 of atomic and negated atomic
-formulag (i.e., no symbols in & are allowed!) which contain the variables
in 2o, .., Yn ab most and such that & is a consequence of Hiv-'u {g}

 with all free variables @, ..., 4. held constant (i.e., regarded individual

constants). Thus, N}g‘-wln is a quantifier-free formula of L, (“="L,,).
Finally, define I as i

Voo 0o bo< %o VO B\ b < % oo A< 0N Ty, 0y ) -

(f) We submit that it is obvious that & @o BT In fact, if Ak ’EEJ,
ie. (QI,IT’,) ko for some R on A, then for arbitrary (interpretation of)
T, @1y - in A we can define elements (interpreting) §o, g1, ... in 4 and
ordinals Iy, iy, ... << # such that (i) y» and I, depend only on ..., %=
and (ii) the @, ..., §n satisfy every element of Hie--™ (with the chosen
To, ey bn), thus also they satisty N'(,, ..., yn).

(g) It is easy to see that the second condition of the theorem implies
the third one. To complete the proof suppose that U is a egain-x-model,
(hence |Aa| < #o) and A kI We want to see that U F HEo. Leb dan be
an enumeration of A, such that length (an) = #n. Apply A ¥ I' to. ob-
tain b, corresponding to §» and Iy < (n< ) such that

(3) Ak Nal,‘,’""’l"[aolim ey 5;/?771] .

(Recall that the N are quantifier free, hence 3 FX N[dy/Zy, ...] im-
plies (3).)" _

Now, let 4 be the diagram of ¥, ie. the set of atomif gnd»nggated
atomic formulas 0 with variables in ¥ such that % E 0[ao@,, bo/yos -1
Tet ¥ Dbe the set of all valid formulas. Consider the following set T' of

formulas:
J Hif""’ln v{cludu .

. n<w }

Just as in [Ma 2], we see that 1 is finitely Eatisﬁable; this fact is
2 consequencé of (3) and the definition of the N'.. Next we ?mpply the
compactness theorem for finitary propositional logic to obtain an as-
signment o of truth-values to elements of @ which makes every elen.lent
of T “true” and which “respects” (“commutes wiEh”) finitary connectives.
Finally, define for any relation symbol B in R, the corresponding re-
lation B on 4 by

. - ”
Rey ... e 18 true < a(R 2 ...2m) is “true
£ ~ .

where 2, ..., 2, ave variables in ¥ and ¢; corresponds to z; under TJEG
- L . i 1
interpretations dafZu, byf¥y (7 < ). On the basis of the definition of H,,.


Artur


- 110 M. Makkai

we can verify that thm deflmtmn is legitimate and by induction on ¢ in 6
we can prove that

(A, B) k plaofo, Boffoy -1 > alp) is “true”

(see the corresponding part of the proof of 2.9 in [Ma 2]). 8o, in fact
@, R) k o as required. Q.E.D.
Very similarly we could prove (compare [Mal] and [Ma 27)

THEOREM 2.2. For any X7-over-L,, sentence AR o there i a positive
x-Vaught sentence I' (i.e., the N,ﬂ are positive) such that WERE ok Iand for
any B of power <x

there in WETER o such that B is a homomorphic image of U

if and only if B kI if and only if for some chain-x-model B with

union B we have B K< I

We could in fact develop a generalization of Lindstrom games and
establish generalizations of results in [Ma 2].

§ 3. Approximations of x-Vaught sentences, Flere we follow § 4 of [V]
very closely.

Let I' be a %-Vaught sentence in the notation used in § 1. Define
for any ordinal o and any sequence T=1 ., l,_, of indices <« the
formula & (g, ., §p_y) i0 Lo, a8 follows:

& is A\ NH(E,, ey 7,)

<n
(in particular, 65 is identically true),
8y 18 VB EG\/ 1, < 200 "(Bg, vy By G) 5
8 is A\B<Adl it 2 is a limit ordinal.
We write 4, for 7. Note that for a << «*, 6, €L, (“="L,,).
We can easﬂy prove the next

THEOREM 3.1. 8, F 8y if f< a, I'k 8, for any ordinal a.

