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On the equivalence of certain coincidence theorems
and fixed point theorems
by
T. B. Muenzenberger and R. E. Smithson (Laramie, Wyoming)

Abstract. The properties that are preserved when certain mmultifunctions on trees
are composed are used to show that some coincidence theorems for multifunctions on
compact spaces into trees are equivalent to some classical fixed point theorems on
trees. These methods are also used to derive some new coineidence theorems.

1. Introduction. In [3] Helga Schirmer proved a multipart coincidence
theorem for certain multifunctions into trees and derived some fixed
point theorems from this theorem. In section 2 of this paper we prove
the fixed point theorem by using the order structure of a tree and then
by applying this theorem and two classical fixed point theorems on trees
we obtain the coincidence theorem referred to above. This accomplishes
two purposes. First it provides a new proof of the coincidence theorem,
and secondly it shows that the coincidence theorem and the fixed point
theorems are equivalent. .

In [4] Schirmer extended results of Schweigert [5] and Ward [9] on
homeomorphisms and monotone maps which leave an endpoint fixed
to a coincidence theorem for w.s.c. biconnected multifunctions. In section 3
of this paper we prove some results for biconnected (but not necessarily
u.s.c.) multifunctions which leave an endpoint fixed and use these to
prove a fixed point theorem for biconnected multifunetions of the
Schweigert-Ward type which was a corollary of Schirmer’s theorem. We
then use this theorem to prove Schirmer’s coincidence theorem. A corol-
lary to the results on biconnected multifunctions is a slightly improved
version of a theorem of Smithson [7]. Finally, in the last section we use
these methods to derive two new coincidence theorems.

A multifunction F: X - ¥ is a point to set correspondence (i.e. F(z) is
a nonempty subset of ¥ for each xeX) If ACX, then F(4)
=J{F(»): e A} and if BC ¥, then F}B) = {#: F(z) ~ B + O} where @
is the empty set. The multifunction F is said to be upper semi-continuous
(u.8.c.) in case F~'(4) is closed for each closed A C Y. Also F is lower
semi-continuous (1.s.c.) in case (V) is open for each open V C ¥ and F is
continuous in case it is both ws.c. and ls.c. Further, F is point closed
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(connected, ete.) in case F(z) is closed (connected, ete.). A multifunction
T is connected in case F(A) is connected for each connected A C X, and Fig
monotone in case F~Yy) is connected for each y ¢ Y. Finally, 7 is bicon-
nected in case F' and F~! are connected.

A well known result that we shall need later is that each u.s.c., or
Ls.c., point connected multifunction is connected.

A tree is a continnum X in which each distinet pair of points in X can
be separated by the removal of a third point. A partial order, <, is defined
on X ag follows: Let ¢ ¢ X be fixed, then s <y, v,y e X, iff () a =,
(11) w =y or (ili) # separates ¢ and y. Now set L(z) = {y ¢ X y < &} and

= {y e X: #<y}. Then Ward [10] characterized trees in terms of
ﬂﬂlb 1aart1a1 order as follows:

LevmA 1.1. A continuum X is a tree iff it admits o partial order <
satisfying:

(i) (=) and M(z) are closed for every xz e X,

(ii) if @<y, then there is a 2z e X such that z<<z<<y,
(1ii) ( )~ L(y) is nonempty and totally ordered for each x,yeX,
(iv) M (z)\{z} is open for each x e X.

A chain is a totally ordered subset of a ‘partmlly ordered set.
If X is a tree, the element e used in the definition of the partial order is
the least element in X, and in the sequel we refer to the above partial
order as the partial order on X with least element e, and will assume
each tree is endowed with this partial order. A peint' z.¢ X (X a tree) is
an endpoint in case X\{z} is connected. Some further properties of this
partial order are:

Levwa 1.2. Bvery nonempty closed subset of X contains a mamimum,
and each nonempty chain has a least upper bound.

Proof. See [9, Th. 1].

Lrava 1.3. Bvery nonempty subcontinuum of X contains o least
element.

Proof. See [1, Lemma 2].

LeMma 14. If ACX is connected, if A~ M(y) # @, and if A~

A INM(Y) # D, then y e A.

Proof. See [7, Lemma 4].

