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Form » direct system taking /8 as the set of indices with the semilat-
tice partial order <; take clases [a] as components and for » e [a], [a] < [B],
[&] # [b] put kPY(z) = b2, hid(w) = o. Obviously L is a well-defined direct
system with the Lu.b. property. It % e [a], ¥ € [b], then ©-y ¢ [a-b]. Using
(15) we have:

2oy =2yt = a® b = (a-b)* = (a-b)*-(a-D) = T - a) - Bl P (y) -

Thus 9 is the sum of direct system L. However, no identity of the form
f(z,y) = = holds in Ky, because any binary term is equivalent to 2-y
and z-y is commutative. Hence if we had x-y = %, then we would bave
zy=1y and =1y, which is a contradiction because Kz is not trivial
(e.g. an algebra ({a, b}; ©-y) where z-y = ) belongs to K.
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Non-planar embeddings of planar sets in F°

by
D. R. McMillan, Jr. (Madison, Wis.)

Abstract, Let Z be a compact, 1-dimensional set in the plane, E*. Now let X be
a subset of B* homeomorphic to Z. It is shown that for each tame arc 4 in B* with
X A 04 = @, and for each &> 0, there is a homeomorphism % of E® onto B* that moves
each point less than e, that is the identity off an s-neighborhood of X n 4, and is such
that X n h(4) = @: An analog is also proven in the case in which Z is 2-dimensional.

1. Introduction. A standard technique in studying geometrie pro-
perties of the embedding of a compactum X in Euclidean 7-space, ",
requires that (for certain wvalues of %) it should be possible to move
a k-simplex off X by a small homeomorphism of E". (See, e.g., [7] and
[13].) If » is large, the conditions under which this can be done are fairly
well understood. In the “simplest” nontrivial case, however, when n = 3,
%=1, and X is 1-dimensional, our intuition does not always serve us
well. No obvious dimensional or algebraic obstruetions suggest themselves,
yet in general it cannot be done. References [5] and [11] give embeddings
of Menger’s universal 1-dimensional curve in F? that cannot be freed
from certain 1-simplexes by any homeomorphism of E® onto EP that
moves only points close to the universal curve. In [6], the ambient homeo-
morphism exists, but it cannot be close to the identity. (Caution: the
term “tangled” is used with different meanings in [11] and [6].) It is easy
to see from the constructions of these 1-dimensional sets that they are
not locally embeddable in E*

We show here (Theorem 3) that if a closed set X in E® iy a count-
able union of at-most-1-dimensional compact sets, each of which embeds
in F?, then tame arcs can be freed from X by a homeomorphism of B
that is close to the identity. On the other hand, if X C E? is compact
and X embeds in F? (but perhaps dimX == 2), then we can still do the
best possible considering the circumstances: we can push & tame arc off
with a homeomorphism of E°, moving only points close to X (Lemma 4;
¢f. also Theorem 4). All of our theorems are stated for BB, but the proofs
work for arbitrary boundary less 3-manifolds. In particular, Theorem 4
gives'a new (and simpler) proof of the result [10] that a 2 - cell topologically
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embedded in any orientable 3-manifold-without-boundary hags arbitrarily
close neighborhoods that are cubes-with-handles.

Tet us recall some definitions and conventions. A “manifold” is
always connected. A closed manifold is compact and without boundary.
A surface is a closed 2-manifold. An n-cell is a space homeomorphic to
the standard n-simplex 4" An n-sphere is a space homeomorphic to
24™+, where “9” denotes “boundary”. Homeomorphism is symbolized

by “~7? and A'=1I. Let YCX, and #<X. We say that Y is locally

p-connected at @ if for each open set U of X containing » there is an open
set V such that z e V C U and each mapping of 847+ into ¥V ~ ¥ is homo-
topic to a constant in U~ Y. (Cf. [8].)

2. Sierpifiski curves in E% A continuwm is a compact, connected Haus-
dorff space. If P and @ are disjoint closed sets in a space X, then a closed
FCX—(PuQ) disrupts P from @ in X if some continuum in X inter-
sects each of P and @ but each such continuum intersects . A point
set has a property irreducibly if it has the property, but none of its proper
closed subsets has the property.

