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Uncountable g-models with countable height
by
Wojciech Guzicki (Warszawa)

Abstract, A model of ZFC™4V = HC is constructed so that its Cohen generic
extensions are elementary. This construction is used to prove that there exist uncount-
able f-models of second order arithmetic with countable height. In presence of Martin’s
Axiom they can have power 2%,

1. Introduction. In the present paper we prove the existence of un-
countable standard models with countable height of the theory ZFC™

(ZF-set- theory without the power set axiom and with the axiom scheme
of choice:

(@)y(Te) D(w, 2)— (Ef)[ Fune (f) & (2)y |z « dom(f) & Bz, F@)]-

Hence we conclude that there exist uncountable f-models for second
order arithmetics 4, with only countably many non-similar well-orderings.
Assuming Martin’s Axiom, we can strengthen these results by replacing
the words “uncountable” by the words “of the power of the continwum?.

A. Mostowski in [1] raised the following problem: are there two
non-isomorphic w-models of 4, of the same power >w,;?

Our paper gives a positive answer for every power <2¥, but with
the aid of Martin’s Axiom. The result in the case of 2% = g, is well known.

Gerald E. Sacks has kindly informed me that he proved the theorem
on the existence of f-models of power 2% without any additional as-
sumptions. His proof, which he sketched during the Logical Semester
in Warsaw, was much more involved than the proof given below.

In the proof we use the method of forcing.

2. Forcing with proper classes. In the present section we quote some
facts about forcing with proper classes in ZFC™, introduced by A. Zarach
in [3]. We omit the proofs of facts which are proved there.

Let 9t be a countable standard model of ZFC~. We call a class
P C M a notion of forcing iff there is a partial ordering <, of P (denoted
further as <) with the greatest element 1,, definable in M (possibly
with parameters). The elements of P will then be called conditions. A con-
dition p is stronger than ¢ (or p is an extension of ¢) iff p < ¢.

4 — Fundamenta Mathematicae, T. LXXXII
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DrriniTIoN 1. A set G CP is P-generic over M iff G satisfies the
following three conditions:

1) peG&p<qg—>geC

(2) peG&gecG—>EnreG@&r<p&r<d]

(8) If SCPisa class of I and S is dense in P, then G ~ § = 0,

Levua 2. The condition of density in (3) can be replaced by one of the
Sfollowing conditions: - '

(a) S is predense, i.e.

(D) Be)(Br)lgeS&r<p&r<q],

(b) 8 is a mawimal amitichain, i.e. 8 is o maximal subclass of P with
the property

(PP eS&qeS&p #q&r<p—>TIr<q].

An eagy proof is left to the reader. Note that an antichain is maximal
iff it is predense.

DerivirioN 3. Let us suppose that for every o e On ~ 9 we can
define (uniformly in «) the set P,CP, P, eI, the class (of M) P°CP
and the mapping F: P,xP*—>P such that 1,¢P,, P,CP, for a< g,
1p € P?, OU sza:P’ FP is one-to-one, onto and order-preserving (in

ae0nn
P, x P* we consider the standard product ordering) and moreover, for
P,q,reP, if p=F'({g,r)) then p is the weakest common extension
of ¢ and 7. Then we call P a coherent notion of forcing.

- DerinITION 4. A coherent notion of forcing is comtinuous iff for

every limit ordinal a,P, = | JP;. A'notion of forcing P satisties in M
. s ﬁ<ﬂ .

the sef chain condition (set-c-c) iff every antichain of P definable in 9 is

an element of M. '

In [3] it is proved that a coherent and continuous notion of forcing
satisfies the set-c-¢, and if @ C P iy P-generic over 9 then MM[G] F ZRC™
and IMM[G] is the smallest model of ZFC~ containing M (as subset) and
all &, = @ ~ P, (as elements). In this case we have M[G]= | J IM[G.]

A . aeOn OM
a?d m?[a GIS P,-generic over M. In [3] A. Zarach uged Shoenfield’s definition
0 3B

MG] = {Kq(a): a e M},
where '

KEola) = {Eq(b): (Hp)[p <« G &<b,p) cal}.