I F: X—-X is a multifunction on a set X into itself, then # has
& fized point in case there exists an « e X such that z ¢ F(z). EF, G: XY
are two multifunctions on a set X into a seb Y, then ¥, ¢ have a coinci-
dence point (or simply a coincidence) in case there exists an @ ¢ X such
that F(z) ~ G(z) # @. A multifunction F: X - Y is coincidence producing
for a family of multifunctions in case F has a coincidence with every
member of the family.
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2. Coincidences and fixed points of multifunctions. In [3] Schirmer proved
the following theorem.

THEOREM A. Any point closed w.s.c. mullifunction F: Z—-X from
a compact, Hausdorff space Z onto a tree X is coincidence producing for all
multifunctions G: Z—X which are either continuous or u.s.c. and point
connected if it is eithér open or monotone.

By permuting the hypotheses we see that there are four parts to
Theorem A. We shall show that two of these can be derived from two
well known fixed point theorems. The other two parts we ghall obtain
by giving a separate proof of Theorem 5.2 of [3] which was obtained
from Theorem A. Then prove Theorem A by using this theorem. For
this we shall need the following lemma whose proof is omitted (this lemma
is similar to Lemma 5.1 in [3].)

Lemma 2.1. Let F, G: XY be two multifunctions on a set X into ¥
with G onto. Then F, G have a coincidence iff F o @ ¥ >Y has a fized
point.

Each multifunction F: X — ¥ can be considered to be the following

subset of XX X: F= {(#,y): y eF(a), veX}.

Using this interpretation of ¥ we obtain the following lemma.

LevmA 2.2. Let F: X~ Y be o point closed, u.s.c. multifunction on the
space X indo the regular space Y. Then F is a closed subset of X X Y.

Proof. Let (z,y)¢ . Then since F(») is closed and Y is regular
there exist disjoint open sets U, V in ¥ with y ¢ U, F(z) CV. Further,
since F is u.s.c., there exists an open set W containing z such that
F(W)CV. Thus Wx U is an open set which contains (z,y) and such
that WxUnF =@.

Now we can prove the following lemma.

LeMMA 2.3. Let F: X~ Y be an u.s.c., point closed multifunction on
a compact, T, -space onto a regular space Y. Then T~ is point dlosed and n.s.c.

Proof. Let 4 CX be closed and =, 7w, be projections on XX Y
onto X and Y respectively. Then (F 1) (4)=ZF(4) and F(4)
= m,(n7}(4) ~ F)) which is closed since the projection parallel to a compact
space is closed.

COROLLARY 2.4. If F: X - Y is onfo and if both X, Y are compact,
T,-spaces, then F is n.s.c. and point closed iff F~* is w.s.c. and point closed.

It is also easy to show that the composition of point closed u.s.c.
multifunetions on compact T,-spaces is point closed and n.s.c. and that
the composition of l.s.c. multifunctions is Ls.c.

For the remainder of this section assume that each multifunction
is point closed, that Z is a compact T,-space and that X is a tree.
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In 1941 Wallace [12] showed that a tree had the fixed point property
for point connected u.s.e. multifunctions. Now.if F: Z—-X is a w.s.c.,
monotone multifunction on the compact T,-space Z onto the tree X,
then F~! is n.s.c. and connected, and if ¢ is point closed, point connected
and u.s.c., then ¢ o F~': X > X is point closed, point connected and u.s.c.
Thus @ « F~* has a fixed point and hence, F', & have a coincidence.

In 1956 Plunkett [2] showed that trees have the fixed point property
for continuous (point closed) multifunctions. Thus let F: Z— X be point
closed, w.s.c. and open. Then F~! is continuous and point closed, and if
G: Z— X is continuous, then @ o 7 X —» X is continuous. Hence G o F*
has a fixed point and so F, ¢ have a coincidence.

Now in order to prove the remaining two parts of the Theorem we
prove the following two fixed point theorems.

THEEOREM 2.5. Let F: X » X be a multifunction on the tree X into ifself
and suppose there exists a compact Ty-space Z- and multifunctions Fy: X -7
and Fy: Z - X such that F, is continuous, Fy is point connected and u.s.c.
and F = Fy o F,. Then F has a fiwed point. )

THEOREM 2.6. In Theorem 2.5 let F, be point connecled and w.s.c.
and B, continuous. Then F has a fized point.

