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On connections between the decomposition of an algebra
into sums of direct systems of subalgebras

by
J. Plonka (Wroctaw)

Abstract. The paper considers the notion of the sum of a direct system of algebras
defined in [1]. Another characterization of the partition function is given (see [1]) and
it is proved that different decompositions of an algebra 2 into the sums of direct systems
form a meet semilattice which can be imbedded into a meet semilattice of congru-
ences of 2.

§ 0. In [1] the notion of the sum of a direct system of algebras and
that of partition function were given. We shall use the results of [1].
Hence we consider here only algebras of a given type = without nullary
fundamental operations. If U is an algebra, L is a direct system of sub-
algebras of 9 and % = S(L), L is called a decomposition of A. It was proved
in [1] (Theorem 2) that there exists a 1-1 corespondence between the
decompositions and the partition functions of 2.

In this paper we describe the partition function of an algebra by
identities (§ 1, Theorem 1).

In § 2 we consider connections between different decompositions of
an algebra ; in particular, we look for a decomposition with the smallest
components. The main result is contain in Theorem 2.

The identity ¢ = 9 is called regular (see [3]) if the sets of variables
on both sides are the same. Let K be the equational class of algebras
defined by a set F of equations and Kz, — the equational class defined
by the set R(E), where R(H) consists of all regular consequences of E.
It was proved in [3] that if for some term z-y the equality -y = @ is
a consequence of F, then any algebra from Kpg is the sum of a direct
system of algebras from Kg.

In § 3 we show that the converse is not true even if there exist non-
regular equalities in H.

§ 1. We say (see [1]) that a binary function @ o y is a partition function
or briefly a p - function of an algebra % of the type  if it satisties the following
conditions:

1) Lol =2u,
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@) (@oy)ez=2o(ye2),
(3) muyozzmczoy

and if for any fundamental operation f(z, ..., xs) of A we have:

(4) Flyy By ooy Tp) oY =F(Bro Yy BooY,y ey Tuoy),

(5) Fl@wy, @yy ooy @n) o s = F(@1, Boy ooy ) (1=1,2,..,m),
(6) Y o f (@1 By vy Ba) =Y o f(Y 0 81, Y 0 @By ooy Y 2 )
(7) YoIfly, - y)=9.

It was proved in [2] (Lemma 1) that

(i) @ binary function @ o y is a p-function of an algebra U iff it satis-
fies {1)-(3) and
(8)  flwyy @y oy @n) oy = F(y, @y ooy By B0 Yy Bppyy ooy )

(t=1,2,..m),

(9) By o@yo...oly of (B, eeey Bn) = Dy 0 Wy 0 vev 0By .

TenoREM 1. A binary function o y is a p-function of an algebra A iff
it satisfies (1)-(4) and

(10) Y of(@ry Bay ey Bn) =Y 0@ 0By 0 .. 0 Dy .
Necessity. By (5), (3), (9) we have
Yo f(@yy oy @n) =Y o F(@1y ooy Tp) o B0 By 0 e oy
=Y oW oLy o oy 0 f( @y, eny Tn)
:yomloa?zo... ° %y .
Sufficiency. We prove (5): by (1)-(3) and (10) we have
F(@1y ey @n) o s = fly, ..\ @) o Flay, ey D) © Wy
=F(@yy ceey D) 0By oWy 0 ... 0By 0z
=F(@yy vy Tn) oWy oWy 0.l 0By
=@y ey Bn) 0 F D1y ooy Ba) = F(y, .y Ta)3
(6) follows from
n+1 times
Yo f(@yy ey @)=y mamlo$2 0w 0%y
=Yolyom)o(yom) o . o(yom)
* =Yoflyem,yom, .., yom)t
(7} follows at once from (10) and (1) .
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§ 2. Let 2 oy be a p-function of an algebra % = <(4; F). Then the
relation ~, defined by the conditions @ ~,b iff acb=q and bea=25
is a congruence of the algebra A’ # (4; o), and W[~ is a semilattice
which yields the structure of poset ([a], <[b], iff boa=1>) on 4 with
lub. ([al,, [0],) = [ab]l. It follows from [1] that the system

L) = <I, {iliers W, scs, sger>» Wheve hi{a) = ab for aei, bej, i<j,
is a decomposition of 9, and that each decomposition L of % is of the
form I = L(o) for some p-function o of %. We say that L(e) = L(op)
if op = o,. ‘ .

‘We shall concern ourselves only with non-unary algebras, i.e. we
assume that there exists an operation f(z, ..., ), with » >1, among
the fundamental operations of %, because in unary algebras homo-
morphisms k] have no influence on algebraic operations. In the set D(2)
of all decompositions of 9 we introduce two orders as follows:

I(o) <o Llog) iff  [a]o\[Bl,, for all a,bed.
L(o)<pD(ey) if @ogb=b=aoe,b=b foralla,bed.