3. '!‘he product lemma. Let us consider in 9t two coherent and. continu-
ous notions of forcing P and Q. Next assume that the formulae defining
In M the sets P, @, their decompositions and isomorphisms FZ and F2,
define the same notions in each standard model of ZFC~ of athe same
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height as Mt and containing IN. For instance, we can satisfy this con-
dition in the case where 30t k V = L (restrict the definitions to the class L;
absolutness of L in the models of the same height gives uniform defini-
tions of these notions). The second case is where P and Q are classes of
finite subsets of On ~ I, satisfying some absolute conditions. B.g. P and [
may be equal to the class of functions from finite subsets of (On ~ M) X ©
to 2 or one of them is this class and the second is a set of 9. This second -
case will be of special importance in our construction, though product
lemmas are proved under the general assumptions stated above.

Let us define the notion of forcing R=Px @ with the product
ordering. It can easily be shown that R is a coherent notion of forcing:

Ro=(P)x(Q), R =P)x(09,
Ff(<<.'p1a &> 5 { P2y 92>>) = <F5(<P1: D)y Fg((ﬂu &)y -
Tf P and Q are continuous, then so is R. Next observe that if P and Q
have absolute definitions, then so does R.

Levua 5. Let P, Q and R be as above. Let G C R be R-generic over .
Then there exist Gy C P and G C Q such that G = Gy X @y, Gy is P-generic
over WM and Gy is Q-generic over M[G,]. Moreover M[G]= M[G1]1[G:].

Proof. Define &, and @, as follows:

G={peP: (BQ)[<p,>G} and G={gcQ: (Ep)Kp, b}

" The proofs that @ = Gy X @,, G, is P-generic over I and @, satisfies

conditions (1) and (2) of Definition 1 are trivial.

‘Let SCQ be a maximal antichain parametrically definable in
M[G]. Since Q is a coherent and continuous notion of foreing in M, it
is coherent and continuous in MM[G,], and hence it satisfies the set-c-¢
in M[G,]. Thus S e M[G,], 8= Kgla), ac M.

Let @ be a sentence of the forcing language saying that 4 is a maximal
antichain in (. Note that the absolute definition of @ implies that D
means the same in every generic extension of the model .

We define T = {(p, > «R: p Fp“®—>]ea”} and prove that T is
predense in R. Of course T is a class of M, because forcing is always defin-
able in the ground model.

Take ¢p, ¢> « R. We have to find {p;, > ¢ T compatible with {p, ¢>.
Let ug take G C P, P-generic over M such that p e @ . Consider two
cases: B

1. M[G,] F D. Then Ky (a) is a maximal abtichain in @, and so we
can find ¢, € Ky(a) compatible with ¢.

2. MG F 1D. We take ¢ = ¢. ;

In both cases M[G)]F “P—>{ € a”, and so there is a p, e Gy suc,h
that p, Iy “®—>§, e a”. p and p, ave compatible since both are in G.

4%
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g and ¢ are compatible by construction. Thus {p, ¢> and {p;, ¢,> are
‘compatible and <(p;, ¢) € T, which proves the predensity of T.

By Lemma 2, @~ T 0. Let (p,® e@~T. Then p e Gy, p I “0
sgea”, and so MG,k “O—>G e a”. But M[G,] F P, s0 ¢ ¢ 8. Simultane-
ously g e Gy, and so Gy~ 8 # 0. .

By Lemma 2 @, is Q-generic over M[G,]. The equality now follows
from the fact that IM[G] is the least model of ZFC™ containing I and
all G, = (64), % (G5), and M[G,][G) is the least model of ZFC™ contain-
ing I, all (@,), and all (G,),. Both conditions say the same because MG
and IM[G][G.] are modely of ZF~. Q.E.D:

LeMMA 6. Assume that P, Q@ and R are as in Lemma 5. Let Gy C P be
P-generic over M and let G, C O be Q- generic over M[G1]. Then G = Gy X G,
is R-generic over M and M[G]= M[G,][G]-

Proof. Conditions (1) and (2) of Definition 1 are easy to check. By
Lemma 2 it will be sufficient to prove that G intersects every maximal
antichain in R, parametrically definable in .

Let SC R be such an antichain. Sinee R is coherent and continuous,
it satisfies the set-c-c¢, and so S ¢ M. Thus §C R, for some a €« On ~ M.

