icm

Simplicial approximation of small multifunctions *
by
Helga Schirmer (Ottawa)

Abstract. A multifunction ¢@: |K|—|L| from a polyhedron [K| to a polyhedron
|Z] is called small if @(x) C st(w; L) for all & ¢ |K|, where w = w(x) is a suitable vertex
of I and st(w; L) is the star of w in L. It is shown that a small, usc and point-closed
multifunction ¢ can be approximated by & simplicial map. This simplicial approximation
is unique up to homotopy, and can be used to prove that small homotopy classes of usc
multifunctions are in one-to-one correspondence with ordinary homotopy classes of
maps. Applications are given fo extension and lifting of small usc multifunctions.

1. Small multifunctions. This paper stems from the idea that a multi-
function ¢: X —Y with “small” point-images shows many resemblances
to a single-valued function, an idea which has already been found fruitful
in previous work (see [3], [4], [5]). The conecept “small” can be defined
in various ways, and the resemblance explored in different directions.

If Y has a metric, then ¢ has been called e-small if, for all z e X,
the diameter of p(x) is <e [4], [5]. If ¥ is an n-sphere 8%, then the term
small has been used to denote a multifunction for which every ¢(z) is
contained in a hemi-sphere [3]. In the present paper we assume that
Y is a polyhedron, and define ¢ as small if every ¢(z) is contained
in the star of a vertex of ¥ (see Definition 1.1 below).

The resemblance of small multifunctions to single-valued functions
has been investigated in several ways, e.g. in connection with continuous
selections [4] and with near fixed points [5]. For ¥ = §™ it has been shown
that each semi-continuous small multifunction is related, via a small
homotopy, to a single-valued map, and that homotopy classes of small
multifunctions are in one-to-one correspondence with homotopy classes
of single-valued maps [3]. Here we construct small homotopies between
small upper semi-continuous multifunetions and single-valued maps if ¥
is a polyhedron, using as a tool & generalization to multifunctions of the
concept of a simplicial approximation.

We use |K|, |L|, ... to denote the polyhedron underlying the simplicial
complexes K, L, ..., and assume that all such complexes are finite. If v is
a vertex of K, then st(v; K) denotes the star of v in K, which is the open
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subset of K} consisting of the union of the interiors of all simplexes which
have v as a vertex.

A multifunction : X - ¥ from a space X into a space Y is a corre-
spondence which assigns to each ¢ X a non-empty subset ¢(z) of ¥.
Recall that ¢ is point-closed if each ¢(z) is closed in ¥, and use (upper
semi-continuous) if for every open set V in ¥ with ¢(z) CV there exists
an open neighbourhood U of @ such that ¢(U)CV. The term map is
reserved for single-valued continuous functions.

All multifunctions in this paper are small in the following sense.

DeFmxrriox 1.1, Tet ¢: X |L| be a multifunction from a space X
into a polyhedron |L!. Then ¢ is called small (with respect to the simplicial
structure L of |L)) if g(a) C st(w; L) for all #e¢ X, where w = w(z) is
a suitable vertex of I. -

Note that for the case [I] = S" this definition of small is more re-
strictive than the one used in [3], and that the results of [3] do not follow
from the ones given here. The more precise, but also more cumbersome,
term “star-small” could be used in Definition 1.1 to point out the dif-
ference, but confusion seems unlikely as “small” is used in only one
meaning throughout the rest of this paper.

Note algo that the composite of two small multifunctions need not
be small. A rather extreme example can be obtained as follows: Let
X = |Lj be the perimeter of an equilateral triangle, and let L consist of
three vertices and three one-gsimplexes in the obvious way. Define
¢: |L]— L] by choosing as ¢(x) the closed portion of the perimeter which
has z as its midpoint and is of a length equal to % of that of the perimeter.
Then ¢ is small, but ¢* = ¢ o @ o ¢ o p is the constant multifunction given
by ¢*z) = |L| for all & e|L]. This example makes it clear that results
involving the composition of maps can usually not be extended to small
multifonetions.

2. Simplicial approximation of a small usc multifunction, This paragraph
contains the construction of a simplicial approximation to a small use
multifanction (Theorem 2.2), and shows that a simplicial approximation
is homotopic to the given multifunction (Theorem 2.4).

