

The number of countable generic models for finite forcing

b:

Roger Cusin (Aix-en-Provence)

Abstract. We give a characterization of forcing-complete theories and of types which are realized in generic models. Then, we use these results to prove a sufficient condition for the existence of 2% denumerable generic models.

We prove the following theorem:

THEOREM. Suppose that T^{\dagger} is a complete forcing-companion of a denumerable language, and suppose that T^{\dagger} has no prime-model. Then T^{\dagger} has 2^{\aleph_0} denumerable generic models.

0. Notations. L is a denumerable first-order language with equality and T^f is the forcing-companion of a theory T in (see [1]). We denote by B_n ($n \in \omega$) the partial boolean algebras for T^f . For simplicity, we identify a formula with its equivalence class modulo T^f . In the sequel, T^f is assumed to be complete without a finite model. We denote by $B = \bigcup_{n \in \omega} B_n$ the boolean algebra for T^f . M is said to be a prime-model for T^f if M is elementarily embeddable in any other model of T^f . B_n is said to be atomic if for every $\varphi \neq 0$, there exists a φ atom of B_n such that $\varphi \leqslant \varphi$. A type is a proper filter of B. We denote by $\bigwedge_{i \in I} a_i$ the greatest lower bound (if it exists) of a family. The concept of the least upper bound is defined similarly. For notions and results concerning finite forcing in model theory, the reader is referred to [1], [7]. Other notions will be introduced when necessary.

1. Properties.

LEMMA 1. Suppose T is a theory of L. M completes T if and only if for every formula $\varphi(x_0, \ldots, x_{n-1})$ of L and any n-tuple $\langle a_0, \ldots, a_{n-1} \rangle$ of |M| (domain of M), if $M \models \varphi(a_0, \ldots, a_{n-1})$, there exists an existential formula $\psi(x_0, \ldots, x_{n-1})$ such that:

(a) $\psi \leqslant \varphi$ (for T),

b) $M \models \psi(a_0, ..., a_{n-1}).$

Proof. M completes T if and only if $T \cup D(M)$ (D(M)): diagram of M) is a complete set of sentences for the language L(M). A simple application of the theorem of compacity gives the result.

In [3], A. Macintyre uses this characterization to prove that T-generic structures are axiomatizable by a sentence of $L_{\omega_1\omega}$. In the sequel, we denote by $\Sigma_{\varphi} = \{ \neg | \psi / \psi \text{ an existential formula such that } \psi \leqslant \varphi \} \cup \{\varphi\}$.

Lemma 2. M completes T if and only if M omits Σ_{φ} for every formula φ of L.

Proof. If $M \models \varphi(a_0, \ldots, a_{n-1})$, then there exists an existential formula ψ such that $\psi \leqslant \varphi$ and $M \models \psi(a_0, \ldots, a_{n-1})$. So, $M \not\models \neg \psi(a_0, \ldots, a_{n-1})$ and \varSigma_{φ} is omitted in M. Conversely, if $M \models \varphi(a_0, \ldots, a_{n-1})$, since \varSigma_{φ} is omitted in M, there exists a $\neg \psi \in \varSigma_{\varphi}$ such that $M \not\models \neg \psi(a_0, \ldots, a_{n-1})$. In consequence, $M \models \psi(a_0, \ldots, a_{n-1})$ with ψ existential $\leqslant \varphi$; so M completes T (Lemma 1).

PROPOSITION 1. A complete theory T of L is equal to its forcing-companion T^f if and only if, for every formula $\varphi, \varphi = \bigvee \{\psi | \psi \text{ is an existential formula such that } \psi \leqslant \varphi \}.$

Proof. Suppose T is equal to T^f ; so, by [1] T has a model which completes T. From Lemma 2, Σ_{φ} is omitted in M for every formula φ . Since T is complete, this is equivalent to saying that $\bigwedge \Sigma_{\varphi} = 0$. But $\bigwedge \Sigma_{\varphi} = 0$ is equivalent to the fact that: $\bigwedge \{ \neg \psi / \psi \text{ is an existential formula such that } \psi \leqslant \varphi \} = \neg \varphi$, which is also equivalent to $\bigvee \{ \psi / \psi \text{ existential } \leqslant \varphi \} = \varphi$. Conversely, suppose that $\varphi = \bigvee \{ \psi / \psi \text{ existential } \leqslant \varphi \}$; then $\bigwedge \Sigma_{\varphi} = 0$. This property being true for every formula φ of L and L being denumerable, the use of the omitting types theorem proves that there exists a denumerable model M of T which omits every Σ_{φ} . Lemma 2 proves that M completes T; so, by [1], $T = T^f$.

