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The equivalence of the Boolean prime ideal theorem
and a theorem of functional analysis
by
G. Gardiner (Egham)

Abstract, Let Z be a partially ordered vector space with order unit 1, and let P(Z)
be the set of all positive linear functionals % on Z such that u(1)= 1. Let E C Z, then
we can associate with B a quasi-order for P(Z) by postulating that u, <Jpus iff w,(2)
< Us(2) for all z e K. -

Dr. D. A. Edwards in a forthcoming paper [3] proves that the Axiom of Choice
is effectively equivalent to the existence of an extreme point of P(Z) which is minimal
in P(Z) for the quasi-ordering <Jg.

In this paper, I show that the weaker axiom viz. that every Boolean algebra has
a prime ideal, iz equivalent to the existence of an extreme point of P(Z) for Z a real
vector lattice.

1. Imtroduction. The aim of this paper iz to show that the Boolean
prime ideal theorem (PI) viz. that every Boolean algebra has a prime
ideal, is equivalent to a statement (HBEML) which is a version of the
Hahn-Banach theorem in conjunction with the Krein Milman theorem
(see § 3). The axioms of set theory assumed in this paper may be taken
to be those of the Zermelo-Fraenkel theory (see [1] & [8]) together with
PI(in§2 & §3) or HBKML (in § 4). We denote the Axiom of Choice by AC.

The problem was suggested to me by my supervisor, Dr. D. A. Edwards,
who has in effect proved in his forthcoming paper [3] that HBEKML
implies PI. I should like to thank him for his help and the Science Research
Council for their financial support. '

2. Preliminaries. Throughout this section we assume PI as an axiom.
It has been shown (e.g.[3], [6], [7]) that it is possible to deduce the
Hahn-Banach extension Theorem (HB) from PI.

HB. Let ¥ be a linear subspace of a real vector space F and o a sub-
linear functional on ¥ (i.e. o{zt+vy) < o(@)+o(y) for all z,y<E and
o(rz) = ro(z) for all 0 < r ¢ R and z € E). If f is a linear functional defined
on ¥ such that f(2) << g () for all € V, then there exists a linear funetional
F on F such that F=f on V and F(») < o(z) for all = ¢ B.

We need the following separation theorem which can be deduced
from HB without AC. The lemmas below bring together the material
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used in the proof of Theorem 1 given in [2] but are included here to
facilitate the checking that AC is not used in the proofs.

TrrorEM 1. If K, and K, are disjoint closed convex subsets of a locally
convex topological vector space B, and if K, is compact, then there exist
constants ¢ and e, ¢ >0 and a continuous linear functional f on E such
that f(H,) < c—e& < ¢ < f(Hy)-

LevMa 1. K,— K, is closed.

Let pe .K1 K,, and for each neighbowhood U of p, let K

={k: keK,ke U+ K;}. peE,—K, 50 Kp# @ It U, C U, then
Ky, CEyg, and {Ky}y 4 una. ot » Dave the finite intersection property.

_K1 is compact, so there exists k, ¢ K; and %, ¢ Ky, for all neighbour-
hoods U of p. If N is any neighbourhood of the origin, then (N-}%,) ~
A(N+p+K,) 0. ie. (N—N+k)n (p+Ky) #@. If M is any neigh-
bourhood of .the origin, then there exists a neighbourhood of the origin ¥
with N—N C M. Thus any neighbourhood of %, intersects p--K, i.e.
peky—E,C K,—K,.

Levua 2. There exists a linear functional f on B and ¢ « R such that
f(U) < ¢ and f(K,—K,) = ¢, where Uy i8 a convex neighbourhood of 0,
disjoint from K,—

Let p e K;— K,. 0 is an internal point of U, (in the convexity sense
i.e. for all # € E, there exists ¢ > 0 such that éz e U, for [§] < e). So —p is
an internal point of U,— (K,— K,)+p = K say.

