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About neighborhoods of surfaces integrally unknotted in S*
by
A. Kirkor (Warszawa)

Abstract. A (closed) surface N embedded in 2 is (integrally) unknotted, if N can
be homeomorphically approximated by tame surfaces bounding handlebodies in both
complementary domains. It will be shown in this note that every unknotted surface is
a deformation retract of a large openjclosed neighborhood in 82

A subspace ¥ of a space X will be said to be mildly embedded in X,
or simply, mild in X, if ¥ is a deformation retract of a neighborhood in X.
Otherwise, ¥ is wickedly embedded, or wicked, in X [10]. If X is a triangu-
lated space, and ¥ a tame subset of X, then ¥ is mild in X. And such
is the case where X and ¥ are AR-spaces or where ¥ is any fopological
image of the (n—1)-sphere 8*7! in X = 8. On the other hand, most
simple k-manifolds with k=1, 2 or 3 can be wickedly embedded in very
simple 3-manifolds [8], and any closed orientable surface of positive
genus ean be wickedly embedded in 8°[9]. We will show here that a closed
surface is mild in §? if it is integrally unknotted, i.e., if it can be approxi-
mated homeomorphically by surfaces bounding handlebodies in their
both complementary domains. Of course, this condition is not necessary
at all.

On our way we have to discuss a property characterizing unknottedness
of a surface in §° which may be of some independent interest. Occasionally,
one can see that in the space of all embeddings of a surface into 8 with
the metric “sup”, the set of all unknotted embeddings is a pathwise con-
nected and locally pathwise connected component. Finally, it turns out
that every crumpled handlebody (see the last section for definition) X has
an h-spine, i.e., there exists & subset K of X such that K is a deformation
retract of X, and the boundary of X is a deformation retract of X\K.

1. Preliminaries. Let ¥ be a subset of a metric space X, a mapping
f: Y- X is an ¢-mapping if dist[f(»), #]< e for every z e Y. A small
mapping is an ¢-mapping with s small. And f: ¥ - X stands for a mapping
of ¥ onto X.

We consider the 3-sphere &° as the one-point compactification of
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the Euclidean 3-space 7® and all triangulations, polyhedra ete. will be
related to the ordinary matric of B?. Regular neighborhoods will be
understood in the sense of Whitehead [15]. By & topologigal regular
neighborhood of a set A in a space X we shall mean a closed n.e1ghborhood
V of A such that there is an embedding h: V —B” with A (V) being a regular
neighborhood of the polyhedron (A} in E". By a handlebody we shall
mean any homeomorphic image of a regular neighborhood of a con-
nected 1-polyhedron in EP. By a surface we shall understand a closed,
connected orientable 2-manifold. :

A subset 4 of a triangulated space X is tame if there exists an auto-
homeomorphism of X that maps A onto a polyhedron in X. If the sur:
face N is a subset of §%, and U denotes a component of 8™\N, then if U
is a handlebody, we shall say that N is tamely unknotted from the side
of U or unilaterally tamely unknotted. If the closures of both components
in SN are handlebodies, then N is known to be tame and will be said
to be tamely unknotted from both sides or simply, tamely unknotied.

Two compact 3-manifolds M and N with nonempty boundaries and
with N C Int M are concentric [7] if the closure of M\N is homeomorphie
to Bd M x I, where Int M and Bd M stand for interior and boundary
of M, and I=1[0,1]. If A and B are disjoint, closed homeomorphic
2-manifolds embedded in a compaet 3-manifold, then 4 and B are con-
centric if there exists a region @ in M such that Fr& = A o B and @ is
homeomorphic to A X I.

Clearly, two 3-manifolds are concentric if and only if so are their
boundaries. Let 4 and B be concentric surfaces in a 3-manifold bounding
regions U and V respectively in M with UCYV. Then ¥V is a handlebody
if 5o is T, and conversely, U is a handlebody if ¥ is a handlebody and
if A is tame. For concentric manifolds are homeomorphiec.

2. Unknotted surfaces.

Lemuma 1. Tet N be a tame surface in 8%, and U a component of S™\N.
If for every positive number e there exists an e-homeomorphism mapping N
onto a tame surface that bounds a handlebody in the e-neighborhood of U,
then U is a handlebody, i.e., N is tamely unknotied from the side of U.