TemumA 1. Let X be a compact set in E™ (n > 1). Let U be a component
of B*— X, and J a continuum in U—U. Let p «J and let @ C X be a closed
set that intersects J but does not contain p. Suppose that {Xi| t e T} is an
uncountable, disjoint collection of compact sets in X— ({p} v @) such that
each X; irreducibly disrupts p from @ in X but such that no continuum
in X separates two poinis of Q in B™. Then, there are only countably many
t e T for which X; contains a continuum that separates H".

Proof. Suppose that for uncountably many teT, X contains
a continuum C; that separates H". Then we replace our original indexing
set T by the collection consisting of these troublesome values of #, and
seek a contradiction. We continue to denote our new indexing set by T.

Suppose that s,teT (s #t) and that Us, Us are components of
E*— (s, B"— C;, respectively, such that :

XnU=0=X~T;.

It follows that Us » U;=@. Hence, for ouly countably many #e T can
it happen that some component of E"*— O fails to intersect X. In parbi-
cular, for all but countably many ¢ e T, C; separates in F™ some pair of
points of X. Since X is separable, we can in fact assume without loss
of generality that for each ¢ e T, 0; separates in E" the point p e X from
gsome fized point 7 e X. .

Let s, teT, s # {. Now one of C; and C;, say Os, separates the other,
C;, from p in E™. In fact, Cs separates O; from each point of J— O in B
Write B"— C; = F v F, where E,F are disjoint, nonempty open sets
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and C;:CE, J— (; CF. Since X; disrupts p from @ in X and J ~Q # O,
it follows that X; ~J s ©@. Thus, X; has as a separation

Xt:(XtﬁE)U(Xtr‘\F)

Since Xz~ F # X, there is a continuum ZC X—X;~F such that
peZ and ZnQ #@. Then Oy (Z~F) is a continnum in X that
containg p, intersects @, and misses X;. This contradiction completes
the proof. )

Let D be a 2-cell, and X a compact set in Int.D. Let Dy, D,, ..., be
any sequence of disjoint 2-cells in (Int.D)— X whose diameters converge
to zero and whose umion is dense in D—X. Then Z = D—|JIntD; is
called a generalized Sierpiriski curve, with accessible simple closed curves
aD, 8D,, 8D,, ... Bach point of Z that belongs to no accessible simple
closed curve is said to be inaccessible. Clearly, Z is a continuum. It can
be shown that Z is locally connected and that Z— X has dimension one.
In the case that X contains no open set in D, we obtain the clagsical

" Sierpinhiski curve (see, e.g., [2], [3], and [14]).

A compact set X in the interior of an n-manifold M" is definable-

by-cells in M™ if there is a sequence Ny, Ny, ..., such that each ¥, is a finite,
. [-<]
disjoint mpion of n-cells, N, CIntNy, and X=() N;. If M" has
i=1 ‘

a piecewise-linear structure and » # 4, then each component of N; can
be taken to be a polyhedron.

TasorEM 1. Let X be a Sierpiniski curve embedded in B°. Let & be
a positive number. Then, there is a compact set O C X, such that O is de-
finable-by-cells in B®, each component of ¢ has diameter less than & and
each component of X— C has diameter less than e.

Proof. From examining a standard model of the Sierpifski curve,
we find that X contains a finite, disjoint collection of arcs Ay, ..., 4dn,
such that: (i) each A, has diameter less than &9, (i) each component
of X— | J Ay has diameter less than &/9, and (iii) each Ay has its end-
points in distinet accessible simple closed curves of X and otherwise Ay
lies in the inaccessible part of X (and hence X— Ay is connected).