Let ¢, € Q. Define 8(g) CP as follows:

S8(g)={peP: (B)(ENr<g&r<q&<{p,qeSl}.

Of course S(gq,) CP,, s0 S(g,) ¢ M. We are going to show that S(g) is
predense in P.

Take p, ¢ P. By the maximality of 8, {py, ¢ is compatible with
some {p, ¢ ¢ 8. Let {r,, r,> be a common extension of {(p, ¢> and {Pes g
Put = 7, to obtain p e §(q). By the compatibility of p and p,, S(g)
i predense.

Next define §8' = {ge Q: (Ep)[p ¢ (4), & <p, ¢> ¢ 8]}. 8 iz a class
-~ of MG4], since (Gy), « M[G,] and §'C Q,. We show that 8 is predense
in Q. :

Take ¢, ¢ Q. Then 8(q;) e M and §(g,) is predense in P, hence by
Lemma 2, Gy~ 8(g) # 0. 8(q)CP,, and so there exists a p, e P, such
that p, € G, ~ 8(g). Then we can find a ¢ compatible with ¢, such thab
{pys @ € 8. Since p, € (Gy), and (p,, ¢> € S, we have g §'. g is compatible
with ¢, and ¢, i3 arbitrary in Q, and so 8’ is predense in Q.

Thus by Lemma 2 we can take g ¢ 8 ~ G,. Hence there is a p € (6y),
such that (p, ¢> € 8. But p ¢ Gy, g € G and (p, ¢> e 8, and 50 § ~ (G4 X Gs)
# 0, which proves the genericity of G.

The equality MM[G]= M[G,]1[G,] can now be proveci exactly as in
Lemma 5. Q.E.D.

‘The importance Qf Lemmas 5 and 6 is that we can consider product
forcing whose factors are proper classes. The classical proof (see Shoen-
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field [2]) could be applied only in the case where P is a set in 9. Our
Lemmas allow us to prove the existence of a pair of models M and N of
7ZFC~, M being a generic extension of M and such that M < N. The
idea of this proof is as follows: add a class of generie subsets of a given
model 9, to obtain a model M and next add one generic subset more
to obtain 9t. The product lemmas allow us to prove that the second ex-
tension is elementary. This fact is the key tool in our considerations.

4. Isomorphisms and automorphisms of notions of forcing. Let P and Q
be two coherent and continuous notions of forcing in 9 and let F: P—~Q
be an isomorphism of P and Q, definable with parameters in M. We
oxtend F to a mapping F*: M—IM as follows: for a <M let F*(a)
= {{F*(b), F(p)>: p P & <b, p>ea}. Of course the precise definition
of F* should be carried out by induction on rank(a). We prove some
lemmas on F*.

Lemwma 7. If G CP is P-generic over M, then F(G)C Q is Q-generic
over M and for every a € M we have Ky(a) = Kpg(F*(a)). )

Proof. The Q-genericity of F(G) can be proved exactly as in the
case of P and Q being sets.

Assume inductively that for b of rank less than rank(a) we have
Ey(b) = Epgy(F*(b)). Let @ ¢ Kg(a). Then o= Kg(b) where ¢b, p) € a for
some p € @. But then rank(b)< rank(a), and 50 o= Kpyg)|(F*(b)). Since
(b, p) € a, <F¥D), F(p)> e F*(a). At the same time F(p)<F(G), and so
® ¢ Kpg|F*(a)). For the second inclusion, run the argument backward.
Q.E.D.

The reader ghould observe that if ' is the isomorphism inverse
to P, then (F~%)* is not an inverse mapping to F*. But an easy proof
shows that for every ae M, Kgla)= KG((F”l)*(F*(a))) ; hence every
condition p e P forces “a = (F~)*(F*(a)).

LuvmA 8. Let p e P and @y, ..., @n € M. Then

P lbp D@y, ey 8,) =F(D) g O(F*(21), vy F¥(m,)) -

Proof. Assume the left-hand side and take & C O, Q-generic over It
such that F(p) e . Then p « F~*(@¢) and by Lemma 7, F~Y(@) is P-generic
over M. Thus MIP~H@)] F “®(@y, ..., %n)”, L0 .