Proof. Since N is a tame, closed orientable surface, there exists
a “collaring” homeomorphism ¢: N X I*- 8% where I* = [—1, 1], such
that ¢(z, 0)= = for every z <N, and every N,= ¢(¥ X {t}) is a tame
surface. The double collar ¢ = ¢(Nx I*) is a tame 3-manifold with
BdC = N_, v N,. Since ¢ is a compact ANR-space, there exists a posi-
tive number ¢ such that any e-homeomorphism h: N — C is homotopic
to the identity mapping on ¥, idy, in C; moreover, if ¢ < dist(N, Bd0),
then k(N) separates C between N_, and N, because so does N. Therefore,
assuming that » is a tame embedding, we infer that A(N) is concentric
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with ¥_, and ¥, in O by Theorem 1 of [7]. And N_, and N, are con-
centric with &N by construction.

Now let h(N) bound a handlebody in the e-neighborhood of T.
Since either N _, or ¥, is contained in U, the surface N bounds a handlebody
in the e-neighborhood of T, i.e., U is a handlebody. ’

COROLLARY 2. If N is a tame surface in S*, and for every positive number ¢
there ewisis an &- homeomorphism mapping N onto a tame, unilaterally tamely
unknotted surface, then N iiself is unilaterally tamely unknotied.

COROLLARY 3. Let N be a tame surface in 8%, and Uy, U, the components
of S™\N. If for i=1,2 and every positive number = there ewisls an
e-homeomorphism ki mapping N onto a fame surface hi(N) that bounds
a handlebody in the e-neighborhood of Us, then N s a tamely unknoited
surface.

In particular, if a tame surface N can be homeomorphically approxi-
mated by tamely unknotted surfaces, then ¥ is tamely unknotted.

Now, let N be an arbitrary surface (not necessarily tame) in S%,
and U a compounent of S5\N. N will be said to be unilaterally unknotied
if for every positive number ¢ there exists an ¢-homeomorphism & mapp-
ing N onto a tame surface 1 () which bounds a handlebody in S%, and
if §® can be replaced by the ¢-neighborhood of U, N is unilaterally un-
knotted from the side of U. If N can be homeomorphically approximated
by tamely unknotted surfaces, then N is said to be unknotted. Clearly,
these definitions make sense by Corollaries 2 and 3, i.e., they generalize
unilateral tame unknottedness and tame unknottedness.

THEOREM 4. A surface is unknotied in S® if and only if it is unknotted
from either side.

Proof. Clearly, one has only to prove the “if part” of this theorem.
Let N be a surface in 8% and U, U, the components of S™\N. Assume
that for 2 = 1, 2 and for every positive number ¢ there exists an ¢-homeo-
morphism k; mapping N onto a tame surface hy(¥) which bounds a handle-
body H; in the s-neighborhood of U;. By Theorem 8.2 of [6], there exists
a positive number 6 such that if dist[z, hi(x)]< 8 for every z ¢ N, then
there exists an ambient isotopy G with @, = idg and Gih; = h,. There-
fore, if £ < 8, then both fy( N)’s ave tamely unknotted. Thus, ¥ is unknotted.

3. The base of a surface. Let N be a surface of genus # in &°. A system
of simple closed curves £= {LTy;, -.e; Lyn; Loy ooy Lnpy Will be called the
base of N if -

(1) Ly nLyyp = @y e N for (i,5) # (¢, 5),

(ii) arbitrary orientations of curves Ly constitute the base of 1-di-
mensional homology of .
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It can easily be seen that for any base £ with properly ordered ele-
ments there exist two systems {Liyy ey Lin}y 1 =1, 2, of pairwise disjoint
simple closed curves in N such that Tz~ Ly, =@ for j # k, or a point
for j = k, and for every pair (4, ) there exists a homotopy deforming Ly;
onto Lj; in ¥, Ly~Ly in N. _

Let U denote a component of SNN. If Ly ~0in Uwithj=1,..,n
for a fixed value of 4, then the base & will be called reqular relatively to U.
A base of N will be called regular if it is regular relatively to both com-
ponents of SNV

THEOREM 5. Let N be a tame surface in 82, and U a component of S\N.
Then N is tamely unknotted from the side of U if omd. only if there ewists
a base of N regular relatively o U.

