On the hyperspaces of hereditarily
indecomposable continua

by
J. Krasinkiewicz (Warszawa)

Abstract. H. Whitney described a map on the hyperspace O(X) into reals, for
a continuum X. If X is hereditarily indecomposable, then the Whitney map can be
used to define some new maps on X and X x I. Using these maps, we exhibit close
relationships between ¢ (X) and the cone over X. Next we study the structure of arewise
connected subsets of C(X) and we show that some of these resnlts imply several known
theorems. Some results on embeddability of O(X) and non-embeddability in O (X)
are proved. )

Introduction. A continuum X is called decomposable if it is the union
of two proper subcontinna. Otherwise it is indecomposable. A continuum is
hereditarily indecomposable if its every subcontinuum is indecomposable.
For a continuum X the symbol C(X) denotes the hyperspace of all non-
empty subcontinua of X metricized by the Hausdorff metric: dist(4, B)
=inf{e >0: BCK(A,s) and 4 C K(B,¢)}, where K(4,e) denotes an
open ball with radius ¢ around 4. The hyperspaces possess many inter-
esting properties and the case where X is hereditarily indecomposable
is particularly interesting. If X is non-empty, then it is a point of O(X)
and we call it the vertex of 0(X). By X we denote the base of 0(X), i.e.
the set of all singletons of ¢(X). Clearly, X is isometric to X and some-
times it is identified with X. A maximal monotone collection of continua
between A, B¢ ((X), 4 CB, is called a segment and denoted by AB.
It is known (see e.g. [6]) thatif 4 # B, then AB is an arc in €(X).
A segment of the form {z}X is called mazimal. Tt is obvious that every
4 e C(X) belongs to a maximal segment.

1. Maps associated with given hyperspaces. As has been noted by
Kelley [6], there exists a continmous map u: C(X)—[0, co) (originally
due to Whitney [16]) with the following properties:

(i) if ACB and A # B, then p(4)< u(B),
(i) u({z}) =0, for every z ¢ X.
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rti i Hed a Whitney map. We
ith these properties will be ca . Y
Eaegl H}&ptx jmage of w. It follows from (i) that I, ; [o, ”t(ﬁg
denO?i;3 dyX I'fs non-empty, and otherwise I,=9. Olea,rlly, if ghczn ‘,(X)
provi et two ﬁoints then there exists a Whitney map 1,u s'uch at' M{{um
at ieaise 1 =1 I{is known (see [4] and [8]) that /% (t){ls_ jazt)co? 1]; -
wnd e O(D)>1, i Tt follows that E= {u~(0): teT,
: is an open map. : (
e l?nﬁéfs)_i}g ”upper anpd lower semicontinum}s, decompo.smon. of1 0’ l(ég)
Zcoielnt res;ﬂt‘ of the author shows that if X is ? sEnake-hke ](;mﬁ ];e e
i ‘ i snake- -
- te element o is. & s
spuum, then every non-degenerats ' .
001;121:1‘1‘133’ 7circle-]ike) continunm [8]. We shall see in the sequel that the
* . " .
iINJ‘hitnev maps possess other important properties.
Le’; u be o fixed Whitney map on c(X). -
a b WENUUT.
0(X), then p='(t) ~ O(4) is a con .
%1.11 'faljt A‘uj —( m)’C’ (4) is a Whitney map on 0(4). Moreover,
y pd =

pa() = p7() ~ C(4);
hence this set is a continuum because any Whitney_ map 1sdIfn.om(;tc;’J:lee(i
’ Since C(X) is a continuum, the space C(Q(X)) is well Ifme ond
denote it by CYX). Kelley [6] showed that if AeC¥X), enAU B
zzontinuum, i.;s. an element of ¢(X), and that the correspondence A U
defines & continuous retraction

o O X)—>C(X),
0(X) being regarded, as usual, as a subspace of (% X). Consider for eacht

the map 1= o] O(,u—l(i)) )

We have

ulogd) =1t for A< Op'(®) .

