

words; i.e. in particular, $x_{i_{\alpha+1}}$ and $x_{j_{\alpha+1}}$ are different generators. Now put $h' = x_{i_1} \cdot \ldots \cdot x_{i_{\alpha+1}}$. But h' is a left divisor of $x_{i_1} \cdot \ldots \cdot x_{i_k}$, so that it also is a left divisor of $x_{j_1} \cdot \ldots \cdot x_{j_m} = x_{i_1} \cdot \ldots \cdot x_{i_{\alpha}} \cdot x_{j_{\alpha+1}} \ldots \cdot x_{j_m}$. Since the defining relations of $H^*(n)$ only "reshuffle", but do not eliminate generators, $x_{j_{\alpha+1}}$ as well as $x_{i_{\alpha+1}}$ have to occur in both representations. Therefore, the two representations of h have to be of the form:

$$x_{i_1} \cdot \ldots \cdot x_{i_n} \cdot x_{i_{n+1}} \cdot \ldots \cdot x_{j_{n+1}} \cdot \ldots \cdot x_{i_k} = x_{i_1} \cdot \ldots \cdot x_{i_n} \cdot x_{j_{n+1}} \cdot \ldots \cdot x_{i_{n+1}} \cdot \ldots \cdot x_{j_m}$$

Hence, there is a shortest finite chain h_0, \ldots, h_p , p > 0, of words such that $h_0 = x_{l_1} \cdot \ldots \cdot x_{l_k}$ and $h_p = x_{l_1} \cdot \ldots \cdot x_{l_m}$ and such that h_i and h_{i+1} , for $0 \le i < p$, differ by one application of the identities in the presentation of $H^*(n)$ —i.e. they are different representations of h. This chain then has to contain the subsequence

$$\dots \cdot x_{i_{\alpha+1}} \cdot x_{j_{\alpha+1}} \cdot \dots = \dots \cdot x_{j_{\alpha+1}} \cdot x_{i_{\alpha+1}} \cdot x_{j_{\alpha+1}} \cdot \dots = \dots \cdot x_{j_{\alpha+1}} \cdot x_{i_{\alpha+1}} \cdot \dots$$

Consequently, $j_{a+1}=i_{a+1}$, which contradicts our choice of the two generators $x_{l_{a+1}}\neq x_{l_{a+1}}$. This argument shows

$$x_{i_1} \cdot \ldots \cdot x_{i_k} = x_{i_1} \cdot \ldots \cdot x_{i_k} \cdot x_{i_{k+1}} \cdot \ldots \cdot x_{i_m}.$$

Again, because of the form of the defining relations for $H^*(n)$, we have $\{j_{k+1}, \ldots, j_m\} \subset \{i_1, \ldots, i_k\}$, so that x_{j_1}, \ldots, x_{j_m} is not reduced if m > k. Therefore, both representations have to be identical.

References

- [G1] G. Grätzer, On coverings of universal algebras, Archiv d. Math. 18 (1967), pp. 113-117.
- [G2] Universal Algebra, Princeton 1968.
- [H1] H. Höft, Equations in partial algebras, Dissertation, University of Houston, 1970.
- [H2] Operators on classes of partial algebras, Algebra Universalis 2 (1972), pp. 118-127.
- [N] E. Nelson, Finiteness of semigroups of operators in Universal Algebra, Can. J. of Math. 19 (1967), pp. 764-768.
- [P] O. Pigozzi, On some operations on classes of algebras, Notices Amer. Math. Soc. 13 (1966), p. 829.

Rçeu par la Rédaction le 29. 11. 1972

A remark on a paper of H. Höft

by

A. Iwanik (Wrocław)

Abstract. In this note we obtain the least upper bound of the length of words in the class of semigroups generated by n idempotents $x_1, ..., x_n$ and satisfying $x_i x_j x_i = x_1 x_1 = x_2 x_1 x_3$ for $1 \le i \le j \le n$. These semigroups were examined in [1].

