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Square bracket partition relations in L
by
Richard A. Shore (Chicago, Ill.)

Abstract. We settle some questions about partition relations proposed by Erdds
and Hajnal under the assumption that V= L: 1) x—[x}} if and only if x-»[x]}.
2) Rorn 7 MNasrd ”“ for all ordinals « and integers n. 3) % 5> [§*]5P for all «, 6.

Introduction. Our goal in this paper will be to settle some of the
open questions about partition relations proposed by Erdos and Hajnal [1]
under the assumption that V = L. We will do this by combining some
combinatorial lemmas with known results (particularly those of Jensen)
on the fine structure of L. We begin by defining the square bracket par-
tition relation x-s[y]% of Brdos, Hajnal and Rado [2] for #, y, 6 and a
cardinals:

For every function F: [« —a (called a partition of [x]’, the size &
subsets of %, into « pieces) there exists a set ¢ C x (called homogeneous
for F) such that € =y and F'[CT # a, ie., some element of the range
is omitted when F is restricted to the size § subsets of . If this is not
the case we write »-[y15.

These partition relations naturally split into two quite different
types according to whether ¢ is infinite or finite. In the former case most
of the relations are known to contradict the axiom of choice. Thus for
example, AC implies that =[x for every » (Erdos and Rado). The
more important and interesting questions about these partition relations
are therefore concerned with finite 6. In particular, the most fundamental
question seems to be to determine the relationships among various ap-
parent strengthenings and weakenings of. the simplest non-trivial re- .
lation %-»[x]; (the well-known equivalent of weak compactness).

When one first considers this problem it seems that inereasing the
superseript should strengthen the relation while increasing the sub-
geript should weaken it. At it turns out the strengthening achieved by
increasing the superseript is illusory (as long as it remains finite). Indeed
one can prove that x—[xf; iff Vi< e (x-[x]f) using an alternate
formulation of x—[x]3 in terms of trees. )

On the other hand, increasing the subscript. does have some real
effect. %—[»]2 is strictly weaker than x—[x]; in that there are singular
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strong limit cardinals such as =, which satisfy the former relation while
the latter implies that » is strongly inaccessible. If however, one requires
that » be regular as well, not too much is known even about x—[x]3.
The best outright theorem seems to be that of Galvin and Shelah [3]
that s,7[%15. By assuming GCH Erdos, Hajnal and Rado [2] proved
that, for regular »x, » —[x} implies that = is strongly inaccessible. Indeed,
they show mueh more: wtp[%T: for all % Our first result here will
gettle the question entirely under the assumption that V = L. By extending
a result of Martin we prove that (in ZF), x—[#]> implies Souglin’s hypo-
thesis for (regular) x». Combining this Wlth a theorem of Jensen, we then
have that »—[x]2 iff #—[x]% answering problem 16 of [2].

Remark. It is possible to give information about the relations
obtained by increasing both the subseript and superscript without any
extra set-theoretic assumptions. In particular, it is shown in [5] that for
regular %, x—[x]% implies %— []; and more generally that »— [#]n s
implies »—[# (*).

We next consider (in L) the negative stepping up lemama proposed
as problem 17, 17/A of [2]. To consider a simple case, Erdds and Hajnal
ask if (assuming GCH) one ean go from the fact that 8,48, to the
conclusion that s, [8]% (and so on to s.f[%]g"). Our second result
establishes these negative relations in L (and indeed somewhat more).

icm®

This however is the best possible result since, as is pointed out in an *

(unpublished) updated version of [2], s[% ]}, implies the negation of -

another partition relation known to be consistent with GCH. Our proof
proceeds by combining a “strong” counterexample to 8= [8J, with
a Kurepa family of subsets of 8, to produce a counterexample to 8, — [,
The existence of a Kurepa family is due o Solovay whose work has been
considerably extended by Jensen and Kunen [7]. The general procedure
can be continued to give, e.g. Sa[8J§+* and various other examples qf
the negative stepping-up lemma.

Finally, we will take a brief look at partition relations with ¢ infinite.
Here the natural goal is to refute such relationships. Thus for example,
problem 14A of [2] asks if x5 [8,1} for every » We have heen informed
that assuming V = L, Kunen has proven this. We improve the result
by showing that one does not even need the full power of the infinite
superscript. In particular we show that (assuming V = L), »4[611]5" for
all %, 8. (x—[y]=® means that for every F: | | [#]*— a there is a homogene-

n<o

ous set € C s of size y such that P’ | J[C]" # a. This iy clearly weaker
n<o
than - [yJf.) .
() J.Schmerl has improved this last result to » — [x]{" implies - [x]; (for regular x)

whose r = [](jm—1)+1).
i<n
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The Theorems. We begin with some definitions concerning trees.