i - d o(d) e ¢(X). Let A eA. Then
Indeed, if A e C(p(f), then 4 # @ an .
AC a(;i); hence (by (i) we obtain t= u(d) < ,u(a(A)), whiech proves the
above proposition. Thus we may regard o; as a map
ov: Ol () p7lt, )
The map o; has the following properties (comp. [11], Lemma 2.1).
1.2. o 18 onto. e
= ing to 1.1 the set pz'(t) is a con-
In fact, let A e u~[t, oo)). According et 3
tinuu]nla Si.u’ee WMA) = t,(it ’is not empty. It follows that pZ'(f) is an elemefnt
of O(u~'()). Since oyp7'(f)) C 4, we need only to show the reverse- 11(1)-
clusion. Tet a ¢ 4 and let {a}A be a segment in C(X). Since #(E?}z _am d,
there is a continuum B e {a} 4 such that u(B)=1*. Hence B e u; ()
therefore a e B C oy(uz*(t)}; which completes the proof.
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13. If X is hereditarily indecomposable, then o; is one-to-one.

Indeed, suppose 4, B e Clp™(t)) and ox(d) = oy(B). By symmetry it
suffices to show that A CB. So let 4 e 4. There is a BeB such that
4 ~ B+ @. Hence either ACB or AD B. But #(4) = p(B) = t; hence
by (i) we have in any case 4 — B. Therefore 4 ¢ B, which completes
the proof.

Thus we have shown that in the case where X is a hereditarily inde-
composable continuum the map oy is a homeomorphism of Cla™(%) onto
£7[t, 00)) (see [11]).

If 4 and B are two subsets of X, then d(4, B) = inf{o(a,b):acd,
be B}). Now we shall prove a useful simple proposition.

14, If X is a hereditarily indecomposable continuum, then for each
e >0 there ewists a positive real number 7> 0 such that if d(4d,B) <y
and jp(A)— u(B)| < n, then dist(4, B) < ¢ for every 4, B ¢ C(X).

Proof. Suppose that it is not true. Hence there exists a sequence
of pairs (4, Bs) € O(X) x C(X) such that

1 1
Ad(An, Bp) < o [ (An)— u(By)| < - and  dist(4n, By) > ¢.
We may assume that A4’s converge to 4 e O(X) and B’

8 converge to
B e 0(X). Then by the continuity of o+, +), p and dist(-

, *) We obtain

). AnB+0,
@) u(d) = p(B)

and

(3) dist(4,B)>¢.

By the assumption on X and by (1) we obtain A CB or BC 4. By (2)
and (i) we have in any case 4 = B. This contradicts (3) and this cortra-
diction completes the proof.

There is another interesting map in the hyperspaces of hereditarily
indecomposable continua associated with u. Namely, for each tel, the
set u7(f), regarded as a collection of continua, constitutes by 1.4 a con-
tinuous decomposition of X. It follows that the quotient topology on
#Yt) is the same as the topology inherited from C(X). This means that
(see [4], p. 1030)

1.5. The gquotient map
Jpt X—pu~t),

i.6. such that o e Ay(x) for t e I, and for every x « X, is continuous, monotone,
open and onto.
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The maps A; are originally due to Rhee [123. Setting
Az, 1) = As(e)
for every point (@,1%) € XxI,, we obtain a map
i IxI—~0(X).

Using Lemma 1.4 we shall now prove that

1.6. The map ) is a conbinuous, open and monotone transformation
of Xx I, onto O(X).

Proof. Tet U and V be two open subsets of X and I, respectively.
Tt is easy to observe that -

HUXTV)=u (V) n {4 e O X} AnTU#0}.

Hence, as the intersection of two open subsets of C(X), this set is open
in 0(X). It follows that i is open. Moreover, by 1.4 we infer that if
diamV—>0 and diam U--0, then diam A(UXV)-»0, which proves the
continuity of 1. Since for wed € C0(X) we have A = L,4(®) = Alm, w(4)),
7 is onto. To prove that A is monotone it suffices to observe that for each
Ae0(X) we have A (4)= Ax {u(4)}. This completes the proof.

Let 8(X)= X x LJXx{u(X)} and let p: XX I,~8(X) be the
corresponding quotient map, where X is a hereditarily indecomposable
continuuym. Thus a continuons map

y: 8(X)—C(X)

is defined such tfl‘la,t yop =i From 1.6 it follows, and this result was
also obtained by J. T. Rogers [13], that
1.7. The map v is continuous, monotone, open and onto.