Tt is clear that there exists a greatest element in D(¥) with respect to <,
and with respect to <Cj.
The following example shows that minimal elements need not exist.

ExAamPLE 1. Let
) .
A= ({1—;’;} vil, 2} 2y, n=1,2, )

where z-y is defined as follows:

B
va=o, TY=Y, T U m/ T max(m,n)’

1 ’ 1 '
2-(1——)—_-1, 21=2, 1-(1-—):1.
N N

By (i) D() is not empty. Let L « D(%) and let X, be the component to
which 2 belongs. We shall prove that 1 e X,.

Let 1 eXy;; since 2-1=2 and the value of the operation always
belongs to the component with an index which is the least upper bound
of the indices of components to which the arguments belong, we have
j <14, Since 2-0=1, we have iy <j. Thus j= 4.

Further we see that 2-2 « X, for any 2; hence X, is the component
with the maximal index in I, where I is the set of indices of L. Similarly
we observe that I is linearly ordered by <. We cannot have Xy == {1, 2}
because 2 (1—1/n) = 1, and so, if 1—1/n ¢ X;, it is not possible to define

5 — Fundamenta Mathematicae LXXXIV
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the homomorphism %% In fact, 2:(1—1fn)=1 and 2-AP(1—1/n) =2,
whatever is the homomorphism AR(1—1/n).

Let 7= min{n: (1—1/n) e Xy} If n>ny, then (1—1/n)e X;. In
fact, let (1—1/n) e Xy; since (1—1fn,)-(1—1/n)= 1—1/n, 1—~1fn)-1=1,
we have i <4, and i >1,. For (1—1/r) e X; and i <1, we must ha.Ve
hi(1—1jn) = 1—1/n,, becanse (1—1]47,)-(1—-1/%0)= 1—1/n,. Form a new
decomposition I’ dividing X, into two components

1 1
st mexapd]
Ny K

Put for i < 4y, 1 # 1 ¢ < §p and put §; < j,. For ¢ < dq and ¢ # i, (1—1/n)

e X; put hH1—1/n)= 1—1/n,. Pub

h“(l 1)—1 =
£ W A T

Do not change the other things fixed in L. We obtain a new de-

composition L' and L' <, L, L’ <, L. Since L is arbitrary, there exists
no minimal element in D().

LemMA 1. For every non-unary algebra W= (A; F) the 'rsl(mo'n L)

<, L(o) is equivalent to the implication

go,b=a=ao,b=a forall a,bed."

Proof. Let f(x, ..., xn) ¢ F, # >1, and suppose that a o, b = a for
some a,bed. By (5) and (10) we have a o f(a,b, .., b)= (a0 b)=a,

fla,b,...,0) oy a=fla, b, ..., b). Thus f(a,b, ..., b) e [al,,. By hypothesis
fla, b,y ..., b) efa),. This gives aoyf(a,b,..,b)=a and also ao,
o f(@yb, ..., b) = a o, b. Hence ¢ o, b= a. The converse implication is
trivial.

Leyvma 2. For each non-unary algebra W= (A; F) the relation Tr(o;)
<5 L(op) tmplies Li(o)) <, L(o,).

Proof. Tet a o b=a and f(z,, ..
=ao b, we have by hypothesis
aofla,b, ..,

oy %5) €F, n>1. Since @ o, (%t 0, b)
@ o (@0, b)=ao,b. Because of
b) = a, we get by (5) and (8)

(“ o f(a

A oyh=ao (a0,b)= ) ))°1(“°zb)

=a o flac aozb),b,..,, )=a,olf((moab),b,...,b)
=0 (f(a,b,.;0) o) =g o f@,boyb, ..., oyb)
=ao fla,b,..,0)=a.

CoroLrLA®RY. The relation <, is partial order in D(2).

icm°®

the decomposition of an algebra into sums of direct systems 241

Levma 3. If o y is an algebraic p-function of A= (4; F) (ie. oy
is p-function and x oy is a ferm in QI), then L(o) is the smallest element
n (D <<p)

Proof. Let L(e;) e D(A) and a o, b= b. Observe that (8) holds not
only for the fundamental operations but also for all terms. Thus a o b
=ao(@o b)=(aca)ob=ao b=> Hence L(o) <y L(o).

Lemma 4. If @ oy is an idempotent term in A, then <, = <.