A tree is a partially ordered set (T', <) such that for every z ¢ T, {y] y< x}

is well ordered. The rank of z is the order type of this set. The length

of T is the supremum of the ranks of the elements of 7. A chain in T is

a subset of T linearly ordered by <, while an antichain is a subset all

of whose elements are incomparable with respect to <. For » a Iegwﬂar

cardinal we say that T is a normal x-tree iff

1) T has exactly one point of rank 0.

2) Every point has at least two immediate suceessors.

3) Every point has at least one successor at every level of 7.

4) A chain of limit length has at most one immediate successor.

5) For every o, {s| rank(s) = a} has size less than .

- Finally we say Souslin’s hypothesis holds for (regular) », SH(x), if every

normal x-tree of length » has a chain or an antichain of power x. Note
that the stronger assumption that every such tree has a chain of power x
is equivalent (for strongly inaccessible %) 50 x—[x%]3. On the other hand,
Martin has shown that x»—[x]; implies Souslin’s hypothesis for ». We
now modify and extend his proof.

Levya 1. For reqular x, »—[x]2 implies that Souslin’s hypothesis
holds for x= (%)

Proof. It is clear from the normality conditions above that if there
is a counterexample to SH (x) then there is one with underlying set » for
which every element of rank « has a least @ many immediate successors
(a << ). Let T De such a ecounterexample. For a < » and each z of rank «
we label the immediate successors of z in a list of length at least a but
less than ». We now define a function F: [« —»x u {co} as follows: If », y
are incomparable with respect to T we set F{m, y} = oo. If they are
comparable then say < y. In this case there is precisely one immediate
suceessor z of o such that 2z <<y. We have labeled z with some ordinal
d<<x and so can set F{z,y}=0.

Let O C'» be homogeneous for ¥, i.e. 0 = » and F'[CF # x u {co}.
If co¢ F''[CT then by definition € is a chain in 7' of size » — & contra-
dietion. On the other hand, say 6 < » is omitted from F”[(]%. Consider
then the set D= {y| (Hz e ) (y is the Sth immediate successor of x)}.
As D clearly has size » it suffices to establish that it is an antichain in 7
Consider any y,, ¥, ¢ D such that ¥, < y,. Let x,, 2, ¢ ¢ be the elements
guaranteed by the definition of D. Since y; < #,, it is clear that o, <y,
< @, < ¥,. Thus #, is above the §th immediate successor of z,, i.e. F{w,, z,}
= 6 but as »,, 2, ¢ ¢ this is a contradiction. W

COROLLARY 2. (V = L). For regular x,x—[x]z iff %~ [x].

(*) These two results have since been independently discovered by Jensen and
Silver,
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Proof. Jensen has shown [6] that for regular »x, x—[x]; iff SH(x)
but of course x—[x]f implies »—[x]>. W

We now turn to the negative stepping-up lemma: x4 [p]2 implies
#t 5 y]+t As a typical example of our results we will prove (in L) that
8P [, Before beginning we need a few facts. First the proof (from
GCH in [2]) that s,-5>[s]§, actually establishes mueh more. It construets
a function @: [§]2—x; such that

(¥) for amy countable subset ¢ of s, and any uncountable one U,
GTOXx U] = &,.

We will exploit this extra strength in our proof. Secondly we need Solo-
vay’s result that (in L) there is a Kurepa family for &, i.e., there is
a BC 2% such that B =, but for each #C %, 5<% B @ < & (where
B o= {y ~na| y<B}). We can now prove our sample result.

THEOREM 3 (V = L). 858}

Proof. Let B and & be as above. We will define a partition
H: [B*- &, such that for any 0C B of size 8, H'[CT = %,. To begin
we define F: [B*— 5, by F{z, y} = ,ua( {a) # y(a)). (Recall that # and y
are characteristic functions.) Note that for any triple {z,y, 2} ¢[BP
there are precisely two values that F takes on the three pairs that can
be formed from =, y, and 2. By abuse of notation we call this pair of values
F{w,y, %} It is of course a member of [x,¥ and so we can define H {x, y, 2}
= G(F{z,y,2}). We claim that this is our desired counterexample to
"2"“1]&

Let C be any subset of B of size 8. We have two possibilities; either
there is an # ¢ € such that 4, = {F{z, y}| ¥ < 0} has cardinality %, or not.
In the former case we are done immediately. We simply fix such an @
and note that as y and 2 range over 0, F{z,y, 2} ranges (at least) over
ail pairs from A,. Thus as @ shows that s, [Nﬂm and A, = x, G4}
=y and so H'{CP =