2, Arcs in the hyperspaces of hereditarily indecomposable continua. In this
section X denotes a hereditarily indecomposable continuum. In [6] Kelley
observed that

21. O(X) is 1-arcwise connected, i.e., for each pair A,Be C0(X)
there is in C(X) exactly one arc between A and B. In particular, if ACB
and A # B, then the segment AB is the unique arc in C(X) between A and B.

Kelley also observed that o(4) e 4, for every arc A in C(X). This
result can be strenghtened as follows.

2.9. If A is an arcwise conmected subcontinuum of C(X), then o(d)ed.

In fact, M = o(d4) is a point of C(X). Suppose that M ¢ A. Then

(1) inf{dist(4, M): A ed}>0.

Let a and b be two points from distinct composants of M. Then there
are two continua 4, B e 4 such that a e 4 and beB. By (1), A and B

©
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are two proper subcontinua of M; hence 4 in disti
H and B are in distinet com:
of M. Let AM and BM be the segments in C(X). Then posants

(2) AM~BM = {}}.
I.ndeed, .suppose D eAM ~BM. Then AW BCDC M; hence D is a con-
’mngum in M meeting two distinet composants of M » and therefore D = M,
w.]nch proves (2). By (2) AM v BM is an arc in C(X) between 4 and B’
Smeg A,Bed and A is arcwise connected, AM v BM C 4, by 2.1 In
particular, M e 4, contrary to (1). 7 h
2.3. COROLLARY. Any arcwise connected s i
2:3. COROL q ubcontinuum of C(X) is
contractible in itself. In partioular, C(X) is contractible in itselff[ﬁ].( M
Proof. Let 4 be an arewise connected subcontinuum of ¢ (X). By 2.2,

B = a‘(A) eA. For every A e 4, the segment AFX is contained in 4. Let ©he
a Whitney map on O(X). Since the map p restricted to any segment is

a homeomorphism, the map

p: AXI->A
given by the formula

P, 1) = (| AB)H(1~1) w(A) +-1u(B)) ,
is well defined. The continuity of ¢ follows from 1.4. Since
p(4,0)=4 and ¢(4,1)=F, forevery dcd,

@ is a contraction of A in itself to X, which completes the proof.
2.4. COROLLARY. Any arcwise connected curve in ¢ (X) is @ contractible
dendyoid.
In fa,c.:t, any curve contractible in itself is hereditarily unicoherent.
.1t 4 is an arc in ¢(X), then the continuuin 0(d) € A is - called the
iop of 4. Let A and B be the end-points of 4. Since A,BCo(d), we
have, by 2.1, 4 = A¢(d) v Bo(d4). Hence we have
2.5. If A is an are in C(X), then it is ecither a segment (in this case
the top of A is an end-point of A) or is the union of two segments with a com-
mon end-point being the top of A.
2.6. COROLLARY. If A’ is a subarc of an arc A and A’ is not a segment,
then the top of A’ coincides with the top of A. i
One can easily prove that
A 2.7 If L,CL,C ... is an increasing sequence of segments in C(X)
with a common top T, them L = | _J Ly is @ segment with the end-poinis T

n .
and P = () P,, where P, is the other end-point of Ly, for every m.
n

Similarly,
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2.8, If L;CL,C ... is an increasing sequence of segments m C(X)
with @ common end-point P and Ty is the top of Ln, for every n, then L = L;l L

is the segment PT, where T = | Tn is the top of L.

TUsing 2.6, 2.7 and 2.8 it i; easy to see that

2.9. The union of an increasing sequence of arcs in C(X) is contained
in an are. :

According to & theorem of Young [17] we obtain, by 2.9,/ the following
known result.

2.10. The space C(X) has the fized point property [13].

2.11. If L is an arc in C(X) with the end-points A and B and if
D e C(X) is such that

ACD and u(D)<p(B),
then DelL.

In fact, BC 6(L) = P; hence u(D) < u(P) and finally D e AP CL,
by 2.1.