Let ¢ and § be fixed for the moment (1 < ¢ < j < ). Then, for each
sufficiently small 6 > 0, the 8-neighborhood of 4, in B® contains uncount-
ably many disjoint, polyhedral surfaces {8 t e I}, each of which separates
Ay from A in EP. (Specifically, in, order to do what follows, we require
that 0< 6< &/9 and that the §-neighborhood of A;in B* should miss
not only each Az, k # 4, but also should miss some arve in X— A, that
joins & point of 4; to a point in some accessible simple closed curve of
X that meets 4. Note that the §-neighborhood of Asin B* has diameter
less than ¢/3.) There is a compacet set X; C §; ~ X sueh that X; irredueibly
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separates 4; from 4; in X. By Lemma 1, there exists #eI such that each
component of X; is a continuum and its homeomorphic image in E? fails to
separate B2 Since X, lies in the polyhedral gurface S, it follows that X;
is definable-by-cells in E®. Hence: For each fixed ¢<j and each suffici-
ently small § > 0, the §-neighborhood of 4; in B® contains a compact set

X,;CX— U4

such that X,; separates 4; from 4; in X, diameter X, is less than /3,
and X,; is definable-by-cells in E°.

Repeated application of the result of the previous paragraph yields
disjoint compact sets

X1,27 Xl,th bR Xl,m 'XZ,BJ X2,43 ..

) Xn-—l,n ’
whose union
0CX— |JA4x

has the following properties: O is definable-by-cells in H°; each component
of (¢ has diameter less than ¢/3; and no component of X— ¢ contains
more than one A;. Suppose now that K is a continuum in X— €. If K

meets no A4, then K has diameter less than &/9, as desired. Suppose then

that K meets exactly one 4;, say 4,. Then K is contained in the union
of 4, with those components of X— |_J 45 whose closures meet .4,. Hence,
K has diameter less than ¢/3. Further, by the above properties of C,
K meets no-more than one 4;. Thus, each component of X— ¢ has diameter
less than &, and the proof is complete.

THEOREM 2. Let X be a Sierpinski curve embedded in E°. Let A be
a tame arc in B® with X ~ 34 = @. Let ¢ be a positive number. Then there
is a homeomorphism h of B® onto E® such that b moves each point less tham e,
I reduces to the identity outside the e-neighborhood U of A ~ X in B®, and
X ~nh(4)=0. (That i3, X has the “strong arc-pushing property”.)

Proof. We can assume that 4 is a straight line interval in the 2-axis
(which we picture as being vertical) in E®, with 84 C B*—U. Further,
from the fact that X is nowhere-dense in E®, we see that for some homeo-
morphism 2 of E® onto B® that moves each point less than /2 and reduces
to the identity on E*—U,2(X) A is 0-dimensional. If we can then
find & homeomorphism g of E* opto B® that moves each point less than /2,
reduces to the identity on B*—TU, and satisfies 2(X) n g(4) = @, then
we can take h=2""og. Thus, it clearly suffices to take up our original
problem with the added hypothesis that A ~ X is 0-dimensional. This
we do, with no change in notation.

Let €y, ..., Cu be a digjoint collection of solid eylinders in U whose
interiors cover 4 ~ X, such that each solid cylinder has the z-axis as
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an axis, each has diameter less than ¢/2, and each intersects 4 ~ X but
has its ends in #*— X. Let H; denote the nnion of the two ends of 0;. Let

al; (2-axis) = {a, b} .

There is 2 6 (0 < § << ¢/2) such that if K is a continuum of diameter less
than 36 in some (9C;)— Hy, then K fails to separate a; from b; in 20;. We
also require that 6 be less than the distance from X to

(_A—— U IntGi) o UE1 .

By Theorem 1, there is a disjoint collection B, ..., Bx of polyhedral
3-cells of diameter less than § in E®, such that each B; intersects X, and
each component of X— [ IntB; has diameter less than §. Some homeo-
morphism p of E® onto EP causes each B; n p(8C;) to be empty, and is
the identity outside & neighborhood of

U {Bil Bi~ JaC: # G}
that has componenté of diameter less than § and misses
U{Bil By~ Jo0,= 0} .

