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On cluster sets of arbitrary functions
by
L. Zajicek (Praha)

Abstract. In the article two general theorems concerning cluster sets of arbitrary
functions are proved. The first theorem (Theorem 1) generalizes a theorem of U. Hunter
on the sets of asymmetry of arbitrary functions and the second (Theorem 8) is an analogy
-of Theorem 1. It refers to the set of all points at which two cluster sets defined in different
ways do not intersect. By these general theorems some theorems on cluster sets and
approximate cluster sets of arbitrary functions defined on Euclidean spaces are proved.
For example, a characterization of the sets of all the points of asymmetry of arbitrary
functions defined on Euclidean spaces is given.

1. Introduction and netation. The symbol E, denotes the n-dimensional
Eueclidean space with the usual scalar product ...,....» and the norm |...|.
The origin in Hy, is denoted by ¢. We put E} = E, v {4 co, —oo}. The
vector determined by the points x e En, y € B, is denoted by zy. The

O\
angle determined by the vectors u, v is denoted by u,v. For o #t < B,
and 0 << a <<« the open cone U(t, a) is the set of all points o # z € By

for which og,\o't < a. The whole space By is also termed a cone. The open
sphere of the centre z ¢ ¥ and the radius » is denoted by K (z, 7). The
symbol p denotes the outer Lebesgue measure in E,. If M.CH, and
% ¢ By, then we denote by M, the image of M under the translation
taking the origin into #. If ¥ C By, M C By, @ € By and u(M ~ K(z, 1))
>0 for arbitrary % >0, then we put

D(Y,«, M)=Tlimsupp(E (2, 1) ~ T ~ M){u(E (2, h) ~ M),
h—04

D(Y,2, M) =Lminfu(K(z, ) n ¥ ~ M)/ulE (2, h) ~ M) .
h—04

We write D(¥,2)= D(Y,x, B, and in the case of n=1 we put
D*Y,x)= D(Y,x, (z, o)} and D(¥,2)= DY, o, (—oo,x)). If U is
the cone in E,, then we put DVY¥ (z) = D(Y, z, Us,). Similarly we define
the symbols D(Y, ), D(Y, %), D_(Y, ), Dy(¥, z).

Let MCEy, DCHy, 3B, Let T be a topological space and let
f: D—T be a mapping. Then we define the partial cluster set C(f, z, M)
as the set of all points y ¢ T such that @ « (f (V) ~ M) for any neighbour-
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hood V of the point y. We write O(f, », Bn) = o(f, ), O(f, o, Us)
= (y(f,#) and in the case of n=1 we pub

G+(Jz‘a x) = O(f7 @, (@, °°)) y O_(f,2)= C(f: o, (—oo, ”)) .

i ial & i Tuster set W(f,», M)
Further, we define the partial approm_lpate c w , @y
as the set (;f all points y e T such that D(M ~f Yv),z) >0 for any
neighbourhood ¥ of the point y. We write W(f,») = W(f,o, Ea),
Wulf, %) = W(f, », Us) and in the case of n=1 we put

W—x—(f: @) = W(f: _a/'; (®, °°)) y W_(f,»)= W(f; @, (— oo, w)) .

The set of points ze By for which there exists a cone U such jﬁhat
Culf, ®) # O(f, @) we call the set of Doints of asymmetry of the mapping f
and denote by A(f). We have '

A(f) = {@]0(f, @) # () Oolf, )}
and in the case of n=1

A(f) = {8]04(f, @) # O_(f;2)} -

Similarly the set Agp(f) of points of approximate asymmetry of the

mapping f is the set
Aaglf) = {ofW(f,2) # | Wolf, 2)}
and in the case of n=1 ‘ .
Aan(f) = {@/WH(f, @) # W(f,2)} .

The sets of points of asymmetry and approximate asymmetry of
arbitrary functions have been investigated by several a}lthora. .

W. H. Young [13] proved that for an arbitrary function f: B, H,
the set A(f) is countable. In the same article he also proved an amﬂogy
of the preceding theorem in F,. M. Kulbacka [10] prf)ved that for an
arbitrary function f: B,—E, the set Aup(f) is of the first category and
of measure zero. L. Belowska [2] proved that there exists a function f
for which the set Aqp(f) is uncountable. The theorem of Kulbacka has
been generalized by T. Swiatkowski [12] and U. Hunter [8]. T. Hunt_er [8]
generalized the theorem of M. Kulbacka by proving that for an arbitrary
function f: H,—J, the set Auu(f) is also of the first category a,nd. of
measure zero. In [7] U. Hunter proved a general theorem concerning
the set of points of asymmetry of an arbitrary function. For a further
general theorem of this kind see [12].

In the second part of the present article a general theorem (Theo-

- iom®
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rem 1) concerning the sets of points of asymmetry of arbitrary functions
is proved. This theorem generalizes the basic theorem of ([7]). We fre-
quently use it to deduce theorems concerning mappings from theorems
concerning sets.

In the third part we characterize the sets of points of asymmetry
of arbitrary mappings f: B,—T where T is an infinite locally compact
separable metric space.

In the fourth part we prove several theorems concerning approximate
clusber sets of arbitrary funetions, We prove two theorems (Theorem 3,
Theorem 6), which improve Hunter’s theorem on the sets of points of
approximate asymmetry. In this part we use some well-known theorems
concerning the boundary behaviour of arbitrary functions in Z,.

It is possible to say that in parts 2-4 the set of all points at which
two cluster sets defined in different ways are not equal is investigated.

In parts 5-6 the set of all points at which two cluster sets do not
intersect is investigated.

 In part five a general theorem concerning sets of this type (Theo-
rem 8) is proved.

In part six several theorems are proved on the basis of that general
theorem. We prove that the set of all points @ for which W*(f, z) n
N W~(f, %) =@ is countable for an arbitrary function f: #,—~H;. This
theorem generalizes a theorem of Kempisty [9]. Further, we prove an
analogy of this theorem for functions defined in H,, # >1. The last
theorem of this part (Theorem 11) generalizes Bagemihl’s theorem
concerning crookedly ambiguous points ([1], p. 213).

In part seven several theorems which describe the boundary be-
haviour of arbitrary functions in #, in terms of the angle approximate
cluster sets are proved. Theorem 12 generalizes both the theorem of
Bruckner and Goffman ([4], p. 517), and the theorem of Goffman and
Sledd ([6], Theorem 4).