Lemma 2.11 implies the following theorem,

2.19. Let L be an are in C(X) withthe end-poinis A and B such that u(4)
< u(B), where u is a Whitney map on C(X). Then there exists a positive
real number & > 0 with the following property: if M is an arc in C(X) such
that d(B, M) < ¢ and if there is a confinwum E C C(X) with the diameier
diamE < ¢ joining A and M, then M intersects L.

Proof. Let

r = u(B)—u(4)
and let
a=poo: ((X)—~>I,.

Since u and a are continuous and a({4}) = u(4), there exists an ¢ >0
such that

L
(1) if dist(B, 0) < ¢, then u(C) = u(B)—3r,
(2) if Ee C¥X) and dist({4}, E) < &, then a(E) < u(4)+3r.
We shall now show that the ¢ is the required real. Let M and E satisfy
the hypothesis of 2.12. We have to show that A intersects L. There exist

continua, €, F e M such that dist(B, ()<e and FeE Thus, by (1),
we obtain :

(3 u(C) = u(B)—3r.
Fuorthermore, since
- dist({4), By < d(E)<e,
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we have by (2)
) a(E) = plo(E)) < u(4)+ 37 .

Let D = o(E). It suffices to prove that D eL ~ M. We have 4 « E; hence .
ACD and by (4), u(D)< u(d)+3r < p(B). Therefore, by 2.11, D> L.
Likewise, let N be the subarc of M between F and (. Since F ¢ E,FCD.
By (3) and (4), we obtain

#(D) < p(d)+3r = u(B)—1r < p(0);
hence, again by 2.11, D e NC M, which completes the proof.

2.18. Let L be an arc in C(X) with the end-points A and B. Let D> A
and E> B be two subcontinua of C(X). Then there exists an & > 0 with the
Jollowing property: if M is an arc in C(X) joining D and E and diam D,
diamE < ¢, then M intersects L.

Proof. Let P be the top of L. We may assume that 4  P. Then
ACP and 4 # P, hence 4 lies in a composant K of P. Since o: (¥ X)
—C(X) is continuous and o({4}) = A4, then there exists an & >0 such
that for every continuum D C ¢(X) containing 4 with the diameter less
than ¢, o(D) lies in K. Clearly B C P. Consider two cases.

Case (a). B # P. Then there exists an &, >0 such that, for every
continuum EC ¢(X) containing B, with the diameter less then e,, o(E)
lies in the same composant of P as does B. Note that B lies in a composant
of P different from K, for otherwise L would not contain P. So, if M is
an arc in 0(X) joining A’ ¢ D and B’ € E and diam D, diamE < min(e,, &),
then M contains P because 4'C o(D) and B’ C ¢(E) and o(D) and o(E)
lie in distinet composants of P. Hence in case (a) the proof is finished
because Pel n M.

Case (b). B= P. Then u(4)< u(P)= p(B) and applying 2.12 we
obtain the conclusion of 2.13 in this case. This completes the proof.

3. On the non-embeddability of certain spaces in the hyperspaces. An
immediate consequence of 2.3 is the following result.

3.1. No space which contains an arcwise connected subcontinwum not
contractible in ifself can be embedded in the hyperspace of a hereditarily
indecomposable continuum.

A sequence A4;, 4,, .. of subsets of a metric space is said to be
a 0-sequence provided the diameters of A,’s converge to zero when » tends
to infinity. The following notion will play the main role in the main theo--
rem of this section.

A connected space Y is called a ladder provided that it can be re-
presented as the union

o0
Y=Lvu |J(4nwByv Ly)

n=1
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where I and L,’s are ares and An’s and Bp’s are continua satisfying the
following conditions:
1° A, Ay, ... a0d By, By, o

N Ay={a} and [)B.={}.

arve 0-sequences such that

9° I is an arc joining @ and b, @ # b.
3° I, is an arc joining A, and By, for every integer 7.

4° T, is disjoint with I, for every n.

Tt is evident that for every point p of a ﬁon—degenera.te continuum

X there exists a 0-sequence of non-degenerate sub-continua of X each
of which contains p. It follows that

3.9, If X is a non-degenerate continuum, then X x I contains a ladder.
In particular, the cone over X contains & ladder.

Theorem helow is an immediate consequence of 2.13 and is the main
result of this section.