Proof (compare [12]). We can assume that T is a polyhedral 3 - mani-
fold with the boundary N. Clearly, we have only to prove the “if part”.
Let T be a base of N such that Ly~ 0in Uforj=1, ..., n. Let {Ly; ..., L}
be a system of pairwise disjoint, polyhedral, simple closed curves in N
such that I; ~ Ly in ¥ for j=1, ..., n. By Dehn’s lemma [13], L, bounds
a polyhedral disk D, in U with D, ~ N = BdD, n N =L,. Obviously,
choosing a small regular neighborhood B of D, in U, we can split U so
that T = M v B, M is a polyhedral 8-manifold bounded by a surface N'
of genus n—1, and B is a polyhedral 3-cell which intersects M in two
disjoint disks D’ and D" with Bd M~ BdB= D' v D". Moreover, we
can assume that Iy C N'\(D' v D) for j =2, ..., n. And it is easily seen
that arbitrary orientations of L, ..., Ls constitute a base of 1-dimensional
homology of N’. Finally, since M is a retract of U, Ly~0 in M for
j=2,..,n. Thus, we can apply induction on the genus of N and infer
that U can be obtained by attaching 1-handles to a 8-manifold @ bounded
by a polyhedral 2-sphere in §°. Therefore, by Alexander’s theorem [1],
Q is a 3-cell which proves the theorem.

COROLIARY 6. A surface N tamely embedded in 8° is tamely unknotted
if and only if there is a regular base on N.

Proof. The “if part” follows by Theorems 5 and 4. The “only if

part” follows by a theorem of [14] to the effect that, up to isotopy of 8%,

there exists only one Heegaard splitting of §° into the union of two handle-
bodies with common boundary surface of a fixed genus. Thus, we have
only to consider standard splittings with standard bases, which ends
the proof. '

Now, we are going to show that the existence of a regular base, re-
lative or mot, is invariant under small homeomorphic displacements of
the surface.

A simple calculation shows the following.
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TevMA 7. If X=4,v 4,0 4; =B, vB,uB; with 4in4;=0
= BinB; for i+#j, then IN(4; ~Byu 4, By)= 430 By (Ar+By)
where k=1,2, and A= B = (A\B) v (B\4).

LeMMA 8. Tet A be a compact subset of ™, n = 1. Assume that B™\4
has exactly fwo components A, and A,, a bounded and unbounded one. Let
d: Ax I—E" be a map such that dy=id, and d, maps A onto B homeo-
morphically, and thus E™B has likewise two components B, and B,, a bounded
and unbounded one. Then

B4, nB,u 4, nB)Cd(AxT).

Proof. By Lemma 7, it suffices to show (4, +B,)\(4 v B) Cd(4 x I).
Assume that p e (4,=B)\(4 v B) and pick out a point ¢ in 4,
A BANAXT). T P e (ANB)NA U B), then pe 4, and ge4,. But p,
q ¢ B,, and therefore, p e d(4 XI) by a standard theorem on deformation.
If p e (BiNAN\(A v B), then p « By and ¢ e B,. But p, ¢ ¢ 4,. Now, define
the map d*: Bx I—»E" by the condition, d*(z,?) = d[d;*(x),1—1] for
all x ¢ B and tel. Thus, df = idg, df = di* maps B homeomorphically
onto A, and d*BxI)= d(AxI). Hence, g¢¢d"(BxI). Therefore,
ped(BxI).

Though the base of a surface is an intrinsic topological invariant by
definition, the regular base, relative or not, is not invariant even under
the autohomeomorphisms of the surface. However, the following holds true.

TEEOREM 9. For any surface N embedded in 88, there exists a positive
number & such that every &-homeomorphism h: N - 8 satisfies the following
conditions,

(i) the base L= {Lg}, i=1,2 and j=1,..,m, of N is regular rela-
tively to the component U of 8NN if and only if & = {h{Lsp)}, i=1,2
and j =1, ..,m, is a base of h(N) regular relatively to that component U’
of 8*\h(I) which is contained in the &-neighborhood of U. And therefore,

(ii) £ 4s @ regular base of N if and only if £ is a regular base of h(IV).