TeEOREM 3.2. Let y be a sentence in some logic L, (8 §). Suppose that
Jfor every chain-x-model (N, §) such that A F¥ M'we have (%, 8) ky (in intuitive
notation, (I in s-sense) Ey). Then there is a < x™ such that O 1.

Proof. The proof will follow Vaught’s proof of his 4.11 in [V] very
closely.

(a) First we formalize the definition of 5] as in Definition 4.5 in [V].

We introduce the unary predicates U, 4, the bmcu‘y predicate <, the
individual constant ¢ and for each n < w, and loy wony byy < % the 142+
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R e ﬂ—l‘{“" -1-ary (for n = 0,-the wunary) predi-
cate symbol D' -~I-1. Tet &+ be the following sentence in I, (L., ex-
tended by the new symbols):

“U,<) is a linear ordering with last element ¢”
/\’n( “’Vwo n—lyu yn—1 /\Zoy <z
{Dlo-~ l"ﬂ("h Loy yo’ ) &, —13 f’/n—l)
—>[(Vo< u)Va—c'n[*Ig-/'n Vi< wDwletlngye 2 ey Ym)A
A /\,N?’""li(ém weny gi)}}ADﬂ(B) .

i<n

Here we suppressed A; the variables in @, §, are understobd to be
relativized to A.

(b) Given any a and a model % of §,, we can “make” 9[ into a model B
of &+ such that (U® <®) is a well-ordering of type a1 and 9 is the
reduct of the substructure of B with domain ASB In 3, D'y (B, ...) “de-
notes” 6ﬂ as interpreted in .

Now assume that d,A 71y has a model for each o << »* (the negation

- of the assertion of 3.2). Hence &"A 7 (p)4 A“4A +# 0” has a model for each

a< »¥ such that the order type of (U,<) is a+1 (%% is v relativized
to A).
(¢) Now, apply the following lemma discussed in the next section.
Lumma. If an L., sentence @ has, for any o< xt, a model B, such -

that (y”ﬂ <Ba) 4s well-ordered with order -type >a, then v has ¢ chain-x-
model % such that (T¥, <) is not well-ordered.

Hence, by (b), there is a chain-»-model 3B such that B FX &FA 7] (p)2A
A“4 £ 07 and (T®, <) is not well-ordered.

(d) Hence we conclude, as Vaught does, that % X I' where % is the
obvious L-chain-»-model derived from B. In fact, let ¢® = u, >% uy

=% 4, >% .. be a descending sequence of elements and define the re-

lations T;": on 4 by
T By, ooey Fug) 18 1010 < DE (205 Doy vy Ppy) I8 true in B,
Then it is clear by (c) that
@, I,) Ko
where ¢ is the sentence in (1) of § 1, hence U EX I, Since we also have
A, S)F Ty, we have arrived at a eontmd.letlou to the hypothesis of
the theorem. Q.E.D.
Theorems 2.1 and 3.2 at once yield
2 — Fundamenta Mathematicae, T. LXXXII
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COROLLARY 3.3. (Main result). For any Z}-ovw-Lw sentence T E P
there are L, sentences d, for a<C ut such that

. E ok,
and for amy v Ewa(;S:)v if
TEoky

then for some o< x*, 8, Fw.

COROLIARY 3.4, In the notation of 3.3, & B ¢ is equivalentto )\ a< x*é,
for structures of power <.

Proof. Assume 9% has domain 4, |4| < x. Let 4y be the diagram
of U written with new constants o for a e.4. Let y be

A[Va\/{z=a: aeA}r \dy].

Suppose U 1= @ B o. Then clearly, & B o ky. Hence by 3.3, for some
a< %" we have §,Fy, hence Al 6,. Q.E.D.