COROLLARY. A complete theory T is equal to T^{l} if and only if, for every $\varphi \neq 0$, there exists an existential formula φ such that: $\varphi \neq 0$ and $\varphi \leqslant \varphi$.

Proof. The condition is necessary by Proposition 1. The sufficiency is similar to the proof that, in an atomic boolean algebra, every element a is the least upper bound of the atoms less or equal to a [6].

Remarks. 1. In particular, if T is atomic and if atoms are existential formulas, the corollary proves that T = T'. This is the case, for instance, of complete arithmetic Th(N).

2. The complete theories which are forcing-companions have a characterization which is similar to those of atomic theories [8].

Let p be an ultrafilter of B_n . p is said to be existential if for every $\varphi \in p$ there exists an existential $\psi \in B_n$ such that $\psi \in p$ and $\psi \leqslant \varphi$. We write $\vec{x} = (x_0, \dots, x_{n-1})$ in the sequel. p is said to be sur-existential if, for every formula $\varphi(\vec{x}, y_0, \dots, y_m)$ of B such that $\exists y_0 \dots y_m \varphi \in p$, there exists an existential formula $\psi(\vec{x}, y_0, \dots, y_m)$ such that $\psi \leqslant \varphi$ and $\exists y_0 \dots y_m \psi \in p$.

Lemma 3. p is sur-existential if and only if p is the type of an n-uple $\langle a_0, ..., a_{n-1} \rangle$ of elements of a denumerable generic structure.

Proof. From Lemma 1 it is clear that if p is the type of $\langle a_0, ..., a_{n-1} \rangle$ of a generic structure, p is sur-existential. Conversely, suppose that p is sur-existential and consider the language $L' = L(c_0, ..., c_{n-1})$ obtained by adding to L n new individuals c_0, \ldots, c_{n-1} . Let $p(\vec{c})$ be the set of sentences of L' obtained from p by replacing $x_0, ..., x_{n-1}$ by $c_0, ..., c_{n-1}$ respectively. $p(\vec{c})$ is complete in L'. Let $\delta(\vec{c}, y_0, ..., y_m)$ be a formula of L' whose free variables are among $y_0, ..., y_m$ (δ does not necessarily use every constant (c_0, \ldots, c_{n-1}) , and suppose that δ is consistant with $p(\vec{c})$, i.e. $\Xi y_0 \ldots y_m \delta$ $\epsilon p(\vec{c})$. The formula $\delta(\vec{x}, y_0, ..., y_m)$ of L obtained by replacing \vec{c} by \vec{x} is consistent with T^{\dagger} ; so, by the corollary, there exists an existential formula $\psi(\vec{x}, y_0, ..., y_m)$ such that: $\psi \leq \delta$ and $\exists y_0 ... y_m \psi \in p$. The formula $\psi(\vec{c}, y_0, ..., y_m)$ of L' is existential and satisfies $p(\vec{c}) \vdash \psi(\vec{c}, y_0, ..., y_m)$ $\rightarrow \delta(\vec{c}, y_0, ..., y_m)$. Since the formula $\psi(\vec{c}, y_0, ..., y_m)$ is consistent with $p(\vec{c})$, it follows from the corollary that $p(\vec{c}) = p(\vec{c})^{t}$. So, let M' be a denumerable $p(\vec{c})$ -generic structure and let M be the L-reduct of M'; M' exists, see [1]. Let $N' \supset M'$ be such that $N' \models p(\vec{c})$; then N' > M'. If we consider the L-reduct M of M', we have: $M \models T^f$ and $M \models p(\vec{a}_c)$, where \vec{a}_c is the assignment of \vec{c} in M. Suppose that $N \models T^f$ and $N \supset M$. N realizes the existential formulas of $p(\vec{x})$ in \vec{a}_c . Since $p(\vec{x})$ is existential, we have $N \models p(\vec{a}_c)$. So, the structure $N' = (N, \vec{a}_c)$ is an extention of M' and is also a model of $p(\vec{c})$. Since M' completes $p(\vec{c})$, we have M' $\ll N'$. Consequently, the L-reducts M and N of M' and N' satisfy M < N. The structure M is T'-generic and it realizes $p(\vec{x})$.