Proof. Let Uj, U, denote the components of SN with U, =T
and oo e Uy, where {oo} = §*\E’. Since N is an ANR-space, there exists
a polyhedron P such that ¥ CIntPCPC §™\{ oo}, and N is a retract of P.
Tet 7: P —» N denote a retraction. Also P is an ANR-space, 80 there exists
a positive number § such that for every pair of maps f, g: ¥ — P the con-
dition dist[f(z), g(z)]< 6 for every zeXN, implies that f~g in P. On
the other hand, as N is a retract of P, there exists a positive number 7
such that for any r-mapping f: N—P which moves the points by as
much as 5, the set f(N) is a retract of P [4]. Now, choose a positive num-
ber £ 50 that e < min{s, 7, dist(¥, S\IntP)}. We are going to show that
£ is the required number.

12 — Fundamenta Mathematicae, T. LXXXIV
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Let h: N &° be an &-homeomorphism. Cleatly, B(N) C Int P, haidy
in P, and h(XN) is a retract of P.Let d: NXI-P 133 the homotopy binding
idy with 2, and #’: P —» h{N) a retraction. Let U, denote that,component
of 8%\I(¥) which Lies in the e-neighborhood ?f U, and .Uz the other
component. Thus, coe U,. Sinc_.e oo U, n U;, on applying Lemma 8
we iufer that SN(Tin Tivw Uan T)Ca(xI)CP. And hence, if
follows that, by Lemma 7, UiT;CP for i= 1,2. Thus, T;u P
= U}u P and let denote this set by Vs, i=1,2. _

Next, we show that both U; and Uj are retracts of Vi, i=1,2.In
fact, the conditions r; = #|P ~ U, and 7, = #'|P ~ U; define the retractions
42 POy - N and rj: P~ T; —» h(XN), respectively. Assuming

@ for wme Ui,

Ala) = ria(@)  for  @ePr Uy

with subscripts reduced mod2, we obtain the retractions 7y: Vi —> Us.
And the retractions 7i: Vy— U; we obtain in the same way, replacing ¢
by 7}, and U; by U;.

Now, we can finish our argument. (a) Let Iy e £. By hypothesis,
L;~0 in U,CV, for each 4. Thus, k(L) ~0 in V; because Ly~ h(Ly)
in PC V,. On applying the retraction 750 Vy, FLh(Iyy) 20 in 7(V;) = U,.
But, 7 h(Ty;) = hilsy), and therefore, h(Ly;) =0 in U,. Which shows that £’
is a bage of () regular relatively to U;. (b) Conversely, assume that
R(Ly) = 0 in Uy CVy. Buty h{Ly) =Ly in PCV;, thus Ly;~ 0 in V;. And
on applying the retraction 7, 7y(Ly;) = Iy; =0 in 7(Vy) = U,.

4, Characterization of unknotted surfaces.

THEOREM 10. Let N be a surface embedded in §*, and U a component
of S™N. Then N is unknottéd from the side of U if and only if there ewists
a base of N regular relatively to U.

Proof. Let & be a positive number granted by Theorem 9.

First, assume that N is uknotted from the side of U. Then there
exists an s-homeomorphism : N — 8° such that #(¥) bounds a handle-
body H in the e-neighborhood of U. Therefore, h(N) hag a regular base
relatively to IntH, and thus, by (i) of Theorem 9, ¥ has a regular base
relatively to T.

Second, assume that ¥ has a regular base relatively to U. By Bing’s
approximation theorem [2], there exists an e-homeomorphism h: N — N
such that A(N) is a tame surface, which bounds a 3-manifold M in the
s-neighborhoed of U. By Theorem 9 (i), 2 (%) has a regular base relatively
to Int M, and therefore, by Theorem 5, h(N) is tamely unknotted from
the side of Int M, i.e., M is a handlebody. Thus, N is unknotted from the
side of U.

~ Immediately we get the following.