COROLLARY 3.5. Every structure U of power <x cam be characterized
up to isomorphism among structures of power <x by aconjunction )\ a<<x"8,
of Ly, sentences 6,.

Proof. Apply 3.4 to H 3 o where ¢ is

Vae\/ {w=a: aedIr\ 4y

and the E are the additional individual constants o (s e 4).
Remarks. 3.3 is an analogue (a generalization of a part of) 4£.11in{V]-
It is a strengthening of Chang’s interpolation theorem connecting L,
and L, [C2]. 3.5 is a strengthening of a part of Chang’s generalization
of Scott’s isomorphism theorem. [C1] (see the third paragraph on page 45
in [C1]; now xZ = 2%).
Using 2.2 instead of 2.1, we obtain

COROLLARY 3.6. The class of homomorphic images of power < of
models of H E o 18 axiomatized among siructures of power <x by a con-
Junction N a<< %70, of positive L,, sentences §, (a << x*).

CoroLLARY 3.7. (Chang [C2]). Any sentence of L., preserved wunder
homomorphic images is equivalent to @ positive sentence in L.

§ 4. Non-characterizability of well-order. Theorem 4.1 below was very
likely known to Karp (who wrote in [Ka] that “the proofs in [Ke] of
& number of important results for L, , generalize ... by replacing the
ordinary consistency properties by x- consistency properties”). In [Ka],
Karp proves a model existence theorem concerning ‘chain - x-models and
#%-consistency properties; this is used in the proof of 4.1. For the rather
long definition of #-consistency properties, we refer to [Ka].
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TaROREM 4.1. (i) Suppose ¢ e L,, where L., coniains the unary predi-
cate U and the binary predicate < and possibly some infinitary <<s-ary
predicates. Suppose that for each o < x* there is a model B, of ¢ such that
(U%a, <®e) is a well-ordering of type >a. Then @ has a chain-sx-model A
such that (%, <) contains a copy of the ordered set of the rationals.

(ii) The same conclusion holds if we change B, to a chain-model
B, of ¢ 4 _

The proofs use the model existence theorem in [Ka] and are exact
replicas of the proofs of Theorem 12 in [Ke]. We only define the con-
sistency properties used in the’proofs.

Using the sets Cn of new constants such that |Cy| = s, as in [Ka]
and also the further new constants d, for r a rational number, we define Sy
to be the set of all sets s of sentences of I,, enlarged by adding | J C,

n<o

and {d,:  is a rational} such that

(iif) for some n << w, all new constants in s belong to D= O, u
. df
uid,, ., d,

. for some rationals 7 < ... << 7,

(iv) for every a<C »T, there is a model B, of s such that (U%e, <3a)
is a well-ordered set of type >a and in fact, (the interpretations of)
Byyy ooey B, SALISTY

Tn

a

A

&, < dyfa<d,<..<d, ta<d,.

Then 8, can be shown to be a »-consistency property with respect
to (On: n<< w) (see [Ka]) exactly as the corresponding proof in [Kel.

Since by the hypothesis in (i) we have {p} ¢ §;, the model existence
theorem in [Ka] establishes (i).

For proving (ii), we use §, defined as §; with (iv)’ replacing (iv):

(iv)’ for every a< x*, there is a chain-model (B,,: n< w) and
there are some m < o and interpretations d of all constants d in D (D is
ag in (iii)) such that d € B,,, (4 € D) and (B, pmics Daept &< oy is 2 model
of s with the rest of (iv) holding for (U%s, <),

Alternatively, it is not difficult to give a direct proof of 4.1 avoiding
consistency properties in a way similar to the proof of the interpolation
theorem for L, in [(2].

Pl

§ 5. The Y,-compactness theorem of Green. A beautiful application of
his theory is given by Vaught for proving the X, -compactness theorem

_of Barwise [B1], see § 5 of [V]. Barwise shows in [B2] that X;-compactness

for admissible (in fact for transitive prim. closed) sets A is equivalent
to the strict-J7+ (s-II}) reflection principle holding for A. The essential
part of Va11gft’s prgof, in fact, establishes the s-/I; reflection principle
for countable admissible sets. We give some definitions.