We first give the definition of a simplicial approximation, which
generalizes one frequently used for maps (see e.g. [2], p. 46).

DerFmviTioN 2.1. Given simplicial complexes K and I, a small multi-
function ¢: |K|—|L|, and a simplicial map f: |K|—|L|, then f is called
a simplicial appromimation of ¢ if @(st(v; K)) C st(f(v); L) for all
vertices ve K.

We see that the definition depends on both the simplicial structures K
and L of |K| and |L|. Smallness only requires from a multifunction
@ [K|—> L] that ¢(v) Cst(w; L), and therefore it is not necessarily true
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that qz(st(v; K)} C st(w; L). But the proof of Theorem 2.2 will show that
this condition can always be fulfilled for a suitable subdivision of K if ¢
is use. .

THEOREM 2.2. Let K, I be simplicial complexes and @: |K|- L] be
an use multifunction which is small with respect to L. Then there exisis
a subdivision K' of K such that ¢: |K'| - |L| has a simplicial approximation
f: \K'|— Ll

Proof. The multifunction ¢ is small, hence we can find for each
x ¢ |K} a vertex w = w(wx) of L such that ¢(z) C st(w; I). As ¢ is use and
as st(w; L) is open, there exists an open set U(z) containing 2 with
(U (@) C sti(w; L). Let 6 be a Lebesgne number of the covering
{U(®»)| ©e|K]|} of the compact space K|, and let K’ be a subdivision
of K such that the maximum of the diameters of the stars of its vertices
is < §. Then there exists for every vertex v of K’ a vertex w = w(v) of L
sueh that g(st(v; K)) C st(w; L).

Define & vertex map f from K’ to L by
(1) Flv) =w(v)
Tn order to see that f can be extended to a simplicial map from |K'| to |L},

take any simplex o= [y, 9, ..., 7,] of dimension =1 of K, and let Into
denote its interior. As

(2)  ¢(Into) C g(st(v;; K))Cst(f(vs); L) for

we have

for all vertices » of K'.

i=0,1,..,7,

r

_mo st{fes); L) # O .

f=

Hence f(v,), f(v1), ., f(v,) span a simplex of I, and f can be extended
over o. So (1) determines a simplicial map f from |K'| into |L}, and (2)
shows that f is a simplicial approximation of ¢.

In.the single-valued case a simplicial approximation is homotopie
to the given map. A similar result is true here if the homotopy is suitably
defined.

DEFINITION 2.3. Let |I| be a polyhedron and ¢, ¢,: X —|L} be smalls
use and point-closed multifunctions. A small homotopy is a small, usc and
point-closed multifunction @: X x I |L| with @(x, 0) = g(x) and P(z, 1)
= ¢,(z) for all zeX.

‘We write g, é @, for a small homotopy, and f, ~f; for a single-

s

valued one. That o~ determines an equivalence relation follows exactly
as in the single-valued case.

THEOREM 2.4. Let ¢: |K|—|L] be a small, usc and point-closed mulfi-
Sfunction and f: |K'|—|L| be a simplicial approwimation of ¢. Then there
ewists a small homotopy D between ¢ and f.
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Proof. We construct @ inductively on the 7-skeleton K, of X', for
r=0,1,.., dimk"
If vis a vertex of K’, then f(v) = w is a vertex of I such that ¢(v)
C st(w; I). Hence we can define a set &(v; 1) for 0g<i<1 11neamly by
B0, 1) = tf(0)+(1—1)p()
= {tf(0)+ 1~y y cp(v)}-
Assume now that @ has been defined over |K,|x I for 0 <r < n—1,
and let o = [ty, T1, -y 2a] be an n-simplex of K. The vertices w; = f(v:),
for i=0,1,...,n, span a simplex 7 of L. Hence we have, for any point
x ¢ Into,
(@) C p(st(ss; K1) C st(f(va); L)  for

and thus

1=0,1,..,n,

n

w)Cﬂ st{f(ve); L) = (M stwg L) .