(This neighborhood lies in U.) Note that each component of each X ~
~ p(80;) has diameter less than §. Further, each component of each
p7YX) ~20; misses H; and has diameter less than 34.
By the result of the previous paragraph, there is an are
A;C(20)—p™HX)

from a; to b, for each 4. Let ¢ be a homeomorphism of E? onto E®

" which moves each point less than &2, is the identity on F*—TU and on

A— |JInt C;, and which results in
q(A m 01;) == Ai .
Thus, p~X) ~ ¢(4) = @. Finally, the desired homeomorphism is h'=peog.

for each 7.

3. Extensions and generalizations. We state the following result without
proof. It involves straightforward changes (mainly the introduction of
loeally finite covers) in the usual proof (see [9]) that a compact, n-di-
mensional metric space embeds in B**, The chief point to note is that
the mapping f given in the Lemma can be replaced by an approximation
g that extends f|C and satisfies g(0)~g(X—0)=@ (see Theorem 2
of [8]). The inability to accomplish this step is the only sticking point
in the attempt to extend the result to higher dimensions. In fact, if X is
the disjoint union of a 2 - cell D and a Cantor set €, then X is 2- dimensional,
and for each n > 3 there is & mapping f: X—E" such that f|C is an em-
bedding, f|D is an embedding, and f|8D represents non-trivial element
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of m(B"—f{ ()). Clearly, there is no embedding of X that closely ap-
proximates f and extends f|C. See [1] and [4] for the existence of the
wild Cantor set f(€). (I am indebted to Michael P. Starbird for pointing
out this example.) .

Lmva 2. Let f be o mapping of a compact meiric space X into B*
such that for some closed ¢ C X, f|C is an embedding. Suppose that X— C is
one-dimensional, dimC <2, and that B*—f(C) is locally 0-connected at
each point of f(0 ~ X— (). Then, for each ¢ >0, there is an embedding
F: X—>E® such that F extends f|C and d(f(w),F(w))< & for each zeX.

Remark. The hypotheses stated in the second sentence of Lemma 2
will automatically hold if (1) X is 1-dimensional, or (2) if X—C is 1-di-
mensional and X embeds in E® That (1) suffices, follows from the fact
that no compact, 1-dimensional space can separate an open, connected
set.in E®. That (2) suffices, follows from the next lemma.

Levma 3. Let Z be a closed set in E2, and let 2 € Z be a limit point
of B*—Z. SBuppose that h: Z—E° is an embedding with h(Z)= X dlosed
in B Then E°*— X is locally 0-connected at h(z) = x.

Proof. Let U C E® be the interior of a closed 3-cell B, where w e U.
Let D C B be a (round) closed 2-cell such that z e IntD, (B?*— Z) ~ oD
# 0, and D ~ Z C ™Y TU). (Note that each component of Z ~ 8D is a point
or an arc.) Let VC U be an open, connected set in B® with z ¢V and

YV AX)CIntD.

We claim that each pair of points p, g ¢ V— X can be joined by a path
in U— X. If this is not so, then K = X ~ B separates p from ¢ in B.
But K is the union of

E,=E~hZ—TIntD) and KE,=E~h(Z~D).

Let P be a path in ¥ from p to ¢. Note that P ~ K, = 0, since K; ~ V= 0.
Since K, C U, there is also a path @ from p to ¢ in U—K,. (No compact
set that embeds in E* can separate U ~ F®.) Note that K, K,
= h(Z ~8D) is a compact set in U, and each component of K, n K, is
a point or an arc. Hence, P v @ represents a 1-cycle in U that bounds
in U—K, nK,. By the Alexander Addition Theorem ([15], page 60),
there is a path from p to ¢ in U— K. The proof is complete.

TerorEM 3. Let X be o closed set in B®. Suppose that X can be expressed
as the union of @ countable number of compact sets of dimension at most one,
each of which can be embedded in F*. Then X has the strong arc-pushing
property.

