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On the shape of 0-dimensional paracompacta
by
G. Kozlowski and J. Segal (*) (Seattle, Washington)

Abstract. 1t is shown 'that if X and ¥ are 0-dimensional paracompacta, then
they are of the same shape if and only if they are homeomorphic and that & 0- dimensional
paracompactum which is not compact is not the shape of any compact space. These
results are essentially consequences of the fact that any fundamental class from any
space to a 0-dimensional paracompactum has s unique realization as a map.

M. Moszytiska raised the question about the relationship between
the shape of a space and its compactification. Here we show

THEOREM 1. If X and Y are 0-dimensional paracompacta, then X
and Y have the same shape if and only if X and Y are homeomorphic.

This is a generalization of the analogous result for compacta [4, Theo-
rem 207. Dimension here means covering dimension, and a paracompactum
is a paracompact Hausdorff space. Since the Stone-Cech compactifi-

. cation X of a normal space has the same covering dimension as X

(see e.g., [3, Theorem 9.5]), Theorem 1 implies that no noncompact 0-di-
mensional paracompactum has the shape of its Stone-Cech compactifi-
cation. In fact, a stronger result is true.

THEOREM 2. No noncompact 0-dimensional paracompactum has the
shape of any compact space. In fact, the shape of such a space is not dominated
by the shape of any compact space (*¥*).

We shall discuss shape and then inverse gystems involving certain
open covers of a 0-dimensional paracompactum, after which we prove
the following lemma which implies that a continuous map uniquely
realizes any morphism in the shape category whose range is a 0-di-
mensional paracompactum.

Levwas. If Z is a 0-dimensional paracompactum and X is any space,
then for any natural transformation F: my—>mx there is a unique map
f: X>Z such that = F.

A polyhedron is the underlying space of a (not necessarily finite)
simplicial complex. Let P be the category of polyhedra and homotopy

(*) The second-named author was partially supported by NSF grant GP-34058.
(**) 8. Marde&i¢ has obtained an analogous result.
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clagses of continuous maps between them. If X is a (topological) space,
then mx is the functor from P to the category of sets and functions which
assigns o a polyhedron P the set ax(P) = [X; P] of all homotopy classes
of maps of X into P and which assigns to any homotopy class h: P—@
between polyhedra the induced function hy: [X; P] 9_[X ; @1 which maps
the homotopy class ¢: X—P into the composition hp = gyu(h) of the
homotopy classes of h and ¢. A natural transformation. G of the functor sy
into the functor my assigns to each homotopy class p: X P a homotopy
class G(g): Y- P in such a way that for all homotopy classes ¢: X —P,
p: X>@, and h: P->@Q such that hp =y we have hG(p) = Q(y). If
fi X+ Y is a map, then there is a natural transformation f¥#: my-»my
which assigns to the homotopy class h: ¥—P the composition A[f]
= f¥(h) of the homotopy class [f] of f with %. (The natural transformations
from ny to =z correspond to the fundamental classes from X to Y iu
Borsuk’s theory of shape.)

Given two spaces X and Y we say that the shape of X dominates
the shape of Y if and only if there are natural transformations F: sy —>my
and G: mx—>ny such that GF = 1§. If, in addition, FG = 1%, then X
and Y are said to be of the same shape. In other words, X and Y have
the same shape if and only if there is an invertible natural transformation
(i.e., a natural equivalence) of the functors mx and my.

It will be shown elsewhere by the first-named author, that this
notion of shape coincides with that of Borsuk for compacta, of Mardegié-
Segal for compact Hausdorff spaces, and of Fox for metric spaces. (Similar
results have been obtained independently by S. Mardetié [5] and [6].)

An open cover of a space Z is discrete, if its members are nonempty
and pairwise disjoint. A space Z is 0-dimensional (in the sense of covering
dimension) if and only if every finite open cover has a discrete open
refinement; it is a standard theorem that a paracompactum is 0-di-
mensional if and only if every open cover has a discrete open refinement
[3, Cor. 9-14]. A discrete open cover of the space Z is congidered as a set
of subsets of Z, and all the discrete open covers of Z comprise a set D.

We shall now show that if Z is a 0-dimensional paracompactum,
then Z is the inverse limit of a family of discrete spaces. If U e D, U will
be also considered as a discrete topological space. There is a map gy: Z->U
which assigns to each z e Z the unique member of U which contains .
If U,V eD, and if V refines U, then there is a unique map gpp: V—U
with the property that each membér of V is contained in its image
under pyy. Note that gy = gurey. If A is closed in Z and 2 ¢ Z~A, then
there is UeD such that pp(z) ¢ou(4). It follows [1, 4.5 Embedding
Lemma] that the map ¢ of Z defined by the family {py| U e D} is a homeo-
morphism into the product I7{U| U e D}. The image of ¢ is contained
in the inverse limit I of the system {U, pur; U. D} whose members are
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functions 4 defined on D with the properties A(U) € U and if ¥ refines U,
then AFCAU. If AeL and ze[) {4(U)] Ue D}, then ¢(2)= A To see
that p maps onto L, let 1e L, and suppose | ) {A(T)] UeD}:Q. Then
{Z~A(U)| U e D} is an open cover of Z and consequently has a reﬁlilement
¥ ¢ D. This implies that 4(V) C Z~A(U) for some Ue D. If WeDis a re-
finement of both U and V, then A(W)CA(U) ~A(V)=0, which is
impossible. The result is that the natural map ¢ defines a homeomorphism
of Z onto the inverse limit L.