- ©
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CoROLLARY 11. A4 surface is unknotted if and only if it has a regular base.

CoROLLARY 12. Let N be an unknotted (unilaterally unknotted) surface
in 8% There exists a positive number ¢ such that for every &-homoemorphism
h: N— 8% the surface h(N) is unknotted (unilaterally unknotted).

5. Digression. Let & denote the space of embeddings of a fixed
surface N into S® with the “sup” metric, and let § denote the subset
of all unknotted embeddings.

THEOREM 13. & is a pathwise connected and locally pathwise con-
nected component of &. .

Proof. By definition of the unknotted embedding, &, is closed, and
by Corollary 12, § is open. To complete the proof we have to show that
&, is pathwise connected and locally pathwise connected. By Theorem 8.2
of [6], for any embedding h: N — 8% and for every positive number ¢ there
exists a positive number § such that for any two tame embeddings
B N> 8%, i = 1,2, with dist[hy(z), h{z)] < 6 for every z ¢« N, there exists
an isotopy h: 8% x I 8% such that hhy = hs, and dlamh({z} x I) <& for
any @ ¢ N. Thus, any two sufficiently close, tamely unknotted embeddings
can be joined by a small path in §. Similarly, any unknotted embedding
can be joined to a sufficiently close, tamely unknotted embedding by
a small path in §. In fact, if h is an unknotted embedding of N, using the
definition and picking eventually a subsequence, we can choose a uni-
formely converging sequence of tamely unknotted embeddings hy: N-&
such that ki converges to  as k goes to oo, and dist{hx(w), h(z)] < 0r
for any zeN where {6} is a given decreasing sequence of reals -
converging to 0. Now, by Theorem 8.2 of 6], for any decreasing
sequence of reals {ez} converging to 0 there exists a (decreasing) sequence
of reals {8;} (converging to 0) such that for every positive integer
k there exists an ambient isotopy h¥: 8°x I-»S* such that Afh, = hy,
and diamA({z} % I) < e for every zeXN. Thus, properly choosing the
sequence {ex} and piecing isotopies B® with embeddings hz and h together,
we can describe an isotopy g: N x I — 8% such that gy = he, &=1 and
diamg({x} x I) is less than any given positive number for every zeN.
Finally, & is also integrally pathwise connected for, by the mentioned
theorem of Waldhausen [14], any two tamely unknotted embeddings
are ambijent isotopic.

6. The spine and the concentricity of 3 -manifolds. In order to make
some progress, we have to discuss a few well known concepts in certain
details. A mapping cylinder M, of & map f: X~ Y is the disjoint wnion
XxIu Y with every pair (#,1) identified to f(w). By the identification
of % with (z, 0) for every z e X and (x, 0) in My, we consider X and Y as
closed subsets of M;. Let A= ACX. An open subset U of X con-
12%
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taining A is an open cylinder neighborhood (MQN) of A if there exist
a map f: FrU—»Frd and a homeomorphism : UNInt 4 — 1, such that
R|FrU v Frd is an identity mapping. :

Let M be an n-manifold with boundary. A subset K of I is a spine
"of I if there exists a map f: Bd M x I-»M such that fIBd M x(0,1]
is a homeomorphism onto MN\KE, f(BAd M x{0})= K, and dimK < n.
Clearly, M is an MON of K. It is well-known that every #-manifold with
non-empty boundary has a spine [5]. Moreover, if dim M =3 and its
spine K is a topological polyhedron, then K is tame in M [11].

If X is a n-manifold with boundary or a homeomorphic image of
a closed domain in B bounded by an (n—1)-manifold, then it is clear
what should be meant by the boundary of X. A subset K of X will be
said to be an h-spine of X if K is a deformation retract of X, and Bd.X is
a deformation retract of X\K. Obviously, any spine of a manifold is its
h-spine.

Lmva 14. Let M be a triomgulated 3-manifold with boundary,
K o polyhedral spine of M, and V & regular neighborhood of K in Int M.
Then the manifolds M and V are concentric.