2%
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An ordinary first orde1 formula in an extended language of set theory
(containing ¢ and = and some additional predicate variables) is calleq
essentially wniversal (ew.) if it is in negation normal form and all
existential quantifiers in the formula appear in contexts like Hz ey (ie.,
®e[s ¢ y—>...]). The notion of essentially existential (e.e.) is defmed
similarly. A strict- Xt (s-2) formula is a second order formula of the
form H.S, .. . S where 6 is e.u. (we also agsume that no free predicate
variable other than ¢ and ~ appears in S 0). Let A be a non-empty
transitive set. We write 4 for the structure (4, e | 4). The striet- T}
reflection principle (s-II} RP) for A says, in the contmpositive form,
that for any s- 2} formula © S 9(z) and elements 4 of 4, we have:

Vw e Aw transitive and aew=uF 0 g O[a]]wél C g 0[a].

Tor the reader unfamiliar with the subject, the best way to get
a feeling of these notions is to see, first, that the converse of the
s-II1 R.P. is trivially true, and second, that the set E(w) of hereditarily
finite sets satisfies the s- H" R.P., and in faot this lagt fact is more or
less a reformulation of the Konig lemma on finitary trees.

Now, the nice thing about Vaught’s proof of the s- II} R.P. for count-
able admissible sets is that it breaks the argument into two theorems,
the first talking about arbitrary coumtable structures, the second about
arbitrary admissible sets.

The first of these theorems is that a s- 2} formula is equivalent for
countable structures to a game-s-Z formula of the form

Va, 0y Vo, @yy . A0 < oNu(l; @y veey Yn)
where (Ny; < w) is recursive, each N, is quantifier-free and

ENa—=>Yn€@Bgw oo 0 Yy {00, cony Yy b O U U ee W Uy

(Actually, it follows from a result of [Ma 1] that the same coneclusion is
true for any X7 statement preserved for transitive substructures.)

The second part of Vaught’s argument is the theorem that the state-
ment of the s-IT; R.P. with a game-s-X} formula holds for arbitrary
admissible sefs.

We will use a slightly modified form of this second theorem of Vaught,
involving - set-primitive recursiveness, see [J-Ka]. A set closed under
set-primitive reeursive functions is called prim. closed. The use of prim.
closed sets would not be absolutely necessary but it is convenient because
many set-theoretic predicates are absolute with respect to transitive
prim. closed sets. -

Let us call a game formula of the form

Vo &Yy .. Vi T . Vo < 0 N (05 %, <&y ooy Ynd)
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a special game formula if N (v, %, 2) is an e.e. formula containing only
and =, and

N (i, iy een Yn))=>Yn € By 0 oo Yy U Uy U e U % -

THEOREM 5.1 (Va.ught [V] Let A be an admissible set, w e A. Let I'(u)
be a special game formula, aeAd. Suppose that for every tramsitive pmm
closed set w e A such that ay, ..., a; ¢ w, we have @k I'al. Then 4 k I'[d].

Inspection. of the proof of 5.3 in [V] reveals that it estab];shes 5.1.
(We use that o ¢ A implies that any a < A is an element of a transitive
prim. closed w e A. The assumption on N that it is e.e. is used to make
sure that @ F N[.. J= A FN[..1)

We are going to show that 5.1 can be used to prove Judy Green’s
compactness theorem, [G]. In or del to do this, we will “bring s-X} formulas
to a special game form?”.

Let A be an admissible set. Let B,C B,CB,C ... and let

ka—? Buin< w)red.

Assume. that for some C e 4 we have B“B,I,B“Z,B"w C 0 for all n< w.
Assume moreover that

(i) for every element aec.4 there is a function feAd such
that domfC B = | J.B, and rnf= g,

n<o

(ii) A is of cofinality o, i.e. A= J A, for some 4,4 (n< w).

n<w

ExaMPLE 1. Let B, = n. Let 4 be a countable admissible 'set such
that o ¢ A and every element of 4 is countable “within” 4. Then the
hypotheses are satisfied.