Proof. We consider only the case where X is compact, 1-dimensional,
and embeds in F°. Once this has been done, we will leave to the reader
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the easy argument that the strong arc-pushing property is preserved
under countable unions. Let 4 be a tame arc in E® with X 04 = @.
Let ¢ be a positive number, and U be the e-neighborhood of 4 ~ X
in B ,

For some compact, nowhere-dense set ¥ C F?, there is a homeo-
morphism f of ¥ onto X. Let ¥V be an open set in B® such that XCV
and ¥V~ ACU. Then for some finite disjoint collection Zi, ..., Z, of
Sierpitski curves in B?, each point of ¥ belongs to the inaccessible part
of some Z;, and there is an extension F of f to a eontinuous ‘mapping
of Z= | Z; into V. By Lemma 2, F can in fact be chosen to be an em-
bedding of Z into V. Let 6 (0<< << ¢) be a number so small that the
&-neighborhood in E® of 4 ~F(Z) is contained in U. By Theorem 2,
there is a homeomorphism % of E* onto E® such that & moves each point

" less than 6, h reduces to the identity outside the §-neighborhood in B

of A~nF(Z), and F(Z)~h(4d)=O. Then h is the required homeo-
morphism.

COROLLARY 3.1. Suppose X salisfies the hypotheses of Theorem 3.
Let M be a 2-manifold embedded as a closed subset of E°. Then, for each
e >0, there is a homeomorphism h of E® onto B® that moves each point less
than e, is the identity off & preassigned neighborhood of M ~ X, and is such
that X ~ h(M) is zero-dimensional.

Proof. It follows from [2] that M has a sequence of triangulations
T,, Ty, ..., whose meshes converge to zero, and each of whose one-skeleta
is tame. The result of Theorem 3 is used to constrnet a suitable sequence
of homeomorphisms %, k,, ..., such that the limit of the h.’s is a homeo-
morphism % of B? onto B® with each h(|TP]) missing X. Details are left
to the reader.

LeMuA 4. Let Z C E* be compact, and let g: Z—>E® be an embedding
with g(Z)= X.. Le! A be a tame arc in B? with.X ~0A = @. Then, for
each & >0, there is a homeomorphism h of E® omto B® such that b is the
identity off the s-neighborhood U of X, and X ~ h(4A) = @. That is, X has
the “arc-pushing property”.)

Proof. We only sketch the proof, since many of the ideas involved
haive already been introduced. Consider first the case that Z is a gener-
alized Sierpifiski ecnrve. Let V be the interior of Z relative to FP, and let
B=Z—V. Since g(B) is an at-most-1-dimensional, compact set that
embeds in E? Theorem 3 allows us to assume without loss of generality
that 4 ~ g(B)=@.

Let T Dbe & nice tubular neighborhood of A that misses g(B), and
whose ends miss X. We assume that 7 is so thin that it can be partitioned
into a finite number of smaller tubes (3-cells) Ci, ..., O such that each
O~ Oy, is o 2-cellin 80; ~ 80, Cin Gy =@ if [i—j| > 1, and each C;
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either lies in U or misses X. We assnme also that consecutive Oy’s do not
both intersect X. Let K be the union of all the 0y’s that miss X. Let L
and R be disjoint arcs in 87, each joining the ends of T. Then there are
disjoint ares P, @ in X— A such that X ~ALCP, X nRCQ, each of P
and Q meets the accessible part of X precigely in its endpoints, which
are on the same accessible simple closed curve of X, and otherwise each
of P and Q misses the accessible part of X.

Using Lemma 1 as we did in the proof of Theorem 1, some com-
pact set

CCX—(AvPuQ)

is definable-by cells in E®, and separates P from @ in X. Hence, there
is a finite, disjoint collection By,.., By of polyhedral 3-cells in
U—(AvEvPu@uLwv R)such that each B; meets X and X | B;
separates P from @ in X. Some homeomorphism p of E® onto E*® is then
identity on

AVEuvuPuUu@QuILuvRuU(B*~T)

and causes each B; ~p(8T) to be empty. Thus, no continuum in X ~
~p(@T) meets both X AL (= Xnp(L)) and XnR (= X ~p(R). It
is now easy to find an arc A’ that misses X and joins the ends of 84, in:
the union of A ~ K with the boundaries of those p(Ci)’s whose corre-
sponding Ci’s meet X. Finally, some homeomorphism of E® onto E*
throws A onto A’ as required.