Since Uy n (K;— K,) = @, 0 ¢ U,— (K,— K,) and hence p ¢ K. Let m be
the Minkowski functional of K. Then m (p)=1.

Let fy(ap) = a(p) where a ¢ R. Then f, is a linear functional defined
on the 1-dimensional subspace of B consisting of the real multiples of p
and fyap) < m(ap), ¢ « R. By HB there exists a linear functional f on H
such that f(z) < m(2) for all ¢ E. It follows that f(K) < 1 while f(p) =1
and so there exists ¢ e R such that f(U,) < ¢ and f( K1 K,) > e

LeMMA 3. f 48 continuous.

f(U,) is contained in a proper subinterval [—a, oo) or (—oo, a] of
the real axis where ¢ >0. Let M.= U, ~ —U,. Then M = —M and M
is a neighbourhood of the origin such that f(M)C [—a, a].

Given & >0, f(ea™ M) C[—e&, +¢], so [ is continuous at 0. Since f is
linear then f is continuous everywhere.

Proof of Theorem 1. Now there exists a non-zero linear functional
f and deR such that f(K,—K,) > d and f(U,) < d. Since f is non-zero
there exists o ¢ B with f(z) = 1, and f(fx) = B for all B¢ R. But fwe U,
for -all § sufficiently small, so there exists ¢ > 0 such that f(U,) contains
every scalar of modulus less than e Hence f(K;)—f(K,) = d > ¢, i.e. every
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number in f(K;) is at least ¢ greater then any number in f(X,). Let ¢
= inff(K,). Then f(K,) < e—e< ¢ < f(K,

3. Assuming PT as an axiom we wish to prove that the following
statement holds:

HBEML. Let Z be a real vector lattice with order unit 1 and let
P = P(Z) be the set of all positive linear functionals % on Z such that
%(1)= 1. Then P is a convex set which has at least one extreme point.

We use the notation of HBKML and denote by 7, the order unit
seminorm topology on Z [4] and Z* the continuous dual of Z. It is proved
in [7] that PT <> Alaoglu’s theorem.

If f: P—»[—o0o, o) is bounded above, we define

Fw)=int{g(u): geZ,glp=>f}

where u ¢ P and g|p > f means that g(u) > f(u) for all « e P. .

Levwa 4. If f,geZ and h: P—[—oo, oo) is defined by h{u)
= max[f(u), g(u)] for u e P, then h(u)= fvg(u) where v is the lattice ope-
ration in Z.

Let p denote the order-unit seminorm on Z. i.e.

o(z) =f{f>0: —pl <=<p1}

for z¢ Z and let €= {z e Z: g(2) <1}. Then € is a z-neighbourhood of
the origin and so by Alaoglu’s Theorem G = {z ¢ Z*: sup|e*(z)| < 1} is
w*-compact. Zet

Now PCZ* [4] and if ueP and ze@ then [u(z)l <1. 8o PCE.
But P is w* dosed and 1 is a »”-continuous linear functional on Z*
therefore P is w*-compact.

If f,geZ and for ueP,h( ) = max[f(u), g(u)], then fvgeZ and
Fvg(uw) = h(u), weP. So fvg(u) > hiu), uelP.

Oonversely, if keZ and L}P = L then for wueP, k(u) > f(u), g(u),
and for v e Z* v = 0, v/v(1) € P. So k(v) = f{v), g(») for all v e Z* , 0= 0.

Since the positive cone in Z is v-closed [4] % > f, g a5 elements of Z,
and so k > fvg. Therefore f(u) = fvg(u) for all % < P and from the above,

'u)=fvg u) for welP.

Next we let H={h: P>R: Hn e N&Jfy, foy ..., n € Z with h{u)
= max {fi(w)} for all w e P}. Then by a similar argument to that used in
=<n

Lemma 4 we bave that if heH and h(u)= max{f(u), ..., fa(u)} for
all we P then h(u) = fivfov ... via(u) for all u e P. Now for b ¢ H, define
By = {ueP: h(u) = h(u)}. Since h coincides with a w*continuous funec-
tional on P, B, is w*-closed.
Lenya 5. For he H we have 1) By # @ and ii) {0 By} # 0.
heH
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i) Suppose k¢ H is defined by h(u) = max[f(u), g(u)] where u¢P
and f, g € Z and suppose that B, = @. (It is enough to consider the case
when % e H is “defined” by two elements of Z.)