MEH )] E (D[KFA(G)(%): ey KF—JL(G)(%)] .
Trom Lemma 7 we see that [G]= MFH(F)]; so
MG E dj[]fﬁl—l(a)(ml)7 ey KF-l(G)(“"n)] .
Thus - .
MLG] b O|K(F* (), -, Kl (@) 5
and so
MIGT E “O(F* (1), ooy T (@)
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Since @ is arbitrary, we have proved the right-hand side. For the second
implication use 71 and the remark before the Lemma. Q.E.D.

LeMMA 9. FH@) =@ for me Dt

An easy proof by induction is left to the reader.

Remark. The sign ~ on the left-hand side of the equality in Lemma 9
is used in the sense of P and the one on the right-hand side in the sense of Q.

+  DerFINITION 10. A coherent and continuous notion of forcing P is
homogeneous in 9 iff for every pair of conditions p, g ¢ P there exists an
aeOnn~ M and an automorphism f: P,—P , fe I such that p,geP,
and f(p) is compatible with g.

TevmA 11, If P is homogeneous, &y, «.., &n € M, G is P-generic over M
and MIG] E B[y, ..., 23], then 1 kp D (B, ...y By).

Proof. Letp Ik p D (y, ..., ) and g kp 71D (&y, ..., #a). Extend f (taken
from Definition 10) to an automorphism F of P. Then by Lemma 8 and
next by Lemma 7 we have F(p)kp®(&y, ..., ). But F(p) =f(p) is
compatible with g, which is a contradiction. Q.E.D.

Note that if P is defined absolutely and is homogeneous in I, then
it is homogeneous in every extension of i of the samie height.

5. Construction of an elementary generic extension. Let 2, be a count-
able standard model for ZFC~. We fix the following notion of forcing P:

P = {f: Func(f) & dom(f) C Onx 0 &rg(f) C2 &Fin(f)},

where Fin(f) is a formula “f is a finite set”.
P,={f<P: dom(f)Cax o},
P?= {feP: dom(f) ~ (e X @) = 0},
Fi(lp,)=pvwq for peP, and geP.

The ordering of P iy the inverse inclusion.

One can easily check that P is a coherent, continuous and homogene-
ous notion of forcing. Next observe that every finite subset of 9%, belongs
to I, and so the definition of P is absolute, because we can define P
outside the model M, as a subset of (On ~ M) X w X 2. Thus P is & class
of every model of the same height as 9. Observe also that, for every
aeOnn Wy, P* is also a coherent, continuous and homogeneous notion

of forcing, defined absolutely. The decomposition of P* can be defined
ag follows:

(P9 = {f e P*: dom(f) C (B—a) X o},
(P = {f eP=: dom (f) » ((ﬁ—a) X a)) = 0},
Fip,)=pogq for pe(P?), and qe(P?).
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The ordering of P? is also the inverse inclusion. The homogeneity of these
notions of forcing is a consequence of the finiteness of the conditions.
Finally we define the notion of forcing Q:

0 = {f: Func(f) & dom(f)C w &rg(f)C 2 & Fin(f)}.

We can easily see that Q « 9, and so Q belongs to every extension of M.
We order Q by the inverse inclusion. Of course Q can be considered as
a coherent and continuous notion of forcing, and thus product lemmas

" will be applicable to Px Q and P*x Q. Observe that Q, Px Q@ and P*x Q

are homogeneous notions of forcing.

LeMMA 12. In the model WM, (and hence im every extension of it the
notions of forcing P*X @ and P° are isomorphic.

Proof. We define an isomorphism F: P*X Q—+P* as follows:

Ty, D) = {{<B, ), 80t B = at o0& LB, ny e dom(fy) & fi(<B, my) = i}
w{{B,my, iy a< f< atw&{f—1,n)>cdom(f) &
& fi(<B—1, my) = i} v {{a, n), i)t n e dom(fy) & foln) = i} .

Of course I is a class of every extension of M. We leave it to the reader
to check that F is an isomorphism. Q.E.D.

TamoREM 13. There exists a model I of the same height as My such
that if HC Q is Q-generic over M, then M < MLHT.

Proof. Let GCP be P-generic over 9%, and put M= M,[@]. By
Temma 6, GxH is Px Q-generic over 9, and M[H]= MIGI[H]
= MG x H]. We must show that M << MH].