2. A general theorem concerning sets of points of asymmetry. This part
is based on Hunter’s paper [7]. Theorem 1 strengthens and generalizes
the basic theorem of [7]. The main difference between Theorem 1 and
Hunter’s theorem is that by Hunter’s theorem it can only be proved
that a certain set is small and Theorem 1 enables us to prove in addition
that this set is a Borel set. '

An arbitrary mapping #: expS-—>exp8, for which M Cu (M) and

n n
\J u(Mg) = u(|J M), where the sets M, My, ..., M, are arbitrary sub-
e} r=1
sets of §, is called a closure operation on 8. We pub My = {o: # e u(M— {z})}.
. n n
Clearly the relation |J (M), = (|J M,), holds.
X =1 k=1
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Let the symbol 7' denote some fixed topological space in this pa.,rt-
Tf 4 is a closure operation on a set §, f: §—T is an arbltrary_mappmg
and @ ¢ 8, we define the cluster set O(f, @, u) a8 the set of a@ points y e T
such that z e (f’l(V))u for any neighbourhood V of'the pomi.i y. If a set
M*C B, is given for every point « e By, there exists a unique closure
operation u = u[{M"}] such that C(f, @, M%) = C(f, x, u) for any @ ¢ By,
and any mapping f: D—T, where D is a subseb of H,. The closure ope-
ration u = w[{M%}] is defined by the velation u(L) =L v {z: w e M® ~ L}.
Further, there exists a unique closure operation v = v[{M”}] such that
W(f, ®, M®*) = O(f,,v) for any @eE, and any mapping .f: D.——>T’
where D is a subset of E,. The closure operation v = o[{M*}] is defined
by the relation v(L)=Lw {z: D(M* v L, x) > 0}.

If U is a cone in E,, we put e(U]= u[{Us}] and d[U]= v[{Us}].
The closure operations e[ U], d[U] are topologies but we do not meed
this fact. The topology e = ¢[F,] is the Euclidean topology and d = d[Fa}
is the density topology. In the case of » = 1 we define, in a natural way,
the topologies et, ¢-, d*, d~. The relations Cu(f, )= O(f, =, e[U)),
Wulf, @)= O(f, », d[U]), O.(f,2) = C(f,z, e*) etc. hold for any z ¢ By,
and any mapping f: D—T, where D is a subset of Fy. -

Let closure operations u#,v on § be given. Then, if M C 8, we define
the set of points of asymmetry of the set M with respect to closure ope-
rations u, v as the set A (M, w,v) = (M,—M,) v (M—M,). If f: S—T
ig an arbitrary mapping, we define the set of points of asymmetry of the
mapping f with respect to %, v as the set

A(f,u,v) = {z: O(f, %, u) # G(f,2,0)}.

THEOREM 1. Suppose we are given closure operations u, v on & set §
and a Tocally compact topological space T having a countable basis of open
sets. Let f: S—T be an arbitrary mapping. Then there ewist sequences
{M2y, L}, of subsets of S such that -

@ A(f,uy0) = Ul(A(Mn,u,v)ﬂA(_Lm%,v))-

Proof. Let % be a countable basis of open sets of T'. Let {(U,, V)t
be a sequence of all pairs Uy e B, Vn e B such that UnCV, and Uy is
compact. We shall prove that relation (1) holds for M,= f"(Us),
Ly = fYVa). o

Let # ¢ A(f, w,»). Then we may suppose without loss of generality
that there exists a y ¢ T such that y € O(f, %, w)— C(f, #, v). Then there
exists & ¥ ¢ B such that y ¢ V and @ ¢ (f(V)),. Since every locally com-
pact topological space is regular, there exists a U ¢ % such that y e U,
U is compact and UCV. Let & be an integer such that U= Uy and
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V' =Vi. Then we have z¢(L,), and therefore ¢ (M,),. Since @ ¢ (IL,).
and @ e (My);,, we have z e A(My,u,v) N A(Lg, u, v). Consequently

A(f,w,v)C @(A(M,,, %, %) N AL, u, ).

Let @ e A(My, u,v) ~ A(Lx, u, v) for some integer k. Then we may
suppose without loss of generality that = € (M), Then, since MyC Ly,
we have @ e (L), and therefore z ¢ (L;),. We shall prove that Ui~
~O(f, 2, u) # @. Suppose that Ui~ O(f,z,u)=@. Then for every
point z e Uz there exists a neighbourhood ¥V, such that z ¢ (7))
Since Uy is compact, there exists a finite set K C Ty such that T, C | V,.

z2e K

Hence f(T,) C |J f~4V,) and therefore & ¢ (M,),C (F(T).. and that
2eK

is a contradiction. Hence there exists a y ¢ Uy ~ C(f, 2, u). Since y e Vi

and ¢ (f~(V,));, we have y ¢ O(f, #,v) and consequently = e A(f,u, v)
Therefore we have

A(f,u,v)D D(A(Mﬂa Uy 0) N A(Ln, %, 7’))7

=1

and this completes the proof.

3. A characterization of the sets of points of asymmetry of arbitrary real
functions defined on H,. The main purpose of this part is to characterize
the sets of points of asymmetry of arbitrary functions defined on H,.
‘We prove a more general theorem from which it follows that the same
characterization holds for the sets of points of asymmetry of more general
mappings, e.g. of real functions which we consider as mappings B, 5t
(i.e. if we permit the limit values -} oo, — oo). Suppose that # > 1 is a fixed
integer.

If @CE, and there exists a system of Cartesian coordinates and
a Lipschitz function f: B, _,—F, such that & is the set of all points whose
coordinates fulfil the equation #, = f(a3, ..., 2, _,;), then the set @ is called
a Lipschitz surface. If M C B, and there exists a sequence {G,}2, of

o0
Lipschitz surfaces in ®, such that M C | J G%, then the set M is called
N=1
4 sparse set. It is obvious that every sparse set is a set of the first category
and of measure zero. Every subset of a sparse set is a sparse set and the
union of a sequence of sparse sets is a sparse set.
The essential part of the proof of the following propesition is con-
tained in [11], p. 265. .
PROPOSITION 1. Suppose we are given M C B, and a cone U= U(t, a)

(1t} = 1) in B,. Denote by A the set of all # ¢ M such that © ¢ M ~ Uy. Then
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(i) A is a sparse sel.
(ii) If « > %m, then the set' A is countable.

