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The number of courtable generic
models for finite forcing

by

Roger Cusin (Aix-en-Provence)

Abstract, We give a characterization of forcing-complete theories and of types
which are realized in generic models. Then, we use these results to prove a sufﬁclent
condition for the existence of 2% denumerable generic models.

We prove the following theorem:

TeEOREM. Suppose that TI7 is a complete forcing-companion of
a denumerable language, and suppose that T has no prime-model. Then T'
has 2% denwmerable generic models.

0. Notations. L is a denumerable first-order langnage with equality
and 77 is the forcing-companion of & theory 7' in (see [1]). We denote
by By (n € ») the partial boolean algebras for 7. For simplicity, we identify
a formula with its equivalence class modulo T7. In the sequel, 77 is as-
sumed to be complete without a finite model. We denote by B= | B,

new
the boolean algebra for T7. I is said to be a prime-model for TV if M is
elementarily embeddable in any other model of 7. B, is said to be atomic
if for every ¢ # 0, there exists a y atom of B, such that v < ¢. A type is
a proper filter of B. We denote by A a; the greatest lower bound (if it
iel

exists) of a family. The concept of the least upper bound is defined
similarly. For notions and results concerning finite forcing in model
theory, the reader is referred to [1], [7]. Other notions will be introduced
when necessary.

1. Properties.

Lemma 1. Suppose T is a theory of T. M completes T if and only if
for every formula ¢ (z,, .. , z,_i) of L and any n-tuple {ay, ..., @, > of | M|
(domain of M), if Mk (ay, ..., a,_,), there emists an existential formula
W(Bgy very Tpy) suah that:
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() p<g (for T),

b) M Ep(ag, ey Gyy)-

Proof. M completes T if and only if 7w D(M) (D(M): diagram
of M) is a complete set of sentences for the language L(M). A simple
application of the theorem of compacity gives the result.

Tn [3], A. Macintyre uses this characterization to prove that T'-generic
structures are axiomatizable by a sentence of L,,. In the sequel, we
denote by Z,={yjy an existential formula such that » < @} v {g}.

LA 2. M completes T if and only if M omits X, for every for-
mula ¢ of L.

Proof. If M Epldg, ..., @,_;), then there exists an existential for-
mula o such that v < pand M Fy(a, ..., dyy). S0, M T (g, ey By}
and X, is omitted in M. Conversely, it ME@(ay, .., @,), since X is
omltted in M, there exists a "Iy Z, such that M |5 Tlp(do, -y Gy )
In consequence, M Fp(tg, oy Gpy) Wlﬂl y existential <¢; so M com-
pletes T (Lemma 1). : i

ProPOSITION 1. A complete theory T of L is equal to its forcing-com-
panion T' if and only if, for every formula @, 9= \/ {pfy is an ewistential
formula such that v < @}.

Proof. Suppose T is equal to T7; so, by [1] T has a model which
completes 7. From Lemma 2, X is omitted in M for every formula ¢.
Since T is complete, this is equivalent to saying that A\ Z,= 0. But
A\ Z,= 0 is equivalent to the fact that: /\ { TIpfp is an existential formula,
sneh that v < ¢} = Tlp, which is also equivalent to \/ {pfy existential
<g¢}=¢. Conversely, suppose that ¢=\/{y/y existential < ¢}; then
A Z, = 0. This property being true for every formula ¢ of I and L being
denumerable, the use of the omitting types theorem proves that there
exists a denumerable model M of T which omits every X,. Lemma. 2
proves that M completes T; so, by [1], T = T".

COROLLARY. A complete theory T is equal to T7 if and only if, for every
‘@ # 0, there exists an emistential formula vy such that: p # 0 and v < ¢.

Proof. The condition is necessary by Proposition 1. The sufficiency
is similar to the proof that, in an atomic boolean algebra, every element
a is the least mpper bound of the atoms less or equal to a [6].

Remarks. 1. In particular, if 7' is atomic and if atoms are existential
formulas, the corollary proves that 7' = T7. This is the case, for instance,
of complete arithmetic Th(N).