If on the other hand A< 8 for all z ¢ 0, we ploeeed _inductively
to build a tree whose nodes are the elements of (. Associated with succes-
sive nodes # we will also have nested subsets By of . We begin by
letting ,, the least element of C, be the bottom node and associating
with it the set H = (— {z,}. For each node & of the tree we consider
the set Dy = {F{z, 3}| y ¢ Bs). For each oD, we take the least y < By
such that F{z, y} = a. These elements are declared the immediate succes:
sors of ¢ and for each such y we set B, = {w e B,— {y}| Fiz, y} = F{z, w}}.
Finally, if {z;};., 18 a cham of limit length in the tree we take the least

element of (") By, as the immediate successor of the chain and associate
i<i

to it the rest of () By, (Of couzse, if ﬂ E,, is empty the chain has no

i<i
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suecessor.) Since Ay < 8 for every # e (, this tree is countably branching.
Moreover, since B is a Kurepa family there can be only countably many
nodes of any rank less than x;. In particular there is a node z of rank o
with B, (which is also the set of its suceessors) of power &;. Since ¥, C B,
FE:]=», as E=m= %,. Let {y;};<, be a chain of predecessors of z and
let a; = F{ys, #}. Note that by the construction of the tree a; = F{y:, 2}
for every zeEz, i< w. Moreover, we can get every pair from
{ai] i< 0} X F"[B] by applying F to the appropriate triple. Thus
{ai, Bz, w}} = F{yi, 2, o} by definition. By the property (x) of G we see
that H'[CP = &, since ¢ contains B, and %, i< o. W

In the above proof we chose 8,7[% %, only as an example. As the
strong form of ®4[8.J, holds for any successor cardinal (by GCH) as
does Kurepa’s hypothesis [7] the exact same proof shows that w, ..
-+ [8or1]kas, - Moreover by iterating the type of argument used above
we could as well prove the more general

THEOREM 3A. (V=1L). S0P 8, il -

For our final result we combine a combinatorial trick like those of [4]
with a well-known theorem of Rowbottom [8]:

THEOREM 4 (V= L). »A 071" for all x,0 (3)

Proof. If not, let %, § be such that »—[07]5". We will show that
given any partition F: [x]<°— 6“' there is, in fact, & homogeneous € C %
of size 6% such that F'TCT<® < 8. (By a theorem of Rowbottom [8], this
contradicts V = L and so sufﬁces for our result.) If not, then let F: [»]<®
8% be such that F"[O’ <o = §* for every C’Cx of power &F. Let
G: [67F - o show that 674 [67];. Now define H: [x]<°— 6" Dy setting

H{wy, @y oery &y553 = G{F{xl’ wey Bi}s F{m:_._;, ey miw‘—i}} .

If we now consider any O C » of size 67 we know that F'[0]"= % for
some 7 << w. We can thus easily extract §* disjoint members of [O]":
{Zi1y ) Tin}icor SUCh that F''{{zy;, ..., @} 1< 67} has cardinality &+.
Given any two such elements {;, ..., Bu}, {Lj1s -y ¥} We Dote that il
we arbitrarily extend them to a 273" triple {®;, ..., By Bizy -y gy ooe s Longn}
and apply H we get G{F{Zy, ..., Lo}, F{@s, ey @,}. Since we can geb
any pair from a set of size 6" in this way the choice of G shows that
H'[CP = 5. &
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Abstract. In this paper the generalized base of countable order theory of H. H. Wicke

and J. M. Worrell, Jr. is simplified. This theory allows to understand what the role of

' paracompactness is in the theories of metrizability and complete metrizability. We

consider four classes of spaces and prove that they are closed under the action of perfect

mappings and open and compact mappings. Furthermore we give a mapping characteri-

zation of these classes and show that in the class of paracompact spaces they are equal

to the classes of metrizable spaces, completely metrizable spaces, paracompact p-spaces

and paracompact Cech complete spaces. Besides, we construct an example of a locally
completely metrizable metacompact space which is not Cech complete.

The aim of this paper is to introduce new characterizations of some
classes of spaces investigated by H. H. Wicke and J. M. Worrell, Jr.
Our characterizations allow us to simplify the theory of these authors.

‘We shall use the terminology and notation from [12]. By a mapping
we always mean a continuous function. All spaces are assumed to be
regular. If Mt and N are families of subsets of a certain space X and if
for an arbitrary N e N there exists an M ¢ M such that M C N, then we
write that 69t << N. The letter A will always denote a centred family;
centred families of closed sets will be denoted by .

Let B = {B,}s>; be a sequence of bases of a given space X. We
recall that if for each sequence {B,};; such that B, B, one of the
following conditions is satistied:

(d) M Bn> =, then {B,};, is a base at =,

n=1

(p) M Bx>w and 0F < {B.,,}f=1, then M § # 9,

n=1
(e) 0¥ < {B,}oo, then N F # G,
then X is a Moore space or a p-space [17], or a Cech complete space
[12, Theorem 3.8.2], respectively. If the conditions (d) and (c) are satisfied
simultaneously, then X is a complete Moore space.
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