i=0 1=0

As f(2) €7, we can again define a set @(z,1) in a linear way by

= tf(a)+ (1—1t)p(x)

for all zeInto and 0 < i< 1. As O(x,1) is already defined if x lies on
the boundary of o, this defines @ on all of ¢ and therefore inductively
on [K'| x I. It is easy to see that @ is point-closed and use, and it is small
as @{z,1) C st(w; L) for any vertex w of the carrier-simplex of f()

The construction of @ shows that @ is a special homotopy in the’

sense of [1], i.e. that ®(z, ) is homeomorphic to &(x, 0) for all z ¢ [K]
and 0 <i< 1. In particular we have

THEOREM 2.5. The homotopy @ in Theorem 2.4 can be chosen so that
it is single-valued for all 0 << 1 whenever p(z) is single-valued.

3. Homotopy classes of small usc multifunctions. We show in this
paragraph that the simplicial approximation of a small usc multifunction
is unique up to homotopy, and that small homotopy classes of use multi-
functions are in one-to-one correspondence with ordinary homotopy classes
of maps. These results are easy consequences of the following theorem.

TaroREM 3.1. Let K and L be simplicial complexes, and K', K'' be
subdivisions of K. Let further gq, ¢,: | K| — L] be small, usc and point-closed
mullifunctions, and let fo: |K'|—|Li be a simplicial approwimation of @,
and fi: [ K'"| - |L| be a simplicial approximation of @,. If g, and @, are related
by a small homotopy, then f, and f, are related by an ordinary homotopy.

Proof. We are given a small homotopy ‘

@' K|\xI-ILj with @(x,0)= qfx) and &'(z, 1) = @),

icm

Simplicial approximation of small multifunctions 125

and we also know from Theorem 2.4 that there exist small homotopies

& |K|xI—|I| with Oz, 0) = gu(z) and By(z,1) = filz) for i=0,1.

If we define a correspondence @: |K|xI—|L| by
Dy(w,1—8t) for O<i<i,
(2,0 =1 D'(x,3t—1) for 4<i<},
&y(z,3t—2) for 2<<i<1,
then & is a small homotopy between f, and f;.

It follows from Theorem 2.2 that @ has a simplicial approximation
F: (K x I)|—|L], and from Theorem 2.4 that there exists a small homo-

topy y: |[KXIXI|—|L} such that w(z,?,0)= P(z,t) and vp(r,{,1)
= F(z,t) for all ze|K| and 0<i<1. Now define G: |[KxXI|—|L| by
w(x,0,31) for 0<i< i,
Gz, 1) = 1{ vz, 3t,1) for i<i<i,
p(z,1,3—3t) for 2<i<1.

Then @ is a single-valued and (as it is usc) continuous homotopy between
G(z, 0) = f,(z) and G{(z,1)= fi(z), and Theorem 3.1 is proved.

Taking ¢,= ¢, in Theorem 3.1, we obtain the uniqueness (up to
homotopy) of the simplicial approximation.

COROLLARY 38.2. If for |K'|~|\L| and fi: |K"|—|L| are two simplicial
approzimations of the small, usc and point-closed multifunatim @: |[K|— T,
then f, and f, are homotopic.

A further corollary of Theorem 3.1 will be used in § 4.

COROLLARY 3.3. If fy, fi: |K|— L} are two maps which are related by
a small homotopy, then they are also related by an ordinary homotopy.

Proof. Let fg,f1 be simplicial approximations of fy,f;. Then Theo-
rem 3.1 implies f, o fi, and Theorem 2.4 implies f, =f, and f, ==f;
Hence f, = f;. '

By the small homolopy class [p] of the small, use and point-closed
multifunction ¢ we mean the set of all multifunctions ¢’ which are related
to @ be a small homotopy. Theorem 3.1 shows that a correspondence from
the set of small homotopy classes of multifunctions to the set of ordinary
homotopy classes of maps can be defined by assigning to each multi-
function its simplicial approximation, and Theorem 2.4 shows that this
correspondence is one-to-one. More precisely, we have

THEOREM 3.4. If K, L, are simplicial complexes, then the set of small
homotopy classes of small, use and point-closed multifunctions from |K|
into |L} is in one-to-ome correspondence with the set of ordinary homotopy
classes of maps from |K| into |L|.
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4. Extension and lifting problems. As a further illustration of the close
relation Detween small multifunctions and their simplicial approximations
we finish with some results on extension and lifting of multifunctions.