Proof. V is a polyhedral manifold with boundary N, say, and let
C(¥) be a double collar of N in Int M\K. Since X is a spine of M, there
exists a map f: Bd M xI—-»M such that f|Bd M x(0,1] is a homeo-
morphism onto M\EK, and f(Bd M x {0}) = K. By the uniform continuity
of f, there exists a positive mumber ¢ such that f(Bd M x {6})
CVN[C(N)u K]. Therefore, O(N)CW=Ff(Bd Mx[6,1]) and N is
a tame subset of W separating it between f(Bd M x {8}) and f(Bd M x {1}).
Thus, by Theorem 1 of [7], N is concentric with Bd M, which proves
our lemma. '

LevMA 15. Let My, M, be 3-manifolds with boundary such that (1)
M, ~ M, =Bad M, nBd M, = F is a surface, and (2) there exists a homeo-
morphism hi: Fx I—>M; for i =1, 2. Then there exists a homeomorphism
h: FXI—»M o M,.

Proof. We can assume that h:|F x {0} is a mapping onto F and we
only need to identify the bases of two disjoint copies of the product Fx I
by the homeomorphism hy*h, | F x {0}.

Theorem 1 cf [4] can apparently be strengthened at mo extra ex-
pence in the following way.

LEMMA 16. Let B be a compact ANR-space. There exisis a positive
number & such that for every retract A of B and every r-map f: A— B moving
points by as much as &, f(A) is a retract of B.

Proof. We can assume that B is embedded in the Hilbert cube @°.
There exists an open neighborhood U of B in @ such that B is a retract
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of U. Choose ¢ = dist(@™\U, B). The rest of argument follows word for
word the one of [4].

COROLLARY 17. Let X be a compact ANR-space. There exists a positive
number & such that for every deformation retract A of X and every v-map
[ A— X moving points by as much as ¢, f(A) is a deformation retraction of X.

Proof. Let a be a positive number granted for the space X by
Lemma 16. And by hypothesis on X there exists also a positive number 8
such that for every pair of maps g, g,: ¥ —X with dist[g,(z), g:(@)]< 8
for every we ¥, g, ~g, in X. Let ¢ = min{a, }. Thus, (1) f(4) is a re-
tract of X, and (2) X can be deformed over itself to f(4); because, f~id,
in X, and by hypothesis, 4 is a deformation retract of X. Henece, the
conclusion follows by a well-known theorem of Fox.

7. Unknotted surfaces. To save words let us agree that henceforth N
denotes a surface in 8%, Uy's with 4 = 41 denote the components of SX\X,
and I*=[—1,1].

LeMMA 18. If N is an unknotied surface, there exists a positive number &
such that for every number 8 with 0 < § < ¢ there is a d=homeomorphism
h: N -8 satisfying the following condition, if Vi denotes the component
of S™R(N) contained in the 8-neighborhood of Uy for i= L1, then Vy is
a handlebody with a spine Ky C Vi~ Uy Moreover, it can be required that K;
be a wedge of polyhedral, simple closed curves or a point.

Proof. Let ¢ be a positive number granted by Corollary 12 for N.
Apply Bing’s Side Approximation Theorem for 2-Manifolds [3] with
M= 8% M*=N, U,=U_,, Uy= Uy, and f(z) = 0 for every z¢ N and
0 < 8 < &. Then there exists a homeomorphism h: ¥ x I* — 8° such that (1)
every () is tame, (2) every h, is & 6-homeomorphism, (3) for 0 <i<1,
U_, n k(W) is covered by the interiors of a finite collection of mutually
exclusive disks in () each of diameter no greater than 4, and (4) for
0<i<l, U nh_(N) is covered by a finite collection of mutually
exclusive digks in %_, () each of diameter no greater than é.