ExaMPLE 2. Let (By| n < ») be a sequence of transitive 'sets such
that w e By, and for each n < w, By is closed under pairs and the power
set of By, is an element of B, . Let 4 be the smallest admissible set such
that (By: n < w) ¢ .4. Then ag Green shows in [G], A satisfies the above
hypotheses.

THEOREM 5.2 (Green [G]). Any admissible set A satisfying the above
hypotheses satisfies the s-IIf R.P., or equivalently, is X -compact.

Let O ;§ a(u) be a 8- 2]1 formula, @ € 4. We will construct some special
game formula I'(w, 4y, uy) such that the following two statements hold:

(iii) For every tramsitive prim. closed we A such that a, %, Cew,
we have

wE S §olal=% k I'a, %, O].
(iv) A ¥ I'Ta, k, 01> 4 @ § olal.
Together with 5.1, (iii) and (iv) give the s-II; R.P. for 4.
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We note that (iii) and (iv) do not require that 4 be admissible but
. Tequire (i) and (i) above. It would be nicer to have a single equivalence
instead of (iii) and (iv) similarly to the first theorem mentioned above in
Vaught's argument; however, the converse of (iii) does not seem. to hold.
(a) To begin the description of I" and to give an intuitive idea of the
proof, we consider an auxiliary language suggested by Green’s “indexed
languages” in [G]. Define D to be the smallest set of elements of 4 such
that if f € A is a function with mfC D and either domf= B or domf= 0
or 0 cdomfC By for some meow (We assume w.l. o.g. that 0 ¢ By), then
feD. We will consider the langua‘geal}(g ,D) of get theory (e and )
augmented with the relation symbols § and with all individual constants f
for feD. f will not denote f, rather we have the following inductive de-
finition: .

< denote (f) = {denote (g): gernf}.
So, every formula of L(g, D) has a standard interpretation in' any transi-
tive set- (or class-) model with f denoting denote (f). It is easy to see that
assumption (i) implies that for every a<.A there is feD such that de-
note (f) = a. This fact will be used in the final part of the argument,
(f) below. The reason for the appearance of the two kinds of domaing
of elements of D is the following. Very roughly speaking, the main feature
of the proof (as well as of Judy Green’s) is a “two stage instantiation”
of restricted existence statements. In other words, having been forced
to make @z efp(z) true, we first force some Hag ef } Bup(z) true, then

secondly we force some @(g) to be true for some g ern(f t Ba). We have

to do this because. we have to deal with many existence statements
simultaneously but we can handle them only if there ‘are not too many
possibilities for the simultaneous instantiations. Made in one step, for
the above simultaneous instantiations we have too many possibilities,
roughly as “many” as the set *(denote (f)) (where y is the set of state-
ments considered) that can even be of power greater than 4. In the two
stage version however, the first stage entails *w, the second *By, “many”
possibilities and both sets will be elements of A. This explanation will
become clearer upon seeing the proof that follows.

(b) Let I be a function, F'e A, domF = B,, and let hy, by, iy be
functions with domain By, rnhyC w, mh, C By, mmh, C2. We describe
a set @= O(F, hy, hy, h,) of sentences of the language L(E’, D) constructed
on the basis of F, ky, by, hy. @ will e a set-primitive recursive function
of w, a, k F, hy, Iy, by and o (the formula originally given) (w here is
redundant since w = domk). As a preliminary remark, we note that F
is used here for ennmerating some sentences of L(8, D) as well as some
constants in D and hy, by, h, are used to instantiate existence statements
and disjunctions. Recall that o is essentially universal.
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& is defined as the smallest set such that (v)-(xi) below hold.
(v) o(f for w) e @ if feD, beBy, f=F(b) and a = denote (f).
(Vl) Ifbe Bn,
F(b) = Ea ¢ fp(a)
and F(b) belongs to @ and domf = B, then
s ef } B,o(x)e®