3.3. TEEOREM. If X is a hereditarily indecomposable continuum, then
no ladder can be embedded in C(X).

3.4. CoroLLARY. If X is a non-degenerate continuum, then XxI
cannot be embedded in the hyperspace of o hereditarily indecomposable
continuum. In particular, the cone over X cannot be embedded in the hyper-
space (see [10]).

Thig corollary answers a question raised in [10].

PrROBIEM 1. Can the hyperspace of a hereditarily indecomposable
continuum ever contain o topological copy of the Cartesian product of two
non-degenerate continua (see [107)%

4. Dimension of hyperspaces of hereditarily indecomposable tree-like
continua. Tt is known that for every non-degenerate continuum X the
dimension of C(X)is at least two (see [4] and [7]). In the case where X is
hereditarily indecomposable, dim C¢(X) is either 2 or co [4]. This inter-
esting result solves almost entirely the problem of dimension of the hyper-
spaces for hereditarily indecomposable continua. However, the following
problem is still open.

PROBLEM 2. Is it or is it not true that the dimension of the hyperspace
of a hereditarily indecomposable curve equals two (see [41)%
A partial solution of this problem is given by the following result:

41. If X is a hereditarily indecomposable tree-like curve, then
dmC(X) = 2.

icm

On the hyperspaces of hereditarily indecomposable continua 183

A well-known result of Hurewicz [9, p. 114] asserts that if f: XY is
a continuous transformation of a compact space X and

dimfHy)<k, for every ye¥,

then dimX < dim Y+ %. Hence 4.1 is implied by the following general
result.

4.2. If X is a hereditarily indecomposable iree-like curve and p Is
a Whitney map on C(X), then B = {p~*(f): t e I} is a continuous decompo-
sition of O(X) such thai each non-degenerate element of E is a hereditarily
indecomposable tree-like curve.

Let 8 denote the unit circle, i.e. 8= {z e E* |2| =1}

LevMA [9, p. 433]. Let g: D—F be a continuous monotone map of
a compact space D onto F. Then, if h: F—8 is a continuous map such that
hog~1, thensh~1 (where f~1 means: f is homotopic to a constant map).

4.8. If X is a tree-like curve and f: X—Y is o monotone map onto ¥,
then Y is a tree-like curve.

This theorem is probably well known to many people but the author
does not known any reference and therefore a proof is presented here.

Proof of 4.3. First we show that

(1) dmY =1.

.~ Let F be a closed subset of ¥ and let h: #—8 be a continuous map.
By [9], p. 354, we need only to prove that % can be extended onto Y.
Let D= f~%¥) and let g = f|D. Then hog: D->§ is continuous. Since
dimX =1, hog can be extended to a map k: X—8 (see [9], p. 354).
Then % ~1 (see [1]), and therefore h o g ~1. Since g is monotone we infer
by the lemma above that h~1. By the Borsuk extension theorem, h can
be extended onto ¥, which completes the proof of (1).

By (1), to prove that ¥ is tree-like we need only to show that if
g: Y—P is a continunous map of Y into a 1-dimensional polyhedron P,
then (see [1])

2) g~1.

Let Z be the universal covering space for P and let p: Z—P be the
projection map. Since gof: X—P and X is tree-like, we have gof~1
(see [1]); hence we can lift f to Z, i.e., there is a continuons map k: X>Z
snch that

(3) _’pal{;:gaf.

Since the fibre p~*(u) is a discrete space for every u e P and E{(f ) is
a continnum contaned, by (3), in p~g(y)) fer every y e ¥, we infer that
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E(f~'(»)) is & one-point set. Hence the map ¢': ¥—Z given by the formula

e {0’} = ®(f)
is well defined. Note that, by (3),
(5) Pog'y)=g(y)

for every y ¢ ¥. We shall show that
{6) g is a continuous map.

Indeed, let y ¢ ¥ and let V be an open set in Z containing ¢'(y). By (4),
E{f () C7V; hence by the continuity of % there is an open subset @
of X such that fy)C @ and

(7) E&CV.