Remarks. The notion of a sur-existential ultrafilter p is adequate for the types of generic models. The notion of an existential ultrafilter is, a priori, weaker; but we have no example of an existential ultrafilter which is not sur-existential. We could try to get such an example for $\operatorname{Th}(N)$ since there exists only one generic structure which is the standard model N. The following result (oral communication by A. Macintyre) proves that it is impossible.

There exists no non-principal existential ultrafilter for Th(N).

The reason is that there exists a formula $\theta(x)$ consistent with $\operatorname{Th}(N)$ such that, for every existential formula $\psi_1(x)$ and $\psi_2(x)$ satisfying $N \models \mathbb{H}_{\infty} x \psi_1(x)$ and $N \models \mathbb{H}_{\infty} x \psi_2(x)$ (\mathbb{H}_{∞} is the quantifier "there is an

infinity of ..."), we have $\operatorname{Th}(N) \neq \psi_1(x) \to \theta(x)$ and $\operatorname{Th}(N) \neq \psi_2(x) \to \neg \theta(x)$. For every ultrafilter $p, \ \theta \in p$ or $\neg \theta \in p$. Suppose p is non-principal. In the first case, if $\psi(x)$ is an existential of p we have $N \models \Pi_{\infty} x \psi(x)$, and so $\operatorname{Th}(N) \not\models \psi(x) \to \theta(x)$. The second case is identical. Note that $\theta(x)$ defines an immune and co-immune set.

Now, we remember that T' has no prime-model; so there is an $n \ge 1$ such that B_n is a non-atomic boolean algebra. We denote by S_n the Stone space of B_n and by S the Stone space of B. σ_n is the function of Stone defined by

$$\sigma_n \colon \delta(\vec{x}) \mapsto \{p/p \in S_n \text{ and } \delta \in p\}$$
.

Suppose $\theta(\vec{x}, y_0, ..., y_m)$ is a formula of B. By Proposition 1 we know that $\theta = \bigvee \{\psi | \psi \text{ is an existential formula of } B \text{ such that } \psi \leqslant \theta\}$. In fact, we can restrict the family of elements of the second member to the set of ψ whose free variables are among $x_0, ..., x_{n-1}, y_0, ..., y_m$:

$$\theta(\vec{x}, y_0, ..., y_m) = \bigvee \{ \psi(\vec{x}, y_0, ..., y_m) / ... \}$$
.

So, in the sequel we suppose this. We note $\theta(\vec{x},\vec{y}) = \bigvee \{\psi(\vec{x},\vec{y})/\ldots\}$ It is also easy to prove that $\exists \vec{y} \theta(\vec{x},\vec{y}) = \bigvee \{\exists \vec{y} \psi(\vec{x},\vec{y})/\psi(\vec{x},\vec{y})\}$ is an existential formula $\leqslant \theta(\vec{x},\vec{y})\}$. With each formula $\delta(\vec{x})$ of B_n we associate the set $E_\delta = \{\psi(\vec{x})/\psi(\vec{x}) \in B_n$ and $\psi(\vec{x}) \leqslant \delta(\vec{x})\}$, and withe each formula $\theta(\vec{x},\vec{y})$ of B we associate the set $E_\delta' = \{\exists \vec{y} \psi(\vec{x},\vec{y})/\psi(\vec{x},\vec{y})\}$ which is an existential formula of $B \leqslant \theta(\vec{x},\vec{y})\}$. We have $\bigvee E_\delta = \delta(\vec{x})$ for each $\delta \in B_n$, and $\bigvee E_\delta' = \exists \vec{y} \theta(\vec{x},\vec{y})$ for each $\theta \in B$. We get a denumerable set of least upper bounds and we want to preserve them. We recall that an ultrafilter U of a boolean algebra A is said to preserve the least upper bound $a = \bigvee_{i \in I} a_i \notin U$; otherwise there exists an $i \in I$ such that $a_i \in U$. In the sequel we use the following fondamental result (see, for instance, [5]):