In order to prove these theorems we need the following two lemmas.
The proof of Lemma 2.7 is routine and is omitted. Lemma 2.8 follows
from the fact that the partial order < is a closed subset of X x X (see
Ward [10]) and from the fact that the graph of M is the graph of < and
that M (z) is closed for each z e X. '

LeMya 2.7. If F, G: X - Y are two point closed, w.s.c. multifunciions
on the space X into the normal space Y, then the set {x: F(x) ~ G(x) # O}
is closed.

LEMMA 2.8. Let X be a tree. Then the multifunction M: X —» X defined
by M(z) = {y: » <y} is point closed and w.s.c.

Proof of Theorem 2.5. The set B = {m: M(z) ~nF(z)+# O} is
closed by Lemmas 2.7 and 2.8. Let #,¢ H and assume that x,¢ F(x,).
We shall show that B contains an 2, with z, < #,. Let y, e F'(x,) ~ M ()
and let 2, e Fy(w,) be such that y, e Fy(2,). Now Fy(z,) is closed and con-
nected and so containg a minimal element y,. Pick 2’ ¢ X such that
o< 2" < y;. Then Fy(z,) is contained in the open set M (z')\&'. Thus
there is an open set U C Z such that 2,e U and Fy(U) C M (z')\'. Also,
there is an open set VC X, 2, ¢V, such that Fi(z) ~n U = @ for all z e V.
Thus there is an @, € V, #,< #; < #', such that F () ~ M (z')\a’ # @ and
80 @, ¢ B. Since ¥ is closed, ¥ contains a maximal element, and thus F
has a fixed point. |

Proof of Theorem 2.6. As above the set B is closed and let z, ¢ B.
Assume that @q¢ F(z,), and let y e F(m,) ~ M(z,). Since F(mp) is closed
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there is an @, #,<< @; < ¥, such that {&: 2, < 2 < 2} N F(%,) = ©. Now
F(z,) is a closed, connected subset of Z. Let

A = {z e Fy(x): Fs(2) n M(z)\, # O} .

Since F, is Ls.c., 4 is a relatively open subset of F,(x,), and since F, is
ws.c. and ¢ Fxy), A is a closed subset of Fi(z,). Thus A = F(z,).
Hence, there is an open subset UCZ such that Fy(wg) CU and z2¢ U
implies that Fy(z) » M (z,)\z; # @. Thus there is an open set VC X,
g €V, such that Fy(V)C U. Thus there is an », e ¥ and #,<< 5, and as
above F has a fixed point.

Now to complete the proof of Theorem A observe that if ¥ is u.s.e.
and open and @ u.s.c. and point connected, then Theorem 2.5 applies
to GoF ' and so by Lemma 2.1 F and G have a coincidence. Finally
if F is u.s.c. and monotone and @ is continuous, then Theorem 2.6 applies.

3. Biconnected multifunctions. In this section we prove some results
about biconnected multifunctions on a tree which leave an endpoint
fixed. We then use these results to prove the main theorem of [4]. We
develop the proof of these results through a series of lemmas. In this
section X denotes a tree and ¢ ¢ X is the minimal element for the partial
order < on X. If <<y, we set [z,y]={2: s <z<y}

Lemna 3.1, Let T be a point closed, connected multifunction on X.
If ®< z, implies F(x) C M (x), and if xo¢ F(x,), then F{x,) C M (z,).

Proof. Suppose F(w,) ~ (X\M (2,)) # @ and let y = min F(z,). Then
set 2, = sup L(x,) » L(y) and let 2z, < @, < &, (2, # @, since z, £ y). Since
F is connected, A = F([z,, z,]) is connected and meets M (x,) and con-
tains y. Thus if z,< @' <@, @' ¢ A. But o, < o< 2, implies that F(z)
C M(%)C M(z,) and so &' e F(z,). This, in turn, implies that , e F(m,)
and so we conclude that F(#,) C M (x,).

LEeMMA 3.2. Let F: X — X be a point closed, monotone, connected multi-
function which does mot have a fiwed point. If F(w,) C M), then there
exists o @, € M(m)\z, such that x, <z < implies F(z) C M(x).