Proof. For every positive integer k, we denote by Py the set of all
points # e M such that M ~ Uy n K(x,1/k) = @. We express each Py ag
the union of a sequence {Py,}om., of sets with diameters less than 1/k.

Clearly 4 = U Pk n- Ohoose a new system of Cartesian coordinates such

that (0, . 0 0) and (0, ...,0,1) are the new coordinates of the origin
and the pomt 1, respeetwely For an arbitrary pair of points we Py ,,,
Yy € Py Wwith the new coordinates (a,..,,) and (¥1, .., ¥,) we have
x ¢ Uy and y ¢ Uy. From this it follows that {y—=, ) < cosaly—a| and
{z—y, 1ty < cosa|z—y| and therefore

(2) ly—az|cosa = [<y—x, ] .

If > 1m, (2) is absurd, hence no set Py, contains two different
points. Therefore the set 4 is countable and this proves (ii).
If a < ixn, it follows from (2) that

[yp— 5] < COSG“([("J;, ) y;b—l)—(wii vy Dy M |Yn— 1,1!)7

9 — ) < (COSafL—OS a)(Y1, +vry Yn—1)— (@1, ey Bpa)] -
Hence there exists a Lipschitz function f c}éfiﬁed on a subset of B, ,
such that for the new coordinates 21, ..., 4, of any point 2 e P, we have
2y, = (81, <y #p1). Since for every Lipschitz function defitied on a subset

of & metric space there exists an extension on the whole space ([3]), Py i8
a subset of a Lipschitz surface. Hence the set 4 is a sparse set.

PROPOSITION 2. Suppose we are given M C By and a cone U= U(t, a)
in By, Then

(i) A(M,e,e[U]) is a sparse set.,

(i) If o >5n, then the set A(M,e,e[U]) is ooufntable

Proof. By definition, A(M,e, e[U])={m: ze M, wg¢ M U}
Hence ze¢ M and 2¢ M ~ U, for an arbitrary point 2z € 4 (M, e, e[U]).
Therefore, according to Proposition 1, A(M,e,e[U]) is -a sparse set.

PROPOSITION 3. Suppose we are given M C By and a cone U = U (¢, a)
in Bn. Then A(M,e,e[Ul) is a P set.

Proof. Since A(M,e,e[U))=M" ~{m:2¢ MnU,; U,;}, it is. sufficient

to prove that the set P = {w: o ¢ AT, Uy} is a B set. If for every positive
integer k; we denote by Py the set of all points.« such that Uz n K (2, 1/k) »

A M =@, then clearly P = UPr. If {w,}0_, is a sequence such that
) ’ b = " . ,
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lim®, = 2, we have clearly
(3) Uy K(z,1/k) C | J (U, ~ E{zm, 1/k)) .
m=1

If am e Py for every positive integer m, it follows from (3) that Uz~
nK(z,1/k) n M =& and therefore » ¢ P;. Hence all the sets Pr are
closed and consequently P is a F, set.

LemMa 1. If F C B, is a closed set, then there exists a set M C Ey such
that F= M'.

Proof. It is sufficient to add to each isolated point « of M in an
obvious way a sequence of points converging to a.

TaeorEM 2. Let P be a locally compact topological space having & couni-
able basis of open sets. Then

(i) If f: Ba—>P is an arbitrary mapping, then the set A (f) of all points
of asymmetry of the mapping f is a sparse F, set.

(ii) If A is a sparse F, set and N C P 4s an infinite sel, then there
emists a mapping f: En—P such that f(Bn) C N and A= A(f).

Proof. (i) Let % be the set of all cones U(t, ) in B, for which the
coordinates of the point ¢ and the number o are rational. Then evidently
A(f)= UU%{W C(f, @) # Co(f, )}. We have A(f, e, e[U])= {&: O(f, %)

# Cy(f, #)}. By Theorem 1 there exist sequenees {M Yoy {Ip}iey of sub-
sets of E, such that A(f,e, e[U])—- UA My, e, e[U])~ A(Lx, e, e[U]

From Propositions 2 and 3 it fo]lows that each set A(f,e, e[U]
a sparse F, set and consequently A (f) is a sparse F, set.

(i) Since A is a sparse set, there exists a sequence {H,};2, of Llpsehltz

oo oo
surfaces such that 4 C |J H,. Further, 4 = | J Dy where all Dy are closed

v=1 k=1

oo . o
sets. Then A = | J(H, ~ Dy) and therefore we may write 4 = UlAm,

k=1 m=
where any set 4, is a closed subset of a Lipschitz surface Gn. Any set G
is closed in B, and there exists a homeomorphism h,: B, ;—G,. Any
set h;(4,,) is closed in K, , and by Lemma 1 there exists & D, C E,,L_1
such that h,l(4,)= D,,. Witing C,, = h,(D,), we have O C Gn and
A,, = (). Since N is an infinite subset of P, there clearly exist two
univalent sequences {r,}2, and {gJ%., in N for which, if we put

R= J{rs} and Q= {J {g}, we infer that the set R’ =@’ contains at
P} et
most one point and R ~nR=0,Q n@=0, En@Q=0.

14 — Fundamenta Mathematicae LXXXIII
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" Bvidently there exists a sequence {F 2., of disjoint dense subsets

of B, such that Bn— {J Ce= UFs.
=1 k=1

We put
re, i @e\JC:, where k=min{t,ze0:;} ,
flz) = i =1 :

Gk 5 if rely.

If y e A, writing j = min{k,y € Ay}, we infer that y e O; and y ¢ O
for 1< k< j. Then #je C(f,y). Since @; is a Lipschitz surface, there
exists a cone U such that Uy~ @5 =@ and therefore Uy n €= @. Then
;¢ Co(f,y) and consequently yeA(f). If yg¢A, then y ¢ 0 for all
integers & and therefore B~ O(f,y)=0. Hence Culf,9)=C0(f,9) =&
for an arbitrary cone U in E, and therefore y ¢ A(f).

Note. If we replace in Theorem 2 “E,” by “7? and “sparvse )7
by “countable”, then we obtain a theorem whose proof is quite analogous
to the proof of Theorem 2.