Since f is'a closed map, there exists an open subset U of ¥ such that
ye U and ‘ ‘

(8) ‘ o Ccea.
By (7) and (8) we have, g'(U) = k(f"(U))CV. Hence U is a neighbour-

hood of y such that ¢'(T) C ¥V, which proves (6).

By (6) and (5), ¢ is a lifting of g. Since Z is an infinite acyclic 1-di-
mensional polyhedron, ¢(Y) is a compact finite tree. Thus g'(¥) is con-
tractible in itself and therefore ¢’ ~1. Hence by (5) we obtain (2), which
completes the proof.

Proof of 4.2. By [4 or 8], u: ((X)~I, is monotone and open; hence
E is a continuous decomposition of C(X). As we remarked in § 1, the
map Ju: X—p~'(t) is monotone and onto. By 4.8, p~{), t << u(X), is
a tree-like curve. Since any monotone image of a hereditarily indecompos-
able continuum is hereditarily indecomposable, x~(f) is hereditarily inde-
composable, which completes the proof of 4.2.

5. On the embeddability of hyperspaces in Euclidean spaces. H. Cook
described in [2] a class of plane hereditarily indecomposable continua.
Eberhart and Nadler [4] asked: Oan the hyperspaces of Cook’s continua
be embedded in E3%

W. R. R. Transue [15] proved that hyperspaces of hereditarily inde-
composable tree-like plane continua can be embedded in F°. None of
the above-mentioned Cook continma is tree-like, hence the Transue
theorem eannot be applied in this case. However, if X is a Cook continuum
then each proper subcontinnum of X is s snake-like continmm;
(a.‘ psendoare), and hence it does not separate the plane (see [2], th. 1,2).
}We shall now prove a generalization of the Transue theorem from Wh,i(ih
%t follows that the hyperspaces of the Cook continua can be embedded
in E°. Namely:

On the hyperspaces of héreditarily indecomposable continua 185

51. If X is a heredﬂitaril{y indecomposable plane continuum such that
no proper subcontinuum of X separates the plane, then C(X) can be em~
bedded in B

Proof. We may assume that X is non-degenerate and u(X)= 1.
Let »: 8(X)->C(X) be the map described in § 1. We regard X as &
continunm lying in F*C E®, where B’ = {z ¢ F*: z= (z,4,0)}, and
8(X) as the geometrical cone, ie.,

8(X)={1—tztitw: ze X, tel},
where w = (0, 0,1) is the vertex of §(X). Then, by 1.5,

D= {»{4): 4eCX)}o {single points of BN\S(X)}
is a monotone and upper-semicontinuons decomposition of E? such that
each element of D lies in a plane parallel to E* and does not separate

this plane because of

HA) = [[1— p(d)o+ p(d)}w: ze A} C {(@,y,2): 2= p(4)}
is & continmum homeomorphic to 4 provided that 4 s X and »~*(X)
= {w}. According to [8], the quotient space E*/D is homeomorphic to B
Let ¢: E*->F*D De the projection. Then, by 1.7, o™t C(X)—=E*D
is the desired embedding. This completes the proof.

5.2, If X is a hereditarily indecomposable plane continuum such that
qo proper subcontinuwum of X separates the plane, then dim 0({X) = 2.

In fact, by 5.1, dim((X) < 3 and therefore dim C(X) = 2 because
X is hereditarily indecomposable (see [4]).

Finally, we recal that the hyperspates of snake-like and circle-like
plane continua are embeddable in E? (see [3] and [14]}.

PROBLEM 3. Can the hyperspace of o hereditarily indecomposable plane
continuum be embedded in E°%

ProrEM 4. Suppose that X is a continuum such that G(X) can be
embedded in T°. Can X be embedded in the plane?

A positive answer to Problem 4 in the case where X is a locally con-
nected continuum follows from a formula of Kelley [6, p. 30].

The author acknowledges his gratitude to the referee, who made

several valuable suggestions.

References

[1] J. H. Case and R. . Chamberlin, Characterization of tree-like continua, Pacific

J. Math. 10 (1960), pp. 73-84. _
[2] H.Cook, Concerning three questions of Burgess about homogeneous continua, Collog.

Math. 19 (1968), pp. 241-244.