Proof. By Lemmas 1 and 2 it is enough to prove that @ o, b= b
implies @ o; b= b provided %oy = o= 2o,y = 2. Let a o, b= b. Since
(@oyb)oyb=1a0cb, we get (ao b)o,b=ao b, and therefore by (8)
we have

@op b= (a0 D) °2b=((a°“) °1b)°zb=(“°(a°1b)) o b )
B (a02b)0(aolb)=((a:oa) ogb)nlbz(a,czb) ob=>bob="0.

Levwa 5. If there ewists in W= {A; F) an idempotent binary term
zoy and Li(o) and Ly(o,) are two decompositions of U, then there exists
a decomposition L(es) in W such that [al,, = [al,, ~ [al,, for all a e A,

Proof. Define:

(11 BogY=(Tory)oyy.
By (8) we have

2=(@02) o1 y) op2) = (w0 (@ ey 9)) = (wey2) o

— (@ %2) o) oy = (@2 )

(T o1 y) o (o y)
9 2) o1y = (2 0y2) oy
Hence we get

(12) (w0, y) oy 2= (2 o

2oy and oy = (T oY) oy .

We check that o, 4 iz a partition function in 9. Therefore by Theorem 1
we prove that « o, y satisfies (1)-(4) and (10). The proof of (1) is trivial
because o; and o, are idempotent. The proof of (2): by (12) we have:
(13)  @esy)osz=((@19) uy)or8)ore= (@07 0,2) 59) oy

By (8), (10) and (12) we have:

(14) @ oy (Y o3 2) = (w0 (4 04 2) 2 2)) oa (Y 212) oy 2

( o (§ 02 %) 01 2) 0p (Y 01 2) oy 2

= (oo (4 02 2) )] o0 (¥ o1 %) o)
(wul(q/oz ))o((yoz ) o 2)

= (@ oy o2)) o (yor)

= (Lo, Y o 2) oy Y 0y &

. - ]
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Hence we have (2). The proof of (3) follows from (12). The proof of (4)
and (10) is trivial by (12). From (11) it follows that if @ o, b = a and
ae,b=a then aob=a. We prove the .converse. Suppose @ oz b= a.
Then a o, b= ((ao5b) o b)=((@eyd) o1 b) o b= (620 b)=acb=a by
(1) and (12). Analogously, if aosb=a then a@ob=a. Thus [a],
= [a],, ~ [a],, for all a e A, which comples the ploof

Exiuers 2. Shows that (D(U); ); <.) need not be closed under the
join, even if there exists an algebraic p-function »-y in U. Consider an
algebra

A= ({1—- l} v {1—}—}-} ; max(z, y)) .
Mp=1g,... Nln=1s,..

Let L, be the decomposition defined as follows: any of the numbers 1—1/n
form one-element components. The set {1+41/n},_s, .. is divided into
+—} .. We

two-element components of the form {1-{— o

“ m=1,2,.
define the relation < for indices of eomponents G’i and C; as follows:
4 < j if the minimal element in C; is less or equal to the minimal element
in C;. I aeCy, i <j and i # j, then hi(a) = b where b is the minimal
element in Oy; further, ki is the identity map. Let I, be defined similarly
with this difference that the set {1-+1/n} is divided into components in
the following way:

fgh b .
1 ! .ﬁ’ 2m+1 m=1,2,... '

4]
Observe that if L >, L, and L'> L,, then the set U {1+41/n} must be con-

tained in one component, ¢ of L. That component cannot be ¢ = U {1-+1/n}

becaunse it wonld not be possible to define the homomorphlsm h ¢;—C
where O is a component such that ¢ is less or equal to the index of the
component C. In fact, the value of the homomorphism must be the
smallest element in the given component in view of the definition of the
operation max(z,y). If ¢ contains some number 1—1/n, then argning
as in Example 1, we conclude that ¢ must contain any number 1—1/k
(k > n). But then, as in Example 1, we can show that there exist L' <,L
and L' # L. Observe that max(z,y) is the algebraic p-function in 9.

THEOREM 2. If there exist in U the algebraic partition function, then
the relational system (D(N); <,) s a meet semilattice with 0 and 1 which is
isomorphic to some subsemilattice of the semilattice of omgmmoes of A with
the meet operation.
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Proof. For L(o) e D(A) let o(L(

o)) =R, where a Rb if [a],= [b].
‘We check that R e Congril. .

Let fx(@y, ..., @n,) be a fundamental operation in % and let a, R b,
for s=1,2,...,n. Then by (10) and (8)
Sulayy ooy any) o filbyy ooy bu,) = ful@yy vy Guy) 0 by 0By o vv 0 by,
= filay o by, @y 0 by, ..., Omy © bay)
= fr(a, ’ a'nk) y

and similarly

Tu(bis oes Omy) o fulty vy Omy) = by -oey Buy)

Consequently R e Congrl. Now our theorem follows from the Lemmas,
q.e.d.

s Oy

§ 3. Let K be an equational class of non-unary algebras without
nullary algebraic operations, defined by the set F of equations. An
equation @ =y is called regular if the sets of variables in ¢ and p are
the same.