4. Theorems concerning approximate cluster sets -of arbitrary functions.
The main purpose of this part is to prove Theorems 3 and 7 which improve
Hunter's' theorem concerning the sets of approximate asymmetry of
arbitrary functions in By,. In this part we suppose that n >1 is a fixed
integer. We shall state some definitions.

The halt-space By x (0, co) is denoted by H. Any point (z,0) e B, .,
is identified with the point z e B,. If U is a cone in B ., with the vertex
at the origin such that U CH v {0}, then U is called a cone in H. If
teH, e B, and f is a function in H, we put Cyf, #)= O(f, =, P), where
P is the half-line issuing from the point @ in the direction of the vector ot.

A point @ ¢ By is termed a P-point of a set M C Ey, if there exists
a § > 0 such that for any & > 0 there exist spheres K (z, k), K (y,r) such
that K(y,r) CK(z, h)—M, h<e and < rfh. A set M C B, is termed
a P-set if an arbitrary point © € M is a P-point of the set M. A set N C By
is termed a P,-set if it is the union of a sequence of P-sets. Every P,-set
iy evidently a set of the first category and of measure zero. On the contrary,
there exist sets of the first category and of measure zero which are not
P,-sets. This assertion is stated without proof in [5]. We shall use the
following theorems concerning the boundary behaviour of functions in Ey:

TemorEM A [5]. Let f be an arbitrary function defined on H. Let A be
the set of all points m € By, for which there exist cones U,V in H such that
Oulf, ) # Oplf, ). Then A is a P,-set.

TrEOREM B [4]. Let f be a continuous function defined on H. Let t e H

icm°®
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and A be the set of all poinis x e By for which C(f,x, H) # C«f, ). Then
A is a set of the first category.

Denote by ¢ the mapping defined on H by the relation g¢(z,r)
= E(w, ). Let a set M C B, be given. Then we denote by fi the function
defined on H by the relation fa(z) = u(M ~ @(2))plp(2))-

Levma 2. Let U(t, a), U(t, B) be cones in E,, 0< a<< < = Let
zelhn, YyeUs (4, a), lg—y|=r. Then, writing 4 = }rsin{f— a), we have
K(y,d) C U, B) ~ Kz, 2r).

PN
Proof. Let ze K(y,d). Then evidently sin(xz,zy) < d/r and ac-

cording to the definition of d we obtain x;,/.;y< B—a. Hence w/z/,\ot
AN P

< xz,zy-+ay, ot < B, and therefore ze¢ U(t, ). Consequently Ky, d)

C U(t,B) and, since evidently K(y,d)C E(x,2r), EK(y,d)C U(t,8) n

~ K(z, 2r).

Levma 3. Let U(t, a) be a cone in By, 0< a<<b. Then there exists
a cone V in H with the following property: If 2« By and (&, x,.,) €V, then
ze U,t, ta) and [z—z2la < &,,, < [5—=|b.

Proof. It is evidently sufficient to put V= U{(t, t,,,), f), Where
a<t,, fif]<band g >0 is a sufficiently small number.

LevmMA 4. Let U = U(l, a) be a cone in E,. Then there exists a cone V
in H with the following property: If M C En, x ¢ M and DUVM (z) = 0 then
Ov(for, x) = {0}. :

Proof. We choose a cone V in H according to Lemma 3 for ¢ = }sinfe
and b= }sin}a. Suppose that DVM(z)=0 and Oy(f, ) # {0}. Then
there exist a number a >0 and a sequence {z,}5, of points of ¥, such
that lim oz = @ and far(@z) = plp(@e) ~ M)/ulp(er)) > o for all integers
k> 1. If zx = (8k, rx), then glax) = K(sx,rx) and, by the choice of the
cone V, we have sy e Uy (t, 3a) and

(4) 1 |sx— ®|sin{3e) < rx < % |sp— o|sin(a) .

Put By = U n K (», 2|sxk—2|). Then, according to Lemma 2, Ky = K (i, Tx)
C Rg. On account of (4) we infer that there exists an & >0 such that
uKx/uRr > e and therefore

u(I A Ri)uRe = p( M ~ E)uRe = (u(M ~ K)|uKa)- (uKifuRe) > as
for all k. Hence DVM(z) >0 and this is a contradiction.

The following lemma is obvious.

Leswa 8. Let M C En, @ En. Then, putting b= 0,...,0,1)e H,
we have DM (z) = max Cp(fu, ©)-

LEMA 6. If M C By, % € By, and if p(M ~ K(z, h)) > 0 for any k>0,
then 1 e O(fu, =, H). -

14%
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Proof. Since p(M ~ K=, 1/k)) >0 for any integer k=1, there
exists a point yx € K{w, 1[k) such that DM (yxz) = 1. Hence there exists
an 0 < ag < 1fk such that p(M o~ K (yx, ox)/n(E Yx, ax)) > 1—1/k. Then
lim (yz, ox) = @ and lin fau(ys, ax) =1 and therefore 1 e Cy(f, ®).

PropOSITION 4. Let M C E,. Denote by A the set of all »eBy for
which DM (z) >0 and DVM(z) = 0. Then A is a P,-sei.

Proof. Let x ¢ A. By Lemma 5 Oyf, «) # {0} and therefore there
exists a cone W in H such that Cpl{f, x) # {0} On the other hand, by
Temma 4 there exists & cone V in H such that Op(f, %)= {0}, Therefore
COplf, #) # Op(f, @) and consequently, on account of Theorem A, the
set 4 is a P,-set.

PROPOSITION 5. Let M C By. Denote by A the set of all @ e By such
that DM (@) # 1 and u{M ~ K (2, k) >0 for any h>0. Then A is a sei
of the first category.

Proot. Tet »ecA. From Lemma 6 it follows that 1 e C(fu,2, H)
and from Lemma 5 it follows that 1 ¢ Co(far, #). Therefore Cufur, )
# C(fu, x, H) and, since fu is evidently continuous in H, from Theo-
rem B it follows that A is a set of the first category.

PROPOSITION 6. Let M C B,. Denote by A the set of all =By for
which 1 % DM (x) >0. Then A is a set of the first category and of
measure 2ero. ‘

Proof. From Proposition 5 it follows that A4 is a set of the first
category. Choose a measurable set GO M such that u(E ~ @) = u(K ~ M)
for any sphere K. Then D(@,z)#1 and D(B,—@,w) # 1 for any
point # ¢ 4. Hence, by the density theorem, A is a set of measure zero.