Let @ be a formula of the language of the set theory and z, ..., #x € T
Tt is sufficient to show that Mk B[ay, ..., ] >M[H] F P2y, ..., Za]. For
the converse implication take 9.

From section 2, @, ..., &, ¢ M[EG,] for some a, ae‘Onr\EDtu. Thus
we have M [G,1[G*] F B[, ..., ,], and 8o M, [G. 1G] F B(@y, ..., T,), Where
the sign ~ is used in M [G,], in the sense of forcing P*. We have seen
that P¢ is a homogeneous notion of forcing in M,[G,], so by Lemma 11,
1ps Fpa O(Zy, ..., &,). But in the model 9M,[6,] the notions of foreing P*
and P*x Q are isomorphic. Let ' be this isomorphism. Then byALemmE\, 8
IP“X Q I pax Q(D(F*(&i)v RS F*(é}n)) and by Lemma 9’1P'1><Q I PaxQ@ (mli Eg ] w’n))
where the sign ~ is now used in the sense of P>X Q.

Tet us consider the model MJ[G,1[G*][H]. By Lemma 6

M [G,1[6°1[H] = DG X H],

where G°x H is P*X Q-generic over M [G,]. So by the truth lemma,
MLGLIL6" X BT F BBy, ey Fa) 5

ie. MIH]E Olwy, ..y #a]. QED.
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We can extend this result to the following:

TaroREM 14. Let 9, be @ countable standard model of ZFC™ and let
P <M, be o notion of forcing in M,. Then there exists a model M DM,
of the same height such that every P-generic extension of M is an elementary
extension. .

The idea of the proof of Theorem 14 is the same: add a proper class
of P-generic subsets of P and next add one more subset. We then uge
the following notions of forcing:

R = {f: Fune(f) & dom () C On &1g(f) CP—{1,} & Fin(f)},
f, <z fy = (@)[a e dom (f,)—>a  dom(fy) & fi(a) <p fo(@)]
R,={f<R: dom(f)Ca},
R,= {f<R: dom(f) na =0},
FEp, ) =puq.

The details of the proof are left to the reader. Q.E.D.

The phenomenon deseribed in Theorems 13 and 14 cannot take place
in the case of models of ZF, because we have the following well-known

LeMMA 15. If M < N and both are standard models of ZE, then M
= R, ~ N, where a is the height of M.

Proof. Assume that |—IN # 0. Let » be an element of N—IM of
minimal rank. Then #C 9. Assume that rank(z) is less than o. Then
for some y ¢ M, xC y. Take 2= p(y) ~ M. Then # is the power set of y
in 9M; since M << N, # is the power set of ¥y in N. But 2 Cy and z¢e,
which contradicts the definition of power get. Thus rank (%) > «. Q.E.D.

The following lemma is the “key lemma” of the paper. It makes
possible fo describe inside the model M- that M < M[G].

Lemuma 16. Let W be o standard model of ZFC™, Q a notion of forcing

defined at the beginning of this section and G C Q a Q-generic set over M.
Then M < MG iff ‘

ME (@) .. (@)D (@), v, B,) = Lgleg P(Fyy ooy B,)] -

for every formula @ of the language of the set theory with free variables
Byy ey Do

Proof. Assume M < M[G]. Then by Lemma 11
ME D[, ..., m,] = MIAE Py, .y 3,] = Lo b D(@y, ey By) -
On the other hand, assume that 9t satisfies the schema. Then

MEP[@y, oy @] = Aok B(Fy, ..., 3,) = MG E D2y, ..., 2,). QED.
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Observe that the formula 1,1, ®(,, ..., a,) depends only on the
formula @, not on the model N, i.e. there is a formula Fore,(y, 2, @y, ..., )
guch that

M EFOrey[<oy Py Byy ey Bl = ME 1y Iy By, .oy &y,) -

6. Uncountable models of ZFC~ and 4,.

DEFINITION 17. An ordinal o is a model number iff there is a standard
model M of ZFC™+V = HC such that a = On ~ M. HC is the class of
all hereditarily countable sets.

By Zbierski’s theorem (cf. [4]) model numbers are exactly the heights
of f-models of 4,.

THEEOREM 18. Assume Martin’s Awiom. Then for every model number o
there emists o model N of ZFC~+V = HC, of power 2% and height a.