Proof. Let y, = min F(z,) and let 2, < ¥, < ¥;. Then let 2, < 2, < 3,
with F(z,) ¢ M(x,). Then F([x,, #.]) is a connected set which meets
M (y,) and its complement. Thus F~(y;) ~ [#, ©,] # @. Similarly F 7 (y;) 0
A7, 2] # O for all @ e (wy, ). Thus, since F' is monotone, e F7Yyy)
for all & (&, x,] for some ; e (&, 4,]. But @, < 4 and so F(z) n M(z) # O
for all r [z, #;] and since F does not have a fixed point we conclude
that F(z) C M(»), £, < o < 2.

As a corollary to Lemmas 3.1 and 3.2 we get the following strengthened
version of the main result of [7].

8 — Fundamenta Mathematicae, T. LXXXIV
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COROLLARY 3.3. HBach connected, point closed, monotone multifunction
on a tree into itself has a fived poini.

Before stating the main theorem of this sec’r,ion we need one more
lemn;?}?wmm 3.3. Let F: X > X be connected and monotone, and let Zye X
be such that F(ay) C M(2,). If F doos not have a fiwed point in e, z,], then
F(o) C M(z) for all © e L(my) = [e, %]

Proof. Let 8§ = {& e L(wy): F(w) ¢ M(x)}. It § # &, then lub S= 2,
exists in L(x,). First suppose that F(2) ¢ M(z,). But then F([2, 2,]) is
connected and meets both M (z) and its complement and  hence,
contains z,. But this implies that z, e F(z,). Thus F(z) C M (2,), a.Jnd let
e< z<z, (nOte # # ¢ as § # @) with ze 8. The set F([z,%]) is con-
nected and meets M(z,) and its complement. Hence, F~(z,) N [z, 2] # @,
Since F is monotone, there is an element ¢’ € [2, 2] such that {z: z"g o< 2}
CF(z,). But then for &' < @ <%, F(z)C M(z) or % ¢ F'(x). This contra-
dicts either the hypothesis of the lemma or the choice of 2z, = lub §.
Thus § = @, and the lemma follows.

We are now ready to state the main theorem of this section. (In [4]
Theorem 3.4 appeared as a corollary to the main theorem.)

THEOREM 3.4. Let F: X =X be a point closed, poini connected, mono-
tone, .s.c. multifunction on X onto X. If e is an endpoint, @f eeF(e), and
if F(e) # X, then F has a fized point not e.

Proof. First note that the hypotheses on F imply that F is bicon-
nected, and that both #, F~! are point closed. Next we assert that there
isan z # ¢ in X such that either F(x) C M (z) or F~Y(z) C M (») or F has
a fixed point not e. For this let #; be & maximal element of X\F(e), and
let @, e X be such that z; ¢ F(x,). Then since e is an endpoint, L(z,) »
~L(x) # {€}. Suppose that #; # x,, and let @, = maxL(z) n L(z,). It
@, = 7, we are done. Thus suppose #, # 2, and that F(ws) ¢ M (s)-
Then F ([, z,]) meets M (x;) and its complement. Hence, there is an
€ [, 5] such that z; e F'(x) but then o ¢ F~*(x,) and so either z, is the
required fixed point or F~(wy) C M ().

For convenience supjpose that F(z') C M(2') for some %' # e. Then
by Lemma 3.3 if e< 2 < o', F(#) C M (2). Thus let 8 be a maximal chain
of sets of the form [e, ], ze X which satisties (i) [e, #'] € 8, (il) if fe, 2" ] e S
and e < x < &', then F(z) C M («). Then set z, = lub US By Lemma 3.1
F(xg) C M (), and by Lemma 3.2 and the maximality of §, &, is a fixed
point, and x, # e.