Lmvma 7. Let M C B, and let U, a) be a cone in By. Then the function
fle) = DUM (x) is of Baire class 2. ;

Proof. Put g(,r) = p(Ualt, a) ~ K(z,7) ~ M)ju(Uslt, a) ~ K (@, 7))
for x ¢ By and # > 0. The function ¢ is evidently continuous in By x (0, o0)
and f(z) = limsupg(x,r). Pub

204

(@)= max. g(w,r) and bglw)= sup gle,r) .
! i<r<i/m o<r<i/k

Then
f(#) = limbx(w) and  by(w) = lima; ,(2) .
Co F—ro0

Since all the functions a,, are continuous, all the functions b; are of
Baire class 1. Therefore the function f(») is of Baire class 2.

TarorEM 3. Let P be a separable locally compact metric space. Let
f: Bas>P. bé am arbitrary mapping. :Then the set Aqp(f) of all poinis of
approzimate asymmetry of f is a P,-set of the class Fy,. A
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Proof. Let U be the set of all cones U({, a) in B, for which the
coordinates of the point f and the number « are rational. Since
A(f,a,d[T)) = {w: W(f, ) # Wolf,x)}, clearly

(5) Aap(f)= U A(f, d,a[T]).
Uels

By Theorem 1 there exist sequences {M Y ,, {Lylen, of subsets of B,
such that

) A(f,d,d[UJ>=kG(A(Mk,d,d[m)mA(Lk,d,d[UJ)).

By definition, for any M C E, we have
(7) A(M,d,d[U) = {o: DM (z) >0} » {&: DV M (z)=0}.

From Proposition 4 and (7) it follows that each set A(M,d,d[T]) is
a P,-set. From Lemma 7 and (7) it follows that A(M,d, d[U]) is the
intersection of a G,, set and a F,, set. Hence A(M,d, d|U)) is a F,, set.
Consequently the theorem follows from (5) and (6).

From Propositions 5 and 6 which refer to sets we deduce, by a usual
method, two theorems which refer to mappings.

In the rest of this part, let P be a fixed topological space having
a countable basis of open sets and let f: Bn—P be an arbitrary mapping.
If e Ey,, we denote by M(f,=) the set of all points # « P such that
ulf (V) ~ E(z, h)) >0 for any k>0 and any neighbourhood ¥ of the
point y. Evidently M(f, «) is the set of all points y ¢ P for which there

exists a set BCH, such that Lm f(t)=y and u(B ~K(, k) >0
iz, te B

for any k> 0. Further, we denote by H(f, ) the set of all points y ¢ P
such that D(f(V))(z)=1 for any mneighbourhood V of the point .
The set H(f, z) coincides with the set of all points y ¢ P for which there
exists a set BC B, such that lim f(f)=y and DB(z)=1.

{>z, teB,

Levwa 8. Let ZC By be a measurable set, DZ(z) > 0. Then
H(f,s)CW(f,®, 2)C W(f,z)C M(f,2).

Proof. It is clearly sufficient to prove H(f, ) C W(f, ©, Z). For an
arbitrary set M C B, we clearly have

DM (x) < D(M— Z)(@)+D(M ~ 2)(w) < 1—DZ(2)+D(M ~ Z)(2) .
Therefore the relation DM ()= 1 implies D(M ~ Z)(z) > 0. From this

and from the definitions our assertion immediately follows.

THEOREM 4. The set B= {w: H(f, ©) # M(f, )} is a set of the first
category.
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Proof. Let a sequence {@, 1%, form a basis of open setis of P. Denote
by Bg the set of all @ ¢ B, such that D(fX( Gk)) (#) <1 and p{f(G%) n

~ X (z, k) >0 for any h>0. Clearly BC UBk. PFrom Proposition 5
k=1

it follows that each By is a set of the first category and therefore B is
also a set of the first category. ,

TrmoraM 5. The set O = {x: H(f, @) # W(f,2)} is a set of the first
category and of measure zero.

Proof. Let a sequence {G ), form a basiy of open sets of P. De-
Tote by O the set of all x e By such that 0 < D(f~(Gx))(2) < 1. Clearly
cC U Or. On account of Proposition 6 we immediately obtain our as-

k=1
sertion. . . ‘

On the basis of Lemma 8 and Theorem 5 we immediately obtain the

following theorem.
TaEOREM 6. The set of all points o ¢ By for which

W(f,2)# N AW %2

is « set of the first category amd of measure zero.

ProposiTion 7. Let U= U(t, ) be a cone in Hn, n>1, MCE,.
Put A= {x: DYM(z)= 0, DM (z) > 0}. Then

(i) A is a sparse set.

(ii) If B > 3w, then A is countable.

Proof. Denote by A, the set of all points x ¢ B, such that

: Z is a measurable sef, DZ(x) >0}

) _ DUM (2) =
and -
9) w(E(y, ) ~ M)p(E @y, r)>1m for rlm.

Clearly A = UAm. Put V= Ui, a), where o is a number such that
m=1

In<a< p if f> 4.

We shall prove that the relation x ¢ Ay, implies @ ¢ Ap ~ V. Suppose
that this assertion does not hold. Then there exists a sequence {@4)y.:
such that lim zx = 2 and zx € Vg n Ay for each k. Put

k—oa

0O<a<fp ifp<ic and

’ dr = }lox—o|sin(f—a) .
On account of Lemma 2 we obtain

K}c=K(mk,d;¢)C( an(m 2|w~mk1)) }c.
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The number p = pKi/uRy clearly does not depend on k. On aceount of (9)
we infer that, for sufficiently large numbers k, u(Kx~ M)/u(E%) > 1jm
and consequently

p(Br ~ IMD)JuRy > p (K ~ M)pRe = (w(EKx ~ M){pE ) (uExfu Wr) > pjm .

Hence DUM(x) >0 and this contradicts (8).

Consequently from Proposition 1 it follows that each set A, is
a sparse set and in the case of g > ix each set A, is countable. Therefore
the relation A = { J A, implies (i) and (ii).

m=1

THEOREM 7. For all points 2 € By, except those of a sparse set A, (a count-
able set A, respectively), the following assertion holds:

If there exists an a = limap . f(t) for a cone U in By (a cone U = U(i, a)

t—=x

in By such that a > i=, respectively), then a € H(f, x).