Proof. Let 9, be a countable standard model of ZFC~ 4V = HC
of height a. By Theorem 13 there exists a model M of the same height,
such that if ¢C Q is Q-generic over 9%, then M < M[EF].

We define a transfinite sequence of standard. models for ZFC™+V
— HC. Agsume that of & < 7 < 2% we have defined models N, satisfying
the following conditions:

1. M, = M (note that if M, F V= HC, then so does every generic
extension of it). .

2. N, < Ry, for & <§,.

3. My, & N, Tor § <6

4. T < £,

5. 9, is a standard model of ZFC™+V = HC of height d.

We define 9,. There are two cases:

Cage 1. # is a limit ordinal. Then we define %t, = ([ %,. Of course %,

E<y

satisfies all the conditions 1-5. ‘
Case 2. n=¢&-+1. Then M= N, < R;; thus, by Lemma 16, N,
satisfies the schema

(@) e (@) [P @y oy 1) =L kg B (5 ey By)] -
By Martin’s Axiom take G C @, Q-generic over .. Then, by Lemma 16,
RN, < NG Put N, = N,[EF]. N, again satisties all the conditions 1-5.
Finally put %t = |J R,. Then N is the required model. Q.E.D.
12340 .
COROLLARY 19. Without Martin’s Awiom we can prove the ewistence of
o model of ZFC™ of power wy and height a. .
COROLLARY 20. Assume Martin’s Aziom. Then for every model number o
there ewists a B-model of A, of height a and power gRo,
For a proof take the continuum of & model constructed in Theorem 18.
The Corollary is then a consequence of Zbierski’s Theorem. Q.E.D.
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The model constructed. in Corollary 20 is not isomorphic to the
principal model of 4,. If we let a be the smallest model number, we ghall
obtain a f-model for 4, of power 2%, which is not elementarily equivalent
to the principal model of 4,. Namely, our model will not contain any
other model of 4, as an element.

CoROLLARY 21. Without Martin’s Awxiom we can prove the emistence
of uncouniable B-models of A, of height o for every model number a.

An analogous result concerning the Kelley-Morse set theory wag
proved in the same way in the author’s doctoral thesis. ’

Added in proof. A proof of a much stronger theorem was recently given by H. Fried-
man in his unpublished paper Uncountable models of set theory.
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Two notes on abstract model theory

I. Properties invariant on the range of
definable relations between structures

by

Selomon Feferman (%) (Stanford, Cal.)

Abstract. Suppose I is any model-theoretic language satisfying the many-sorted
interpolation property and that R is an L-definable or even IL-projective relation
Dbetween L -structures. It is shown that if (1) an L-sentence p holds in 9% just in case
it holds in M, whenever R (M, ;) and R (M, N,) then (2) there is an L -sentence y such
that p holds in M if and only if v holds in M whenever R(M, N). This has various results
of Beth, Robinson, Gaifman, Barwise and Rosenthal for familiar languages as immediate
corollaries.

Introduction. Abstract (or general) model-theory deals with notions
that are applicable to all model-theoretic languages L. Bach such L is
determined by & relation MM ko, called its satisfaction relation, in which It
ranges over a collection Str, of siructures for I and ¢ ranges over a col-
lection of objects Stey, called the sentences of L. The notions of general
model theory are just those which can be expressed in terms of these
basic ones (using ordinary set-theoretical concepts). Examples of such
ate: elementary class, projective class, Lowenheim-Skolem properties, Hanf
number, interpolation property, compactness properties, categoricity. Typic-
ally, the results apply to all I satistying some simple conditions or charac-
terize some given L, by means of such conditions. -

Lindstrom [L.2] provided the first work clearly of this character.
Tts point of departure (via [L1]) was Mostowski’s characterization of L, ,
among certain languages with generalized quantifiers [Mo]. Since then,
the subject of general model theory bas been especially developed by
Barwige [B2]-[B4]. The present two notes are a sequel to my own contri-
bution in § 3 of [F2], making essential use, as there, of many-sorted
structures.

(*) Guggenheim Tellow 1972-73. The author is indebted to the G}lggenheim
Toundation and to the U.E.R. de Mathématiques, Université Paris VII, for ﬂ]eﬂ‘. generous
agsistance during the period in whieh these notes were prepared for publication.
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