Let Kpg, be the equational class of the same type as the a.lgebms
from K-defined by the set R(E) of all regular consequences of E. It was
proved in [3] that

(ii) If there exists a term f(z,y) such that the equation f(z,y)=2
is a consequence of F, then any algebra U EKR(E) is the sum of
a direct system of algebras from K and f(z, y) is a p-function in .

The converse of (ii) is not troe in the trivial case where all consequences
of F are regular, because then any algebra from K has a trivial decomposi-
tion and no identity f(z,y) = = is true in K.

However, the problem arose whether this converse is trne when
there are non-regular equations in F. The following Example 3 shows
that this is not the case either.

Examere 3. Let Ky be the equational class of gronpoids defined
by the equation z-y= u-v, and let A= (4; ) e Kpg. Observe first
that we have a lot of regular consequences of ay = uw, for example

ry=yx, (@Y z=uys?, Fy=ay,
(my)z p— m2.y2, mﬁ —_ (m‘Z)Z .
Define in 4 the relation S as follows @ § b < a% = b?; obviously § is an
equivalence and by (15) it is a congrnence of A, since #? § (2?)2—A/8 is
a semilattice.

It a, b, ¢, d belong to the same congruence class [a], then a? ¢ ¢ [a];
hence a-b = a? = ¢® = ¢-d. Thus [a] is a subalgebra and belongs to Kg.

(15)
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Form » direct system taking /8 as the set of indices with the semilat-
tice partial order <; take clases [a] as components and for » e [a], [a] < [B],
[&] # [b] put kPY(z) = b2, hid(w) = o. Obviously L is a well-defined direct
system with the Lu.b. property. It % e [a], ¥ € [b], then ©-y ¢ [a-b]. Using
(15) we have:

2oy =2yt = a® b = (a-b)* = (a-b)*-(a-D) = T - a) - Bl P (y) -

Thus 9 is the sum of direct system L. However, no identity of the form
f(z,y) = = holds in Ky, because any binary term is equivalent to 2-y
and z-y is commutative. Hence if we had x-y = %, then we would bave
zy=1y and =1y, which is a contradiction because Kz is not trivial
(e.g. an algebra ({a, b}; ©-y) where z-y = ) belongs to K.
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Non-planar embeddings of planar sets in F°

by
D. R. McMillan, Jr. (Madison, Wis.)

Abstract, Let Z be a compact, 1-dimensional set in the plane, E*. Now let X be
a subset of B* homeomorphic to Z. It is shown that for each tame arc 4 in B* with
X A 04 = @, and for each &> 0, there is a homeomorphism % of E® onto B* that moves
each point less than e, that is the identity off an s-neighborhood of X n 4, and is such
that X n h(4) = @: An analog is also proven in the case in which Z is 2-dimensional.

1. Introduction. A standard technique in studying geometrie pro-
perties of the embedding of a compactum X in Euclidean 7-space, ",
requires that (for certain wvalues of %) it should be possible to move
a k-simplex off X by a small homeomorphism of E". (See, e.g., [7] and
[13].) If » is large, the conditions under which this can be done are fairly
well understood. In the “simplest” nontrivial case, however, when n = 3,
%=1, and X is 1-dimensional, our intuition does not always serve us
well. No obvious dimensional or algebraic obstruetions suggest themselves,
yet in general it cannot be done. References [5] and [11] give embeddings
of Menger’s universal 1-dimensional curve in F? that cannot be freed
from certain 1-simplexes by any homeomorphism of E® onto EP that
moves only points close to the universal curve. In [6], the ambient homeo-
morphism exists, but it cannot be close to the identity. (Caution: the
term “tangled” is used with different meanings in [11] and [6].) It is easy
to see from the constructions of these 1-dimensional sets that they are
not locally embeddable in E*

We show here (Theorem 3) that if a closed set X in E® iy a count-
able union of at-most-1-dimensional compact sets, each of which embeds
in F?, then tame arcs can be freed from X by a homeomorphism of B
that is close to the identity. On the other hand, if X C E? is compact
and X embeds in F? (but perhaps dimX == 2), then we can still do the
best possible considering the circumstances: we can push & tame arc off
with a homeomorphism of E°, moving only points close to X (Lemma 4;
¢f. also Theorem 4). All of our theorems are stated for BB, but the proofs
work for arbitrary boundary less 3-manifolds. In particular, Theorem 4
gives'a new (and simpler) proof of the result [10] that a 2 - cell topologically
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