GUEST


{3
[4]
{51

J. Krasinkiewicz

E. Dyer and M. E. Hamstrom, Completefy reqular mappings, Fund. Math.
45 (1958), Pp- 113-118.

¢. E. Eberhart and S. B. Nadler, The dimension of certain Typerspaces, Bull.
Polon. Acad. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), pp. 1027-1034.
G. W. Henderson, On the hyperspaces of subcontinua of an arc-like continuum,
Proc. Amer. Math. Soe. 27 (1971), PP- 416-417.

J. L. Kelley, Hyperspaces of a continuun, Trans. Amer. Math. Soc. 52 (1942),
pp. 22-36.

J. Krasinkiewicz, No 0-dimensional set disconnects the hyperspace of a continuum,
Bull. Polon. Acad. Sei. Sér. Sci. Math. Astronom. Phys. 19 (1971), pp. 755-758.
— On the hyperspaces of snake-like and circle-like continua (to appear).

K. Kuratowski, Topology, vol. 2, New York-London-Warszawa 1968.

8. B. Nadler, Jr., Locating cones and Hilbert cubes in hyperspaces (to appear).
T. Nighiura and C. J. Rhee, The hyperspace of a pseudoarc is a Oantor manifold,
Proc. Amer. Math. Soc. 31 (1972), pp. 550-556.

C. I. Rhee, On dimension of hyperspace of a mneiric continuum, Bull. de la Soc.
Royale des Sciences de Liege, 38 Année, 11-12 (1969), pp. 602-604.

J. T. Rogers, The cone= hyperspace property, Can. J. Math. 24 (1972),
pp. 279-285.

__ Embedding the yperspaces of circle-like plame continua, Proc. Amer. Math.
Soe. 29 (1971), pp. 165-168.

W. R. R. Transus, On the hyperspace of sub
Math. Soc. 18 (1967), pp. 1074-1075.

H. Whitney, Regular families of curves, Proe. Nat. Acad. Sci., U.S.A. 18 (1932),
pp. 275-288.

G. 8. Young, The introduction of local connectivity by change of topology, Amer.
J. Math. 68 (1946), pp. 479-494.

tinua of the pseudoare, Proc. Amer.

Regu par la Rédaction 10. 11. 1972

Classes of ngeki.nd finite cardinals (*)
by
John Truss (Oxford)

Abstract. We discuss seven possible definitions of “finiteness” of cardinal numbers,
and associate with each definition the class of cardinals “fihite” in that sense. The results
are extensions of those in Levy’s paper “The independence of various definitions of
finiteness” (Fund. Math. 46 (1958), pp. 1-13). We investigate the closure of the classes
under addition, multiplication, unions, and disjoint unions. In the final section we give
a wide variety of possible combinations of inclusions and equalities between the classes.
Also we give an affirmative answer to Tarski’s question “Can there be exactly 2% De-
Jekind finite cardinals?”

§ 1. The object of this paper is to investigate various properties of
seven classes of Dedekind finite cardinals, and to discover what possible
combinations of inclusions and equalities can hold between them. The
starting point is Levy’s paper “The independence of varions definitions
of finiteness” [8]. All but two of the seven classes correspond to definitions
of Levy (which were in turn taken from Tarski [18]), and the other two
arise quite naturally.

The classes are defined in § 2, and some of their elementary pro-
perties given. In § 3 we discuss the closure of the classes under +, X,
unions, disjoint unions, and <, and 2 model is given in which A4, is not
closed under X.In § 4 we show that if any two Dedekind finite cardinals
are comparable, then any infinite set is the digjoint union of two infinite
sets. § B containg five models which establish various possibilities of
strict inclusion and equality between the classes. Various combinations
of these models actually yield thirteen models in which the combination
of strict inclnsion and equality is different. It is shown that there can
be no more than twenty-three possible combinations, nsing the results
of § 2 and § 3. All of the ten unsolved cases involve the following sitnation:

There is an infinite set with no infinite orderable subset, and if
a set X has a countable partition, there is & map from X onto X which
is not 1-1.

(*) This paper is part of the author's Ph. D. thesis at the University of Leeds.
He would like to thank Dr. F. R. Drake and Prof. A. Levy for their supervision, and
the Science Research Council for their financial support.
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