By the choice of 6 and by (1), the closure of any component in SNR(N)
is a handlebody. Liet h = k. Because of complete symmetry with respect
to U_,, U, we have to consider only the case of one of them, U, say. To
this purpose, next to ¥, already defined, consider the set Vis which_is
the component of S§\J,(N) contained in the &-neighborhood of U,.
Clearly, 7, and 7, are concentric handlebodies with ¥; C ¥;. The handle-
body ¥, admits a spine K;, which is a (tame) wedge of simple closed
curves or a point and lies in BdV; = ky(N). By (3), there is a finite
collection of mutually disjoint disks Dy, ..., Dm in hy(N) such that

n .
U_, nIy(N)CInt | D;. Therefore, it is easy to construct an isotopy
j=1
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g: By() x I-»hy(N) such that every g, is an identity map off an arbitrarily
small neighborhood of Cn) Dy in hy(N) and that g,(K;) C hy(N, )\CJLDj cu,.
Since the tame surfa,c:;h@f ) has a double collar in V7, Wei?an easily
extend g to an isotopy g: V; X I -7V, such that g, is an identity map off
an arbitrarily small neighborhood of QD] in¥V,.Thus, K, = g,(K;) = ¢,(K})

j_
is contained in ¥, n U;. And since K, is clearly tame in V,, it can be
required to be polyhedral.

LeMMa 19. If N is a unknotied susface, then there ewist sets Ky in Uy,

i= 41, being wedges of polyhedyal, simple closed curves or ome-point. sels,

such thai there emist a regular neighborhood Vi of Ky in Us and a homeo-
morphism h: N X I* =W = CL[8*(V_, © V,)] with the following properties.

(iy Bvery set Ky is in standard position, i.e., there exists an autohomeo-
morphism of EB° mapping K; into a plane; ‘

(i) every N,= h(N X {t}) is a tamely unknotted surface;

(ili) N is o deformation retract of W;

(iv) N is o deformation retracs of 8*\(K_, v K,);

(v) every K; is a deformation retract both of S™NK_, and of Ui, and

(vi) N is a deformation retract of UKy for i= 4-1.

Proof. By Lemma 18, there exists an embedding f: N — 8% such
that N’ = f(N) is a tamely unknotted surface bounding two handlebodies
X; with spines K;C IntX;~ U; for i= 41, each K; being a wedge of
polyhedral, simple closed curves or a point.. Then condition (i) follows
by Waldhausen’s theorem [14].

Choose V; to be a regular neighborhood of K; in IntX;~ U;. N,
= BdV;. By Lemma 14, the manifolds V; and X; are concentric, ana
hence, so are their boundaries. Therefore, by Lemma 15, the surfaces N_,
and ¥, are concentric, and so there exists a homeomorphism h: N x I* — W
satisfying condition (ii).

In order to prove (iii), let us remind that by Bing’s approximation
theorem for surfaces [2], there exists an arbitrarily small homeomorphism
g: N - Int W mapping N onto a tame surface ¢(N). Thus, g(N) separates W
between ¥_, and N, and hence, by Theorem 1 of [7], g(NV) is concentric
both with ¥_, and N,, which implies that g(¥) is a deformation retract
of W. As g is an arbitrarily small homeomorphism, we have only to apply
Corollary 17. .

N(?W, consider condition (iv). First, observe that N, is a strong de-
formation retract of VK. Thus, extending given retracting deformatilo'ns
(VoK) x I+V\E; by “identity” deformation 6 Wx I->W with 6(z, 1)
=z for every (@,1), we infer than W is a deformation retract of
$(K_;'u K,), which proves (iv) by (iii).
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Since K; is a deformation retract of V;, and the latter set can be
shown to be a deformation retract of ¥, v W along similar lines as in (iv),
and next, V;uw W is a deformation retract of SNE_;=V,uWu
w (VoK ), we infer that K; is a deformation retract of S™\K_,. To
complete the proof of (v), observe that, by (iv) there exists a retraction
ri: SK_;—U;, and by preceding paragraph, there is a deformation
i Uyx I-8N\E_; with @(U;x {1}) = K, which is the restriction to
the set U;x I of the deformation given there. Then ¢ = r;d® deforms U,
over itself to K;. By a similar reason, there is a retraction g;: U;—K;.
Thus, K; is a deformation retract of U;.

Finally, to show (vi) we have only to combine the proper re-
striction of the retracting deformation granted by (iv) with the proper
retraction ;. :

As an immediate corollary, we get the following.

TEEOREM 20. If N is an unknotted surface, then N is a deformation
retract of an open and a closed neighborhood. Thus, N is mild in S5

The converse of this is obviously false.

THEOREM 21. The following conditions are equivalent.