Proof. Let a sequence {G.}7, form a basis of open sets of P. Let
U be the set of all cones U{t, a) in K, such that the coordinates of the
point ¢ and number ¢ are rational. Denote by Ay the set of all < B,
such that there exists an a = limapyf(t) and a ¢ H(f, x). Denote by Ay,

t—x

the set of all x ¢ B, for which DY{E,—f~Gx))(z) = 0 and D(fYGx)) # 1.

Then, for each cone U in E,, A;C{JAy,. If w< Ay, then
E=1

D(B—fH&)

Therefore, by Proposition 7, each set 4, is a sparse set (in the case of
U= U(t, a) where a > 3= it is countable). Hence it clearly suffices to
put A= {J{dv: UeW}, (A= {J{dv: UeW, U="TUlt, a), a>ir},
Tespectively). -

Nw)>0.

5. A general theorem concerning the intersection of cluster sets. Liet u, v
be closure operations on a set 8. If M C §, then we put
DM, u, v) = ((8— M) o (S~ (8—I)y)) v ((S— M) ~ (8— (S—H);)) -

If T is a topological space and f: S—T is an arbitrary mapping,
then we put D(f, u,v) = {z: C(f,z,u)~ C(f, x,v) =B}

THEOREM 8. Suppose we are given closure operations u,v on a set §
and a compact topological space T having a countable basis of open sels.
Let f: S—T be an arbitrary mapping. Then there exist sequences {M )5 ,,
{Ly)5y of subsets of S such that

CJ (D (M, u, v) ~ D(Lg, %, v)) .

D(f,u,v)=
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Proof. Let & be a countable basis of open sets of T. Let @ ¢ D(f, u, v).
Then for each point y e T there exists a Uye B such that y ¢ Uy and
either @ ¢ (f(U,)), or @ ¢(fU,),. Since T is compact, there exists

o finite set K C T such that T= |J Uy. Put G@= | Uy and H= | J Uy,
yeK vel veK-L

where I is the set of all y e X such that « ¢ (f‘l( U,,));. Then clearly the
following relations hold:

e = U, E = U ST, O Y THE) =8,

yeL veK—L
@ ¢ (fH@), wé(fE),.
Therefore
@ e D), u, v) n D(fH), u, o).
Let {(G,, Hp)}2, be a sequence of all pairs (¢, H) such that @ and H are

finite unions of elements of $ and Gu H=T. Put Mp=f"(Gx),
Iy = f(Hy). Then

D, ,0) C U) (DM, w, v) ~ D(Ti, 0, 7).
k=1

On the other hand, suppose that @ e D (M, u,v) ~ D (Lg, u,v) for
a positive integer k. Let y ¢ T. Then either y ¢ G or y € Hy. In both cases
we infer that either y ¢ C(f, z, w) or y ¢ C(f, =, »). Hence y ¢ O(f, x, u) n
~ O(f, ®, v). Therefore we have & ¢ D(f, u, v). Consequently

D(f,u,v)D kU (D(.Mk, 4, ) " D(Ig, u, v))
. =1
and this completes the proof.

6. Applications of Theoreni 8.
Levma 9. The set D(M,d*,d™) is countable for each set M C B,
Proof. I aeD(M,d", d~), then either D, M () = 1 and D~ M(x)=0,
or DY M (z) =0 and D_M (z) = 1. Set
MM A©,p) i y=0,
—u(MAy,0) i y<O0.
Then either 1= f*(#) >f(#) = 0 or 0= f*(#) < f~(s) = 1, where (@),
@), (@), Ff(z) ave Dini derivatives of f at the point . On account

Ef the well-known theorem on Dini derivatives ([11], p. 261) we infer
that D(M,d*,d™) is countable.

TemorEM 9. Let T be a compact topological space having a countable
basis of open sets. Let f: B,—~T be an arbitrary mapping. Then the set
D= {w: WH(f,a) » W(f, z) = @} is countable.:

st =
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Proof. By Theorem 8 there exist sequences {M}3,, {Lp}%- Of
subsets of E, such that ’

D=D(f,d* a") = U (D(Ms, &%, ") n D{Ly, @*, &°)).

On account of this relation and Lemma 9 we-obtain the assertion of the
theorem.

Lemma 10. Let V and U= U(t, f) be cones in By, n>1, and let

. MCE,. Then

(i) D(M, d[T], &[V]) is a sparse set of type F,.
(i) If B > iw, then D(M,d[U], d[V]) is countable.
Proof. By the definitions

D(M, a[T],d[V]) = {&: DVM () = 0, DV(Bp— M) (2) = O} v
o {w: DV M (z) = 0, DY(Ep—M)(x) = 0}.

On account of Lemma 7 we infer that D(M, d[ U], @[V]) is of the type F,.
The rest of the assertion of the lemma follows from Proposition 7.

TEroREM 10. Let T be a compact topological space having a countable
basis of open sets. Let n >1, and let f: B,—T be an arbitrary mapping.
Let D be the set of all € By, for which there exist cones U,V in By, (cones
U= U(t,a) and V= U(t,p), where max(a, f) > 3=, respectively) such
that Wolf, @) » Wy(f, z) = O. Then D is a sparse sel of type F oy, (a count-
able set, respectively).

Proof. Let R be the set of all pairs U(¢, a), U(s, ) of cones in By
such that the coordinates of the points ¢,s and the numbers a, f are
rational. Let P CR be the set of all pairs U({, a), U(s,p) such that
max(a, 8) > 7. If U, V are cones in By, then we put Dy p = {#: Wy(f, ®) n
~ Wy(f, z) = @}. Clearly

(11) D= {Dyy: (U,V)eR}

(D= U {Dyy: (U,V)eP}, respectively). On account of Lemma 10 and
Theorem 8 we infer that each set Dy 5 is a sparse seb of the type F,y, and
is countable for (U, V) e P. Since the sets R and P are countable, the
assertion of the theorem follows from (11).

By an arc at a point z € B, we shall mean a simple continuous curve

g z=2() (0<it<<l)
such that z(f) # « for 0 <t<1 and lim 2() = z. We put k(p) = 2(0).