Then for all weP, h(u) # h(u), or equivalently by Lemma 4,
max[f(u), g(u)]< fvg(u) for all u e P. Let

A={(u,t)eZ*xR: ueP,t<f(uw)}
and

B={(u,t) e Z*xR: wueP,i<g(u)}.

Then since f and ¢ are bounded on P, 4 and B are convex, compact

sets and if K, = convex hull (4 v B) then K, is also convex and compact.

Let K,= {(u,t) ¢ Z*XR: ueP,t>fvg(u)}. Then K, is a closed
convex set and since fv g is affine on P we have K, » K, =
there exists a w*- continuous linear functional L on Z* X R and f ¢ R such
that s%pl',(u 1) < ﬁ < me(u 1).

Now L(0, f(u fvg )} >0 and f(u
L(0,1)< 0.

Define ¢ Z*-<R by L{w, q(x)=8, ie. ¢(#)= —L(=,0)/L(0,1)
then ¢ is a w*-continuous linear functional on Z* and so ¢ € Z. (We refer
the reader to the proof in [2] where AC is not nsed, that the *-continuous
linear functionals on Z* are the elements of Z).

Since (u, fvg(u ) e K, for u ¢ P we have L(u, g(u)—
Therefore [g(u)—fvg(w)lL(0,1) >0 and so g(u)—

Also (u, f(w)) e Ky and s0 flu)—gq(u) < 0. Likewise g(u)—gq(u)<0.

So h(u)=fvglu) >qu )>g(u) f(u) for we P, -contradicting the
definition of j. Therefore Bh # @.

—fvg(u)< 0 for ueP and so

Llu, fvg(u)) > 0.
~fvg(u)< 0.

ii) We now show that {ﬂ By} # @, for any finite collection hy, hy; ...

, hn e H. For simplicity take n = 2 and h(u) = max[fi(#), g,(v)], u e P,
and hy(u) = max[fo(u), ()], we P, fi, i€ Z, i=1,2.
Suppose that B, ~ B, =@, i.e. B v Bj, = P. Then for all u<P,
either

max [fy(u), g(w)] < fov ga(u)
or or both .
max{fo(w), go(u)] < fav gal%)
So for all u e P,

max[fy(%), gu(w)]4+max[fo(u), ga(u)] < frv gi(1)+ fav galu)

ie.
max [fi+fo(w), it gaw) , g1+ Fo(u)y g1+ ga(w)]

< [(fi+F)V(fit+ g)V(g+F)v(gat g2) ()] .

@. By Theorem 1
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So letting

k(w) = max[(fi+a) (u), (fitg:) (), {1+ (W), (g1+ o) ()]

wehave & ¢ H and k(u) < %{u) for all u « P,i.e. By = @ which contradicts i).
Therefore Bj m By, # @. So {Bh},,di have the finite intersection

property and since P is compact we have () B, # @.
heH
THEOREM 2. Aziom PI=HBEKML.

Using the notation as above, @ # () B, C P by Lemma 5. We de-
heH

note the extreme points of P by 8,P and prove that if u, e[} B, then

heH
Uy € 8, P.
For suppose that there exists u,, u, € P, u, % u, such that uy = $u,+
-+ 3u,. Then there exists f e Z such that f(u,) = 0 and f(u,) > 0. Then if

{L(u): max[f(u), 0] for u e P, we have he H and h(u,) = fv0(u;) = 0,
b (1) >.7:(“2)~ R .
So  al{ug) = 3hl(u)+A(us)] = 1f(us) >0. But h(u,) = 0. Therefore

Uy € B which contradicts the hypothesis.
-We have u, e {[) By} Cé,P showing that 8,P # @.
heH

4. Here we abandon PI as an axiom and seek to prove

THEOREM 3. Aziom HBEKML=-PI.