For the general case, use Lemmas 2 and 3 to extend g to an embedding
of the mmion of a finite, disjoint collection of generalized Sierpiniski curves
into U. Then apply the results of the special case to each of these.

We state the next theorem in what we consider a convenient form.
More general hypotheses are possible. For example, one need only assume
that X has an upper semicontinuous decomposition into a countable
number of compact sets, each embeddable in E®.

THEOREM 4. Let X C B® be compact. Suppose that X has only countably
many components, each embeddable in E?. Then X has the arc-pushing
property.

Proof. There is a transfinite, properly nested “sequence” of com-
pact sets

X=XD2XD..X,D..,

such that X, is obtained from X, by removing the components of X,
that are open in X_; and for each limit ordinal a,

Xo={X, p<a}.
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It follows that for some countable ordinal A, X, has a finite (nonzero)
number of components. We call 4 the degree of X, and prove the theorem
by induction on 4. )

If A4 = 1, the result is immediate from Lemma 4. Suppose then that
the theorem is proven for all compact X C E® that satisfy our hypotheses
and have degree less than 4. Let 4 be a tame arc in E° with X ~ 94 = @,
and let ¢ be a given positive number. Then by Lemma 4, ther is a homeo-
morphism h of E* onto B® that is the identity off the s-neighborhood U
of X, and such that X, ~ h(4) = @. Let W be a neighborhood of X, in X
that is both open and closed in X, is a nnion of components of X, and
misses h(4). Then X, = X—W satisfies our hypotheses, and has degree
less than A. Hence there is a homeomorphism g of B* onto E® such that
Xy~ gh(A) = O, and g is the identity off a small neighborhood V of X,
(VCU—W). Then X ngh(4d)=@ and gh is the identity on E*—T,
as desired.

QUESTION. Is there a version of Theorem 4 when X has uncountably
many components? For example, what if X is the product of a Cantor
set and a Sierpinski curve?
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On internal composants of indecomposable
plane continua

by

J. Krasinkiewicz (Warszawa)

Abstract. In [3] the author introduced the concept of internal composant and proved
that the union of internal composants of an indecomposable continuum X is a second
category subset of X. In the present paper we obtain some new results on internal com-
posants. The main theorem states that the union of internal composants is a G5-subset
of X. If X denotes the simplest indecomposable continuum defined by Knaster, then
all composants of X, except one, are internal.

1. Introduction. Throughout this paper all sets are assumed to be
subsets of the sphere 82 Let X be a continuum lying in this sphere. The
union of -all proper subcontinua of X containing a fixed point x ¢ X is
denoted by C(#) and is called a composant of X. If X is an indecomposable
continnum, then the collection of all composants of X constitute a par-
tition of X into ¢ connected dense and pairwise disjoint sets, with ¢ de-
noting the cardinal of the continuum. At first sight there is no difference
between two distinet composants of X. However, as we shall see in the
sequel, one can distingmish several important classes of composants.

The process of distinguishing composants in an indecomposable
plane continmum was initiated by 8. Mazurkiewicz in 1929, when he
showed that the union of accessible composants of an indecomposable
plane continuum X is a first category subsets of X (answering a guestion
of Kuratowski). Let nus reeall that a composant € of X is said to be acces-
sible provided there exist a point p e ¢ and a non-degenerate continuum I
such that L ~ X = {p}. Otherwise it is inaccessible. The above theorem
found some applications in plane topology (see for example [2] and [3]).
In the same year K. Kuratowski [7] defined a class of composants larger
than that of accessible ones. Namely a composant ¢ of X is called
& K-composant [5] ‘provided that there exist a continuwum D C ¢ and
a continunm I such that T~ X =D and INX #@. K. Kuratowski
proved an analogue of the Mazurkiewicz theorem for the class of K -com-
posants. Precisely, the nnion of K-composants is a first category subset
of X. Up to now, these results have been the best known. In a conver-
safiion with the author, A. Lelek raised the question whether or not there
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