{—>1-
We say that the arcs ¢, v at a point # are associated provided there exists
an angle U= U(t, a) in B, such that a<<im, o C Uy and 9y C Us.


GUEST


[
=
Lo

LeMMA 11. Let M- CE,. Denote by D the set of all poinis x < B, for
which there exist associated arcs o, w at © such that ¢ C M and v C B,—M,
Then the set D is a sparse sel.

Proof. Denote by F the set of all ¥ = (K, U, A, B) with the follow-
ing properties: ,

(i) K= K(s,) is a dise in B,, U= U(¢, o) is an angle in H, and
a< 3. .

(i) A ~ B=0 and there exist angles V = U(v, ), W= U(w,y)

guch that A =FrK ~V,, B=FrKW,.

(iii) The coordinates of the points s, ¢, v, w and the numbers r, a, f, y

are rational.

HF=(K,U,A,B)eF, we denote by Dy the set of all points # ¢ K
for which there exmt ares qnz, wy at # such that the following relations
hold: g, C Uz " K, 95 C Uz N K, 9z C M, 95 C Bp— M, Fr K ~ g5 = {I(@g)},
klps) e AC Uy, FrEK rm,u,,ﬂ {k(yps)}, *(ys) e BCUy. It Is easy to see
that D = UDF Let FeJ be given Let us use the same notation as

in the deflmtlon of the set 7. Then without loss of generality we may
suppose, considering the points ¢, », w as complex numbers, that v = Towe™®
for some % >0 and 0 < 0w < '-rc. ‘Let Z = Uz, 6) be the complementary
angle to U such that 2= t¢? and § = r—a. Let w ¢ Dy. Then we shall
prove that @ ¢ (Dp ~ Z,)". Assume, on the contrary, that e (Dyn Z,).
Then clearly there exists a 4 e Dy~ Z, such that (4 v B)C Uy. Now
it is easy to see that the arcs @, and w, intersect, and this is a contra-
diction. Therefore. by Proposition 1 the set Dy is a sparse set. Since the
set & is countable, the set D is o sparse set as well.

TuroREM 11. Let T be a compact topological space having a countable
‘basis of open sets, and let f: B,— T be an arbitrary mapping. Denote by D the
set of all points z e E2 for which there exist associated arcs @i and ype ot x such
that C(f, 2, ¢z) ~ O(f, @, vz) = @. Then the set D is a sparse sel.

Proof. Set .

MP=¢@, and N®=wy, if axeD
and '

) M*=N*=E, it weB—D.

Set u = u[{M"}] and » = u[{N7}]. The definition of these symbols is in
the first part. From Lemma 11 it follows that D(M, u, ») is a sparse set
for an arbitrary M C B,. Since D = {z: C(f, %, u) ~ O(f, z, ) = O}, we
-obtain by Theorem 8 that D is a sparse set.

Note. If we replace the word “associated arcs p, and p, at o” by
“ares ®s and y; at o having non-collinear semitangents at #” in Theo-

rem. 11, then we obtain Bagemlhl’s theorem on crookedly amblguous
points [1]

e ©
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7. The boundary behaviour of arbitrary functions in the plane and the
approximate cluster sets. The main purpose of this part is to prove Theo-
rem 12. Theorem 12 improves both a theorem from [4] which asserts
that the set 4 from Theorem 12 is a set of the first category and a theorem
from [6] which asserts that this set is a set of measure zero. Theorem 13
is a further application of Theorem 8.

In this part we shall use the following notation. If « ¢ E,, then we
denote by P(a) the half-line in J, issuing from the origin and containing
the point ™. If numbers a,p, 0<a<m, 0 < f <=, as#p, are given,
then we denote by U(a, ) the angle determining by half-lines P(a) and
P(p). If the numbers « and § are rational, we shall say that the angle

a, f) is rational.

Levma 12, Let U= U(a,B) and V= Uly, d) be angles such that
0<ae<f<y<d<m Then there erist positive integers %,1, m,n and
a number 0 << p <1 such that the following assertion holds: If x € B, y ¢ B,
and y—ao=r >0, then

(i) UsnVyCE(y, ) and w(K(y, ) n Vy)u(Tz A Vy) < m.

() UonVyn K(x,7/k)=0 and upTiu(E(x, k)~ Uz) < n, where
T is the triangle determining by half-lines Px{a), Pa(f), Pyly

(i) If we put 2= x+pr, then Pgla) n Py(d) n P(y) # Q

(iv) Let {a;}32, be a sequence of real numbers such that p < a; < 3(p+1)
Jor each positive integer i. Define the sequence {y 2, by relations y, = z--r
and Y, =+ a;(y, ,—=). Then hmm_ z and T C U V- Further, there

=0
exists a positive integer N such thai any point z e T is contained in af most N
different angles U, .

Proof. The ex1stenee of the numbers %, I, m,n is obvious. Con-

dition (iii) determines the number p. We shall prove that the number p
i

satisfies condition (iv). Clearly y; = -7 [] az and therefore z-+7p° << ¥:
k=1

< a+7(3{p+1)). Consequently lim y; = ». From (iii) it follows that
1—+00

Trc U Vy,- Clearly there exists a number M such that Ty~ Uy A V= g,

Whele t=a2+r(3(»+1))*. It is obviously sufficient to choose N = M.
Lemwea 13. Let W C H be an angle in B, and let M C H be an arbitrary

set. Put A= {reB: DV M(x)= 0, D(M,z, H) > 0}. Then A is a P,-set
Of ty.pe Fdéﬂ" ’ .
- Proof. Let weA. Then clearly there exists a rational angle
V="U(y,6) such that 0<y<d<= and D'M(x)=0. If we pust
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Z. = Ule, y—e) v U(6+&, m—e¢), then for any sufficiently  small & >0
w; have
* D(Z,~ M,z)= DM, #)— D(M— Z,, ») = DM (%)—2¢[r >0,

d therefore DUM () > 0 for an angle U in H. We may clearly suppose
:}Illat the cone U is rational. Put Ay p = {w: DVM (@) >0, p”M (w):_= 0}
for any pair of angles U,V in H. Let U be the set of all pairs of rational
angles in H such that T~V = {0}. Then 4 = U{dpy: (U, V) U
We shall prove that Ay is a P,-set for any pair of angles (U, V) < Us.
Agsume, on the contrary, that there exists a pair (T, V)eW su.ch 1fhat_
Ay is not a P,-set. Then we can suppose withoust loss of genemhty‘ that
U= Ula, ) and V= Uly,d), where 0<a<p<y<d<m Leb the
sense of the letters k,I,m,n,p, T be the same as in Lemma 12 and
put d = 1/mnN. For any positive integers a, b denote by B,y the set
of all points @ ¢ B, such that DVM(#) > 1ja and