TrEoREM 4.1. (Extension problem). Let X, ¥ be polyhedra, and let .

A be a subpolyhedron of X. Let : A—Y be a small, usc and point-closed
multifunction, and f: A—Y be a simplicial apyprozimation of @. If f can
be extended to a map from X to ¥, then ¢ can be extended to a small, nse
and point-closed multifunction from X to Y.

Proof. If g: XY is an extension of f, then its restriction to 4
equals f. Hence Theorem 2.4 shows the existence of & small homotopy
$: AxI-»Y with ®(a,0)=g(a) and P(a,1)=@(a) for all aec 4. Leb
r: XxI+(XX0)u (4dxI) be a retraction, define 9': (X X 0) v (4 x I)

-»Y by " ; 0
, Z 1 =0,
P, 1) = {g(:v),t) i 1>0,
and define ¥: X xI->Y by Y= ¢ or. Then ¥ is small, usc and point-
closed, and ¥(x,1) = ¢(z) if © e A. Therefore yp(z) = P(z,1) is an ex-
tension of ¢.
Remark. Tt is also easy to prove the converse, i.e. the fact that the
existence of an extension of ¢ implies the existence of an extension of f.
THEOREM 4.2. (Lifting problem). Let X, B, B be polyhedra and ¢: X - B,
%: B—B be small, usc and poini-closed multifunctions. Let f: X - B and
p: B B be simplicial approzimations of ¢ and . If f can be lifted to a map
g: X - E with p o g = f, then @ can be lifted to a small, usc and point-closed
multifunction p: X —E with moyp & @.
Proof. Take p = g, 50 that w oy = 7 o g. Liet ITI: B X I - B be a small
homotopy from = to p (see Theorem 2.4), and let 1;: I —1T be the identity
map. Then 7o (g X 17): X x I - B is a small homotopy from =z o g to p » g.

As pogefand f;qz (Theorem 2.4), we have mop = ¢.
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Stone lattices: a topological approach
by
H. A. Priestley (Oxford)

Abstract. A {0, 1}-distributive lattice I can be represented as the lattice of clopen
inecreasing subsets of an appropriate ordered topological space X. It is shown that,
when L is a Stone lattice, the dual space X is characterized by subspaces ¥ (X), Z(X)
of X and a continuous increasing map m (X): ¥ (X)-Z(X). This enables the structure
of Stone lattice dual spaces to be analysed in terms of simpler components and leads
to a construction theorem for such dual spaces which is in the same spirit as, but not
directly dual to, Chen and Gritzer's triple construction theorem for Stone lattices.

1. Introduction. Chen and Gritzer show in [5] that a Stone lattice I
can be studied by investigating an associated triple of simpler components,
(¢(L), D(L), (L)), where C(IL), D(L) are appropriate subsets of I and
@(L) a connecting map. In this paper the duality between {0, 1}-distri-
butive lattices and compact totally order disconnected spaces developed
in [19] and [20] is applied to Stone lattices and the dual space X of a Stone
lattice L is shown to be characterized by subspaces Y (X), Z(X) of X and
a continuous increasing map m(X): ¥(X)—Z(X). The ordered spaces
Y(X), Z(X) are the duals of the lattices D(ZL), O(L); m(X) and @ (L)
are related, but are not mutually dual maps.

The Construction Theorem in [5] asserts that, given a suitably defined
triple (0, D, @), there exists a Stone lattice I with (L) = C, D(L)= D,
D(L) = @. Problem 55 of [97] seeks a less computational proof of this
theorem than that given in [5]. Motivated by this problem, we show how
to construct a space dual to a Stone lattice from a “dnal triple” (¥, Z, m)
and hence obtain a new method of constructing Stone lattices from simpler
components.

Dual triples also provide new information on free Stone algebras
and a short proof of Theorem 2 of [2], characterizing injectives.

2. The dual space of a Stone lattice. We refer to [19], [20]for the ordered
topological space concepts needed, recalling only two crucial definitions
concerning a set X endowed with a partial order < and a topology J.
A subset B of X is decreasing (increasing) if 2 <y e E(z > y ¢ E) implies
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