2. The complete theories which are forcing-companions have a charac-
terization which is similar to those of atomic theories [8].
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Let p be an ultrafilter of B,. p is said to be ewistential if for every
Qep thele exists an existential y ¢ B, such that pep and p <. We
write & = (%o -+ w.n_l) in the sequel. p is said to be sur-ewistential if, for
every formula (}J( 2 Y03 s Ym) of B such that Hy, ... ymp € p, there exists an
existential formula v(Z, ¥,, ..., ¥m) such that p<o@ and "y, ... ymy € p.

LEmuA 3. p is sur-emistential if and only if p is the type of an n-uple
{agy «ny Cyyr Of elements of a denumerable generic structure.

Proof. From Lemma 1 it is clear that if p is the type of {ay, ..., @,_;>
of a generic structure, p is sur-existential. Conversely, suppose that p is
sur-existential and consider the language I’ = L(co, «eey Cp_y) Obtained by
1- Let p(¢) be the set of sentences
of I/ obtained from p by replacing z,, ..., %,_; by &, ..., ¢,_, respectively.
:p(Z) is complete in L', Let 6(¢, ¥, ..., y,,,) be a formula of Z' whose free
variables are among ¥, ..., ¥m (6 does not necessarily use every constant
G0y w23 G _1)y and suppose that & is consistant with p(g), i.e. ’E[yo ymé
e p(¢). The formula 8(Z, Yo, i, Ym) of L obtained by replacing ¢ by @ is
conswtent with T7; so, by the corollary, there exists an existential for-
mula (%, ¥y, .-, Ym) such that: p <6 and "y, ... yny e p. The formula

(€, Yoy iy ¥m) of I’ is existential a,nd satisties p(¢) F (¢S, %, ... ,ym)
—>8(¢, Ypy -y Ym). Since the formula 1p( s Yoy - ,y,,.) is consistent with p(3),

it follows from the corollary that p(¢) = p(5)". So, let M“Dbe a denumer-
able p(¢)-generic structure and let M be the L-reduct of M's M’ exists,
see [1]. Let N'D M’ be such that N' Ep(¢); then N'S MY, If we con-
sider the L-reduet M of M’, we have: Mk T/ and M k p(a,), where
&, is the assignment of ¢ in M. Suppose that ¥ & 77 and ¥ D M. N realizes
the existential formulas of p(%) in a,. Since p(z) is existential, we have
N Ep(a,). So, the structure N’ = (N, a,) is an extention of M’ and is
also a model of p(¢). Since M’ completes p(¢), we have M’ < N'. Con-
sequently, the L-reducts M and N of M’ and N' satisfy M < N. The
structure M is T7-generic and it realizes p(E).

Remarks. The notion of a sur-existential unitrafilter p is adequate
for the types of generic models. The notion of an existential nltrafilter is,
@ priori, weaker; but we have no example of an existential ultrafilter
which is not sur-existential. We could try to get such an example for
Th(N) since there exists only one generie structure which is the standard
model N. The following result (oral communication by A. Macintyre)
proves that it is impossible.

There exists no non-principal existential ultrafﬂter for Th(N). )
The reason is that there exists a formula 6(z) consistent with Th ()
snch that, for every existential formula wu,(®) and wp,(#) satisfying
N EH mp(2) and N FH ap{w) (H, is the quantifier “there is an
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infinity of ...”), we have Th(N) # (@) —~0(x) and Th(N) k= pye)
—710(z). For every ultrafilter p, fep or T10ep. Suppose p is non-
principal. In the first case, if p(x) is an existential of p we h.zwe
N EH op(s), and so Th(N) # w(x)—0(x). The second case is identical.
Note that 6(z) defines an immune and co-immune set.