(Ve M o Kz, ))ulVa ~ K (@, k)< dla for any h<[1/b.

ad . LR
Then clearly Ay C \U Byy- Since Ay is not a P,-set, there exist positive
. Vo . .
integers @, b such %hat B, is not a P-set. Hence there e?zlsts a point
& ¢ B,y which is not a P-point of the set B,;. Then there exists a number

8o >0 such that

(12) B,y wtps, o (p+1)s/2) #0  for any s< 5.
Choose a number » >0 such that s, >, Ir <[1/b and
(13) T~ E (@, 1/0) ~ M)ju(Ua o Ko, 1[k)) > La .

Oun account of (12) we infer that there exists a sequence of numbers {a;}72,
such that p < a; < (p+1)/2 for any integer ¢ =1 ax}d Y1 € B, for any
integer ¢ > 0, where {y}%, is the sequence defined in Lemma 12', (iv).
Put 0, =V, ~ U, for any integer i = 0. On account of Lemma 12, (iv) we

have 7= |J C; and
i=0

! T2

w . w0y X uo)r.

=1 T=1

(==}
By Lemma 12, (ii) we obtain K(z, r/k) C_U 0; and

=1

(1) p{Tz Ko, 1/l) 0 M)fu{E @, 1)~ To) < 3,

)

<N¥n D u(0in M)/Zm‘ u0y .

f= . 4=l

YM(C% ~ M)/T

-

el
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Since Ir < 1/b and y; ¢ B,, for any positive integer ¢ > 0, we obtain by
Lemma 12, (i) u(0: ~ M)/uC¢ < mdfo. Hence by (15)

#(Us ~ E(m, r/k) ~ M)[u(E (@, r[k) ~ U,) < Nnmdja = 1ja
and this contradicts (13). Therefore Apyis a P,-set for any (U, V) e U,
and therefore 4 is a P,-set. On account of Lemma 7 we immediately
infer that A is a F_,, set. ' )

TEEOREM 12. Let T be a locally compact topological space having
a countable basis of open sets. Let f: H~T be an arbitrary mapping. De-
note by A the set of all points « e B, for which there ewisis an angle U in H
such that W(f,z, H) # Wy(f,x). Then 4 is a P, -set of type Fy,.

Proof. Let g: H—»>T be an arbitrary extension of the mapping f.
Let U be the set of all rational angles in H. Since ‘
{reBy: W(f, @, H) # Wo(f, @)} = B, ~ A(g, d[H], A[T])
for any angle U in H, it is evident that

(16) A=F | Ag,dlH],aT)).
UeUs

If U is an angle in H, then by Theorem 1 there exist sequences {M )%,
{Ly}per Of subsets of H such that

Alg, aLHY, 4[0Y) = U (A (M, ALH], ALUT) ~ A (L, dCH], d[UT);

Fe=1

hence, on account of Lemma 13, we infer that B, ~ A(g, d[H], d[U]) is

a P,-set of type F,,. Therefore the assertion of the theorem follows
from (16). :

The following lemma clearly holds.

LevmA 14. Zet U= U(a,B), V= Uly, 8) be angles in H such that
0<a< B<y<d< m Then there ewist positive integers s,1t, a such thai
the following assertion holds: If = « By, y € By, and.y—z =17 > 0, then

(Us nVy) C (K (z, rs) n E(y, 11),
#(Us " Vy)|u(Uz ~ K (2, 15)) < 1/a,
#(Uz“Vy)/.”(Uy“K(yy”t))<1/“- ‘

Lmvma 15. Let U= U(a, ) and V= Uly, 8) be angles in H such
that 0<a<f<y<d<w, and le¢ M CH. Then the set F, ~
~nD(M, d[U], d[V]) is countable.

Proof. Put

E={z<E: DVM(z)= 0, D'(H—M)(x) =0}
and o e
L= {wekE: D'M(z)=0, DY H—M)(z)=0}.


GUEST


216 L. Zajistek

Since B, ~ D(M,d[U],a[V])= K v L, it is clearly sufficient to prove
that the set K is countable. Let the sense of the letters s, ¢, a be the same
as in Lemma 14, and let # be an integer. Then we denote by K, the set
of all points 2 € B, such that

w{Uz A E(z, 1) ~ M)ju(Usz ~ K (2, ) < 1/2a
and : ,
wlVy A Ky, h) o M)ju(Vy ~ Ky, b)) < 1[2a

for any h<1jn. Clearly KC | JK,. If zeln, yeK, and 0<y—uo

n=1
< 1f[nmax (s, t)), we infer by Lemma 14 and by the definition of the
sets K, that .
w(Us A ¥y A M)fu(Us Vi) < }
and _
WUz~ Vy n (H=M))u(Us nVy) < §

and this is a contradiction. Hence all the sets K, are isolated and there-
fore the set K is countable. :

THEOREM 13. Let T be a locally compact topological space having
a countable basis of open sets. Let f: H—T be an arbitrary mapping. Denote
by D the set of all @ e E, for which there ewist angles U,V in H such’that
Wolf, z) ~ Wolf,z)=@. Then D is countable.

Proof. Let g: H—F, be an arbitrary extension of the mapping f.
Let U be the set of all pairs U = Ul(a, ), V= U(y, 6) of rational angles
in H such that 0 < a<< <y < 6 < . Since

{w e By: Wolf, ) ~» Wy(f, 2) =@} = Dlg, d[U], a[V]) ~ B,
for any pair (U, V)¢ U, evidently

an) D=~ \J D

(U,7)eWs
If (U, V) e U, then by Theorem § there exist sequences {M ey, {Lxtemz
of subsets of A such that

(g,alU], dlv]) .

Dy, aU], alv]) = U (D(Me, (U], A[V]) ~ D (Lx, (U], d[V])).
k=1
Hence, on account of Lemma 15, we infer that B, n D(g, d[U], d[V])
is countable. Consequently, from (17) it follows that the set D is countable.
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