In [1] there is examined a length of reduced words in a semigroup H generated by n idempotents $x_1, ..., x_n$, such that every $h \in H$ has the following representation:

(POS 1)
$$h = x_1 \cdot ... \cdot x_{i_n}, k \ge 1; x_i \in \{x_1, ..., x_n\} \text{ for all } 1 \le j \le k,$$

(POS 2) if
$$x_{i_{\alpha}} = x_{i_{\beta}}$$
, for some $1 \le \alpha < \beta \le k$, then $\beta \ge \alpha + 3$ and $\min\{i_{\gamma}: \alpha \le \gamma \le \beta\} < i_{\alpha} < \max\{i_{\gamma}: \alpha \le \gamma \le \beta\}$

and an upper bound a(n) o the length is found. In this note we obtain the least upper bound $L^*(n)$ of the length of reduced words in the class of semigroups generated by n idempotents x_1, \ldots, x_n and satisfying (POS 1)-(POS 2). We shall observe that $L^*(n) < a(n)$ for $n \ge 5$.

It follows from Theorem 4 of [1] that $L^*(n)$ is equal to the maximal length of reduced words in $H^*(n)$, where $H^*(n)$ is the semigroup described by the presentation $\langle x_1, ..., x_n | x_i x_i = x_i$, $1 \le i \le n$; $x_i x_j x_i = x_i x_j$ $= x_j x_i x_j$, $1 \le i \le j \le n$. We shall show that

$$L^*(n) = \lambda_n$$
,

where the sequence λ_n is defined by $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_n = 2\lambda_{n-2} + 2$ for n > 2, i.e. $\lambda_n = \varepsilon_n 2^{\lfloor n/2 \rfloor} - 2$, where $\varepsilon_n = 2$ or 3 according as n is even or odd.

First we show by induction that in $H^*(n)$ there is an element with a reduced word of the length λ_n . For n=1,2 it is trivial. Let an element $a \in H^*(n-2)$ has the reduced word of the length λ_{n-2} , n>2. Without any loss of generality we can assume that $H^*(n-2) = [x_2, ..., x_{n-1}]$. Observe, that $ax_1x_na \in H^*(n)$ has the reduced word of the length $2\lambda_{n-2} + 2 = \lambda_n$. Therefore, $\lambda_n \leq L^*(n)$. The equality for n=1,2 is trivial.

Now, let n > 2 and $b \in H^*(n)$. Observe, that x_n occurs at most once in the reduced representation of b. Moreover, if x_r occurs at most m_r times, then x_{r-1} occurs at most $m_{r-1} = m_n + ... + m_r + 1$ times. There-

fore, $m_r = 2^{n-r}$. Analogously, x_1 occurs at most once and x_r at most 2^{r-1} times in the reduced representation of b; r = 1, ..., n. Hence

$$L^*(n) \leqslant \Lambda_n$$
, where $\Lambda_n = \sum_{r=1}^n \min(2^{n-r}, 2^{r-1})$.

If n > 2, we obtain

$$2A_{n-2}+2=\sum_{r=1}^{n-2}\min(2^{n-(r+1)},2^r)+2=\sum_{r=2}^{n-1}\min(2^{n-r},2^{r-1})+2=A_n.$$

Thus

$$\Lambda_n = \lambda_n = L^*(n)$$
 for $n = 1, 2, ...$

References

 H. Höft, A normal form for some semigroups generated by idempotents, Fund. Math. 84 (1974), p. 75-78.

INSTITUTE OF MATHEMATICS AND THEORETICAL PHYSICS, TECHNICAL UNIVERSITY, WIOCIAW

Reçu par la Rédaction le 21, 2, 1973

ERRATA

Page, ligne	Au lieu de	Lire
53 ₁₅ 62 ¹⁴ 63 ¹⁶	$\frac{\overline{V}'_4}{\overline{U}_{i-1}}$	$rac{{{V}'_3}}{{{\overline{U}'_{i-1}}}}$

Fundamenta Mathematicae LXXXIV (1974)