In [3] Edwards proves that PI is implied by the following axiom:

HBEKM. Let Z he a partially ordered vector space with order unit 1,
and let P = P(Z) be the set of all positive linear functionals % on Z such
that # (1) = 1. Then P is a convex set which has at least one extreme point.

The main step is to prove

ProrosrrioN 1. If 2 is a non-empty set, B a Boolean subalgebra
of P(Q) and I a proper ideal of B, then I is contained in a maximal ideal
M of B.

This is proved by considering the linear algebra L over R of all real
functions on Q that are finite linear combinations of characteristic func-
tions g, of elements a of g and letting L have the natural partial ordering.
For each function f: 2R, S(f) is defined to Dbe the set {w: f(w) # 0}
and V= {feL: S8(f) eI}, Then V is an order ideal of L containing
{tq: @ eI} It follows from HBEKM that the set K = {u e P(L): u 1V}
has an extreme point u, which can be shown to be multiplicative and so
M= {aepB: uyy,) = 0} will suit our purposes.

We note that in the above L is in fact a vector lattice and V is a lattice
ideal, so taking HBKML as an axiom rather than HBKM, it still follows
that K has an extreme point u#, and so Proposition 1 is true in our situation
i.e. when HBKML is in force.
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Using Proposition 1 and a theorem of Tarski’s (see [3]) which states
that if B is a Boolean algebra then there exists a Boolean algebra of sets B
together with an epimorphism &: B -8, it can be proved that HBKML
implies PT.
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Quelques remarques sur les familles de fonctions
de Baire de premiére classe
par

Zbigniew Grande (Gdansk)

Résumé. Soit B 'ensemble des nombres réels. Soit ' un espace métrique, complet,
séparable et parfait.

Dans ce travail j'introduis des classes de fonetions qui sont ponctuellement dis-
continues dans des ensembles de 'espace B et j'examine les relations enfre ces classes,
la classe des fonctions step-like et la classe des fonctions jouissant de la propriété (P).
Les deux dernidres classes ont ét6 introduites par D. E. Peek dans gon travail [4]. Dans
le cas oit B = R, j’examine les relations entre ces classes, la classe des fonctions jouissant
de la propriété de Darboux, la classe des fonctions dérivées, et la classe des fonetions
approximativement continues.

Dans le travail [4] D. E. Peek a introduit des sous-classes intéres-
santes de fonctions de Baire de classe 1: les fonctions step-like et les,
fonctions jouissant de la propriété (P). La définition de la fonction jouis-
sant de la propriété (P) peut &tre obtenue en remplagant dans la con-
dition nécessaire et suffisante d’une fonetion de Baire de classe 1 'ensemble
parfait par une somme dénombrable d’ensembles parfaits.

Dans ce travail j’introduis des fonctions semblables aux fonctions
jouissant de la propriété (P) en remplagant la somme d’ensembles par-
faits par des ensembles jouissant d’autres propriétés. Je vais examiner
les relations entre les classes des fonctions définies de cette maniére eb
aussi les fonetions jouissant de la propriété de Darboux; parmi elles les
fonctions dérivées et les fonctions approximativement continues.

Soit B ’ensemble des nombres réels.

Soit B un espace métrique, complet, séparable et parfait.

Soit x une mesure d&finie sur un ¢-corps K d’ensembles de Pespace B.
Admettons, en outre, que x soit o-finie, sans-atomique et telle que tous
les ensembles ouverts et non vides de lespace F appartiennent & K et
soient de mesure u positive. Désignons respectivement par u* et u la
mesure extérieure générée par la mesure u, et le complété de la mesure p.

Jintroduis les notations suivantes:

G, ={XCH; X +0},
G, ={XCE; X + 0 et X est dénombrable},
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