where m - ho(b) (recall that %y : By— o).
(vil) If b e By, ’
Fb)=Unegp@) e,

0 # domg C By then either hy(b) ¢ domg and g(g(0)) e @ or hy(b) e dom(g)
and ¢(f) e for f= g(hu(B)) (recall that hy: Bp—By).
(viii) If b € By,
F)=pVpe®,

then @y,q € @ (recall that hy: By—2).
(ix) If pyuAge e D, then @y, p, e .
(x) It Veg(x) e D,

‘ f=Fb), and feD,
then ¢(f) ¢ P.

(xi) All equality axioms in L(g, D) with econstants in ™nF~D
are in &.

(c) We claim "that there is an essentially existential formula
N(v,w, u, 4y, 2) with the following property. Given any » e o, transitive
prim. closed w C A such that a, %, 0 ew, and given any F; and k] in w
(i< m, j<2) then for s = (Fy, kg, Y, 13, ..., Fu, B, T, B3> we have

WENm,a,k,C,s)

iff conditions (xii) and (xiiil) below are satisfied.

(xii) For ¢ <z n and j < 2, F, and h{ are functions with domain B
as above, hieC.

(xill) @ = | D(F,, hi, ht, Bi) is “consistent” in the sense that it does
Al gzm,

not contain = and e for any atomijc s and whenever z = _f €y orjz g
is in @, then = is true under the standard interprefation.

To see the existence of N , use the facts that denote is a set-primitive
recursive function, @ is a set-primitive recursive funetion of a, b, C and s,
and that the graph of a set-primitive recursive function is definable by
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an e.e. formula which is absolute with respect to transitive prim. closed
sets (see [J-Kal). }

We put I'(u, u,, 1,) to be .

Va, HyS Ty 8yS ... Vo, Hyp Byi By ... Vo < o
N (n; , Uy, -Up, (95 Y5 Y1 '.’/g: vy Ty Yo ’f’/?;?/@) .

(e) Suppose w is ag above and (w, ¢l w, 8y, ..., Sp) F o[a]. To show
(iii), we have to say how to find ILZ once By, ..., Fy are given. First we
consider the set @’ of sentences in L (S, D) which are substitution instances
of subformulas of ¢ and which are true under the standard interpretation
in (w,e b w, 8, ..., O). We “truly” instantiate these by functions 1% so
that the above (vi), (vii), (viii) become true when we read @’ for &. Now,

' sinee Brw, BB, B2 C 0, we have h? ¢ 0. Clearly, @(F,, k3, b7, %) C ¢'and
by induction, |J®(F,,hs, ki, Bi)C @', and so, by (c), N(n,a,k, C,s)
<n .
is true in . This shows (iii). .

(t) Assume 4 k I'[a, k, O].

Then it is sufficient to apply this fact for some F,, F,,..in 4
such that domF, = B, and |JrnF,= A. Taking the A} given by the

n<w

agsumption, we see that
T= U®(F,, Iy, by, hy)

n<ao
is “consistent” in the above genge. It is easy to see that for some relations
8.y 8 on 4, (4d,e 4,8, ..., 8x) will be a model of T under the
standard interpretation of constants. The relations, Sy are defined accord-
ing to which of the atomic and negated atomic formulas containing S§;
are in 7. Then an induction will show that all elements of 7 become
true in the model. The induction is based on the definition of 7' and for
the. case the formula is of the form Vag, it uses the above-mentioned conse-
quence of assumption (i) that every b e A is denote (f) for some feD.
This proves (iv) since clearly, o< T (see (v)).

By what was said above, thig finishes the proof of Green’s theorem. -

Finally we mention that the A-recursive enumerability of valid
sentences of A for an 4 with the above assumptions (actually, (i) is not

needed) can be proved similarly, following again § 5 of [V]. This result
is also due to Green [G].
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