Proof of lemma. For each U e D the space U is a 0-dimensional
polyhedron; hence any homotopy class of a space into U consists of
exactly one map. Let fy: XU be the map in the class Flpu], and: note
that for a refinement VeD of U we have fu= gurfr. Since Z is the
inverse limit of the system {U, guv; U € D}, there is a unigue map f X->Z
such that guf=7fr for every U eD. These statements also give the
uniqueness assertion of the lemma. »

To establish that f¥=F consider any ¢: Z>P of Z into
a polyhedron P. Let U e D refine the open cover of X cor_msistmg of the
sets y~Y(8), where § ranges over the open stars of all vertices of P. Leb
g: U—P be the map which assigns to each member of U a vertex of P
whose open star contains the image under f of that member. The re-
strictions of y and of ggy to any member of U map into the same open
star, which is a contractible set. Since the restrictions of v and ggv to
each member of a discrete open cover are homotopie, [y] = [gpv]. Because
¥ is a natural transformation, Fly]=[g1Flpv] = [geuf]l = fFlgev]
= [yl o

Proof of Theorem 1. If f: XX is a homeomorphism Wxthlm-
verse f~!: ¥— X, then f# is a natural transformation with inverse (f~ ks
hence X and ¥ have the same shape.

If there are matural transformations F: my->mx and G: mx—>7:y
whose compositions satisfy GF = (1y)* and FG = (lz)%, thgn by the
Lemma there are maps f: XY and g: ¥—>X for which f¥=F and
= G. Since (gf ¥ = f¥4* = (1x)¥, the Lemma implies that gf = Lx;
similarly fg=1y.

Proof of Theorem 2. Let Z be a noncompact 0-dimensional
paracompactum, and let X be a compact space. We sh?H‘ show that for
every natural transformation F: m,->mx there are d]StInf}t homoto;zy
class?es of [Z; 8% = m,(8") which are mapped by F to a single class in
[X; 8% = zx(8%). By the Lemma there is a map f X -»Z such that
F = f¥. Since Z is not compact, there are distinet points 2, 2, € Z5Nf(X);
consequently, there is a discrete open cover U of Z such that «pu(zg

# ou(2.) and gg(2s) ~ go(f(X)) =@ for i =1, 2. If p; aps pu(z) to 1 axi
Z~gulz:) to —1 for i = 1, 2, then y, and y, are maps from Z to 8°= (1, —1)
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which are not homotopic but which satisfy ¢, f = v,f; hence F[y,] = F[y,].
Now if there were a naturil transformation @: nx— 7, satisfying GF = 13,
then F would map [Z, 8°] injectively to [X, S°]. Hence the shape of Z ig
not dominated by the shape of X.

References ‘ On the hyperspaces of snake-like

[1] J. Kelley, General Topology, New York 1955. and circle-like continua

[2] G.Kozlowski, Polykedral limitations on shape (to appear).

[31 K. Nagami, Dimension Theory, New York 1970.

[4] S. Marde&ié and J. Segal, Shape of compacta and ANR-systems, Fund. Math.
72 (1971), pp. 41-59.

[5] — Shapes for topological spaces, Gen. Top. Appl. (to appear).

[6] — Equivalence of fwo notions of shape for metric spaces, Bull. Acad. Polon. Sei.
Sér. Sci. Math. Astronom. Phys. (to appear).

by

J. Krasinkiewicz (Warszawa)

Abstract. J. Segal has proved a theorem which says that the hyperspace of a snake-
like continuum has the fixed poini property. In this paper we give a shorter proof of
this theorem and we prove also that the hyperspace of a circle-like continuum has this
Regu par la Rédaction le 18. 10. 1972 . propert_:y. The Eimctu;r.e of these hypfeljspases is studied and it is shown that the Whitney
maps induce interesting decompositions of these hyperspaces.

0. Introduction. By a map we mean a continuous function. The
term continuum means a compact connected metric space. If X i3 a con-
tinuum, then C(X) denotes the hyperspace of subcontinua of X with
the Hausdorff metric: dist(d,B)=inf{e>0: BCK(4,s) and 4
C K(B, &)}, with K (4, &) denoting the open ¢-neighbourhood of 4 in X.
A map f: X~ 7 into a continnum Y generates a map f: C(X)-> C(Y),
vsually called the map induced by f, given by the formula f(4)= f(4).
‘We introduce a terminology connected with a given hyperspace C(X).
The continuum X is, in a sense, a4 maximal point of ¢(X) and is called
the vertex of C(X). By X we denote the subspace of C(X) consisting of
all singletons. It is called the base of C(X). The base of ((X) is isometric
to X. For every two continua A, B ¢ O{X) such that 4 C B there exists
a maximal monotone collection of continua between 4 and B, which
forms an are in C(X) provided 4 # B. This collection is denoted by 4B
and is called a segment from A to B. In the case where 4 is a continuum
consisting of a single point and B= X the segment AB is said to be
mazimal. In [10] Whitney described a map g, from O(X) (where X is
nondegenerate) onto the unit interval I, having the following properties:

@) p(X)=1,
(ii) if 4CB and 4 # B then u(4) < u(B),
(iil) p({x}) =0, for z e X.

In the sequel every map with these properties will be called a Whilney
map. If X is nondegenerate, then any Whitney map restricted to a maxi-
mal segment of ¢(X) is a homeomorphism onto I.
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