(1) The swrface N is unknotted.

(2) There exists an embedding h: N x I*— 8 such that (i) ‘every N,
= h(N X {t}) is tamely unknotied, and (i) N separates W = h(N¥N X I*)
between N_, and N,.

(8) For i = 41, in Uy there exists a set K, which is the wedge of n
polyhedral, simple closed curves, n being the genus of N, or a point, if n= 0,
such that for arbitrarily small, regular neighborhood Vi of Ki, the surfaces
BaV_, and BAV, are concentric in 8.

Proof. By Lemma 19, (1) implies both (2) and (3). On the other
hand, (3) implies (2). For, the surfaces BdV; and N are homeomorphic
having the same genus. Next, if ¥; is so small that ¥;C U and since
Bd Vs can be assumed concentric, there exists a homeomorphism h: N X
% I* — 8° such that Ny = BdV; and N separates W between N_, and N;.
Moreover, since N_, and N, are concentric and bound the handlebodies
V_, and V, respectively, the surfaces N;s are tamely unknotted,
and so are all surfaces I, by their mutual concentricity.

Finally, (2) implies (1). We have only to apply Bing’s approximation
theorem for surfaces [2] to construct an arbitrarily small homeomorphism
g: N—1Int W such that g() is a tame surface in W separating it between
N_, and N,. Therefore, by Theorem 1 of [7], g(¥) is concentric with
both Ny's, and thus, g(N) is tamely unknotted, which proves (1).

8. Crumpled handlebodies. Tet N be an unknotted surface. A home?-
morphic image of the closure of a complementary domain U; of N will
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be referred to as a crumpled handlebody. Lemma 19 implies immediately
the following

COROLLARY 22. Any crumpled handlebody X has an L-spine, which
is the wedge of simple closed curves or a point and possesses a topological
regular neighborhood in X\BdX. )
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A characterization of Hurewicz space
by
C. Bandy (Saskatoon, Sask.)

Abstract. A characterization of Hurewicz spaces is given. In particular, in a regular
Lindel6f space the Hurewicz property is equivalent to each normal sequence having
a point-finite (or locally-finite) subcollection covering the space.

A topological space X is a Hurewicz space [2] if each sequence Gy, Gs, ...
of open covers of X has a subcollection H that covers X such that H
= H, v H, v ... where each H, is a finite subcollection of G,. A topo-
logical space X is totally paracompact (metacompact) provided each open
basis of X has a locally-finite (point-finite) subeollection covering X.
The sequence G;, @, ... is @ normal sequence provided @, ; star-refines G,
for each positive integer n. Let st(w, @) =1J{g: seg and ge@}. All
spaces are assumed to be Hausdorff.

The author would like to thank Professor A. Lelek for his encourage-
ment while working on this problem.

TaEOREM. A reqular Lindelsf space X is Hurewicz if and only if each
normal sequence of open covers has a poini-finite (or locally-finite) sub-
collection covering X.

Suppose X is such a space and let Gy, Gy, ... be a sequence of open
covers of X. Since X is paracompact and hence fully normal, let Uy, Us, ...

"be a sequence of open covers of X such that U, star-defines @, and for

each positive integer greater than 1, U, star-refines both U, , and G,.
Define int(st(aa, U,,)) to be {y: st(y, Uz) is contained in st(x, U,) for
some k}. Let (X, U) be the topological space having basis the set
{int(z, Un): ne N and « ¢ X}. The set int(st(m, Un)) is open in X since
if P is a point of int(st(m , Un)) then there is an integer k so that st(P, Ur)
is contained in st(z, Un) and st*(P, Uyy,) is contained in st(P, Ux) hence
st(P, Uy,,) is contained in int(st(m, U,,)). To show we have a basis sup-
pose the point P is common to both int(st(z, Us) and t(st(y, Tnm)
then there is an integer k so that st(P, Uy) is contained in st(z, Un)
and there is an integer j so that st(P, Uy) is contained in st(y, Um)- Sup-
pose k is greater than or equal to j, then int(st(P, Uy)) is common to
both int(st(z, Us)) and int(st(y, Um)). The set {()st(z, Un): neN} s
n
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