LEMMA 4. Let $a = \bigvee_{i \in I} a_i$. The set $\{p | p \in S(A) \text{ and } p \text{ preserve } a\}$ is a dense open set in the Stone space S(A) of A.

COROLLARY. The set of ultrafilters which preserve a denumerable family of least upper bounds of A is a dense subset of S(A).

Let φ be an incompletable formula of B_n ; we have the following properties:

Lemma 5. 1) The space $\sigma_n(\phi)$ has no isolated point. In fact, $\sigma_n(\phi)$ is homeomorphic to the Cantor space 2^{ω} .

2) The set V of $p \in S_n$ which preserve both the families $\bigvee E_\delta$, for every $\delta \in B_n$, and the families $\bigvee E'_\theta$, for every $\theta \in B$, is a denumerable intersection of dense open sets of $\sigma_n(\varphi)$.

3) V is not meager in $\sigma_n(\varphi)$.

- 4) V is uncountable.
- $5) \operatorname{Card}(V) = 2^{\aleph_0}.$
- 6) Each element p of V is sur-existential.

Proof. 1) and 2) result from Lemma 4 and its corollary. 3) is a property of Baire spaces (see [2]). 4) follows from 3) and 1) for if V were denumerable, it would be a countable union of nowhere dense sets since the space $\sigma_n(\varphi)$ has no isolated point, and so V would be meager. 5) V is in fact a borelien set since it is a countable intersection of dense open sets. Since V is uncountable, $\operatorname{Card}(V) = 2^{\aleph_0}$. 6) We can easily verify that each p is sur-existential; this follows from the definition of V and from the definition of sur-existential ultrafilters.

In order to prove the theorem, we remark that each countable generic structure realizes only a denumerable set of sur-existentials. Since, by Lemma 3, each sur-existential is realized in a denumerable generic model, there are 2^{\aleph_0} such models.

2. Applications. By using recursivity and specific properties of groups and division rings, A. Macintyre has proved that there exist 2^{\aleph_0} denumerable generic groups and 2^{\aleph_0} denumerable generic division rings (see [3] and [4]). Here, using the above theorem and an omitting types theorem for generic structures (see [3]), we also get this result.

THEOREM (A. Macintyre). 1) There exist 2^{\aleph_0} denumerable generic groups.

2) There exist 2^{\aleph_0} denumerable generic division rings.

Proof. It is implicit in [3] (oral communication of A. Macintyre) that there exists no prime-generic model for T^f the forcing-companion of the theory of groups (M is a prime-generic model for T^f if M is elementarily embeddable in all other generics). Suppose T^f has a prime-model M_0 ; it is easy to see that M_0 is generic. In particular, M_0 is prime-generic: a contradiction. The theorem we have proved shows that T^f has 2^{\aleph_0} denumerable generic models. These models are the generic models for the theory of groups. The same thing is true for division rings.

References

- J. Barwise and A. Robinson, Completing theories by forcing, Ann. of Math. Logic 2 (1970).
- [2] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1967.
- [3] A. Macintyre, Omitting quantifier-free types in generic structures, to appear in J.S.L.
- [4] The word problem for division rings, to appear.
- [5] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, Warszawa 1963

R. Cusin

- [6] R. Sikorski, Boolean algebras, Ergebnisse der Mathematik 1964.
- [7] H. Simmons, A possible characterisation of generic structures, to appear in Math. Scand.
- [8] R. L. Vaught, Denumerable models of complete theories, Infinistic methods, Warsaw 1961.

FACULTE DES SCIENCES ECONOMIQUES Aix-en-Provence, France

Reçu par la Rédaction le 29. 1. 1973