Now, we remember that 7% has no prime-model; so there is an » =1
such that B, is a non-atomic hoolean algebra. We denote by Sy the Stone
space of B, and by § the Stone space of B. ¢y is the function of Stone
defined hv

on: 8(%) > {pfp e 8y and §ep} -

Suppose §(%, Yo, ---» ¥m) is & formula of B. By Proposition 1 we know that
8=/ {pfy is an existential formula of B such that p < 6}. In fact, we
can restrict the family of elements of the second member to the set of y
whose free variables are among &y, ...; Zp—1j Yoy »++9 Ym?

9(557 Yoy »oes Ym) = v {7/’(5-57 Yoz eres Ym)[-o} -

So, in the sequel we suppose this. We note 0(5&_:, g}'): \ iw(é:’,g}')/...}
It is also easy to prove that Hij6(z,9)=\ {Hyg(w,y)/w(w,y) is an
existential formula < 8(Z, ¥)}. With each formula d(x) of B, we associate
the set H,= {p(@)fp(Z)  Bn and p(&) < 5(#)}, and withe each formula
9(3,9) of B we associate the set H;= {Hyy(%,§)fp(,y) which is an
existential formula of B < 6(%, 4)}. We have \/ B, = 8(%) for each 6 ¢ By,
and \/Hj = HEg8(%, ) for each 6 B. We get a denumerable set of least
upper bounds and we want to preserve them. We recall that an ultra-
filter U of a boolean algebra A is said to preserve the least upper bound

a=\/a if a ¢ U; otherwise there exists an ¢ ¢ I sueh that a; ¢ U. In the
iel
sequel we nse the following fondamental result (see, for instance, [5]):
Levma 4. Let a=\/ a;. The set {p/p e 8(4) and p preserve a} is
el
a dense open set in the Stone space S(A) of A.
CoROLLARY. The set of ulirafilters which preserve a denumerable family
of least upper bounds of A is a dense subset of 8(A).
Let ¢ be an incompletable formula of B,; we have the following
properties:
LeMMA 5. 1) The space on(p) has no isolated point. In fact, on(p) is
homeomorphic to the Cantor space 2°.
2) The set V of p e Sn which preserve both the families \/ E,, for every
3 € Bu, and the families \/ By, for every 0.¢ B, is a denumerable intersection
of dense open sets of oulp). ’

1]
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3) V is not meager in ou(e).
4) V s uncountable. "

5) Card(V) = 2%,

6) Each element p of V is sur-existeniial.

Proof. 1) and 2) result from Lemma 4 and its corollary. 3) is
a property of Baire spaces (see [2]). 4) follows from 3) and 1) for if V were
dennmerable, it would be a countable union of nowhere dense sets since
the space on(p) has no isolated point, and so ¥V wonld be meager. 5) V is
in fact a borelien set since it is a countable intersection of dense open
sets. Sinee V is uncountable, Card (V) = 2%. 8) We can easily verify that
each p is sur-existential; this follows from the.definition of ¥ and from
the definition of sur-existential ultrafilters.

In order to prove the theorem, we remark that each countable generic
structure realizes only a denumerable set of sur-existentials. Since, by
Lemma 3, each sur-existential is realized in a denumerable generic model,
there are 2% such models.

2. Applications. By using recursivity and specific properties of groups
and division rings, A. Macintyre has proved that there exist 2% denumer-
able generie groups and 2% denumerable generic division rings (see [3]
and [4]). Here, using the above theorem and an omitting types theorem
for generic structures (see [3]), we also get this result.

THEOREM (A. Macintyre). 1) There exist 2% denwmerable generic groups.

2) There exmist 280 denumerable generic division rings.

Proof. It is implicit in [3] (oral communication of A. Macintyre)
that there exists no prime-generic model for 77 the forcing-companion
of the theory of groups (M is a prime-generic model for 77 if M is ele-
mentarily embeddable in all other generics). Suppose 17 has a prime-
model M; it is easy to see that M, is generic. In particular, M, is prime-
generic: a contradiction. The theorem we have proved shows that 77
has 2% denumerable generic models. These models are the generic models
for the theory of groups. The same thing is true for division rings.
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