Remark. The properties of F used in the proof of Theorem 3.4 are

that F is biconnected and both F, F~* are point closed. However,

Smithson showed in [6] that these conditions imply that # iy u.s.c.
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We now apply this Theorem 3.4 to obtain Schirmer’s result [4].
THEOREM 3.5 (Schirmer). Let F, G: T—X be two point closed mono-

lone point connected, n.s.c. multifunctions on a tree T onto the tree X which

have an eﬂdpomt e of T as a coincidence. If both F(e) # X # G{e) and if
either Fle) or Gle) is a singleton, then F and G have a coincidence distinct
from e. '

Proof. Suppose that F(e)= {¢'} is a singleton. If G o F: ToT
satisfies, G~'oF(e) # T, fhen Theorem 3.4 applies. and G~ oF has
a fixed point not e. Then F and & have a coincidence not e. Now suppose
G o Fle)=T. Then G Ye')=T 50 ¢ e @) for all ¢, and if ¢ is not
an endpoint of X, there exists a t ¢ T such that e’ ¢ F(t) and ¢ # e. Hence,
in this ease, ¥ and & have a coincidence not e. Now assume that ¢’ is an
endpoint of X (and @™o F(e)= T). If FY(¢') is not a singleton, then
there exists a fe T, ¢ 5 ¢, such that ¢’ e F(#) and ¢ is then a coincidence
of F and G. Thus assume {e} = F~(¢’). Then & o B Y¢') # X, and Theo-
rem 3.4 applies as above.

4. We conclude this paper by using the methods of the previous
sections to prove two new coincidence theorems.

In [11] Ward proved that each w.s.c., continuum valued multi-
function on a arcwise connected, hereditarily unicoherent, continuum
into itself has a fixed point. From this we get:

THEOREM 4.1. Let X be an hereditarily uniccherent arcwise conmected
metric continuum and let Z be a compact, T,-space. If F: Z~X is a mono-
tone, point closed, w.s.c. multifunction onto X, then F has a coincidence
with every w.s.c., continuum valued multifunction G: Z— X.

Proof. The multifunction @« F: XX is u.s.c. and continuum
valued and therefore has a fixed point. Henc-e, F and G have a coincidence.

Note that Theorem 4.1 implies Ward’s theorem and so the fixed
point theorem and the coincidence theorem are equivalent.

In [8] Smithson proved that every ls.c. point connected multi-
function on a tree into itself has a fixed point. Hence, we get:

THEOREM 4.2. Let F: X — 1 be an open, monotone multifunction on the
space X onto the tree T. Then F is coincidence producing for each ls.c.,
point connected multifunction G: X - T.

Finally note that, as above, Theorem 4.2 is eqmvalent to the fixed
point theorem used in its proof.
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Square bracket partition relations in L
by
Richard A. Shore (Chicago, Ill.)

Abstract. We settle some questions about partition relations proposed by Erdds
and Hajnal under the assumption that V= L: 1) x—[x}} if and only if x-»[x]}.
2) Rorn 7 MNasrd ”“ for all ordinals « and integers n. 3) % 5> [§*]5P for all «, 6.

Introduction. Our goal in this paper will be to settle some of the
open questions about partition relations proposed by Erdos and Hajnal [1]
under the assumption that V = L. We will do this by combining some
combinatorial lemmas with known results (particularly those of Jensen)
on the fine structure of L. We begin by defining the square bracket par-
tition relation x-s[y]% of Brdos, Hajnal and Rado [2] for #, y, 6 and a
cardinals:

For every function F: [« —a (called a partition of [x]’, the size &
subsets of %, into « pieces) there exists a set ¢ C x (called homogeneous
for F) such that € =y and F'[CT # a, ie., some element of the range
is omitted when F is restricted to the size § subsets of . If this is not
the case we write »-[y15.

These partition relations naturally split into two quite different
types according to whether ¢ is infinite or finite. In the former case most
of the relations are known to contradict the axiom of choice. Thus for
example, AC implies that =[x for every » (Erdos and Rado). The
more important and interesting questions about these partition relations
are therefore concerned with finite 6. In particular, the most fundamental
question seems to be to determine the relationships among various ap-
parent strengthenings and weakenings of. the simplest non-trivial re- .
lation %-»[x]; (the well-known equivalent of weak compactness).

When one first considers this problem it seems that inereasing the
superseript should strengthen the relation while increasing the sub-
geript should weaken it. At it turns out the strengthening achieved by
increasing the superseript is illusory (as long as it remains finite). Indeed
one can prove that x—[xf; iff Vi< e (x-[x]f) using an alternate
formulation of x—[x]3 in terms of trees. )

On the other hand, increasing the subscript. does have some real
effect. %—[»]2 is strictly weaker than x—[x]; in that there are singular
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