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that ¢; isn’t accessible in D; » 87 C fi(), so that g; isn’t an accessible
point of §~. On the other hand, if # ¢ [—1, 1]—F, then there is an infinite
sequence {ju| n >0} of non-zero integers such that # is in the closure
of each D, , for j,= {ju| k< m}. In this case, a= [ {f,(x)] new} is
an arc from <0, 1) to # contained in S. W o

Acknowledgements. I wish to thank Professor Johm Gresser for
suggesting the topic of the paper, and helping with its writing. T am also
indebted to him for & number of the constructions, and for his valuable
agsistance in solving the problem.

References

fi] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge
Tracts in Math. and Math. Phys. 56, Cambridge Univ. Press, Cambridge 1966.

[2] J. T. Gresser, The local behaviour of principal and chordal principal cluster sefs,
Trans. Amer. Math. Soc. 165 (1972), pp. 323-332.

[3] R. L. Moore, Foundations of point sel theory, Amer. Math. Soc. Colloq. Publ. 13,
Amer. Math, Soec., Providence, R. 1., 1962.

[4] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Collog. Publ. 28, Amer,
Math. Soc., Providence, R. I., 1963.

BOWLING GREEN STATE UNIVERSITY
Bowling Green, Ohio

Regu par lo Rédaction le 29, 9. 1972

icm

Semigroups which admit few embeddings
by
Kenneth D. Magill, Jr. (Amherst, N. Y.)

Abstract. S(X) is the semigroup, under composition, of all continuous selfmaps
of the topological space X. Two classes of spaces are given such that if X is from the
first and Y is from the second and ¢ is any isomorphism from §(X) into §(¥), then
there is a unique idempotent » of §(¥) and a unigue homeomorphism 4 from the range
of v onto X such that ¢{f)= hofo ko0 for each f in §(X). It follows from this that
there is a fairly extensive class of spaces such that the semigroup of precisely three
spaces from the class can be embedded in §(I) and the semigroups of precisely five
can be embedded in S(R) where I and R denote respectively the closed unit interval
and the space of real numbers.

1. Introduction. The symbol §(X) is used to denote the semigroup,
under composition, of all continuous selfmaps of the topological space X.
It is well known that there exist semigroups §(X) into which many other
such semigroups may be embedded. In fact, given any collection of semi-
groups, one need only choose a set X whose cardinality is not less than
that of any of the semigroups and then each semigroup of the collection
can be embedded in S(X) where X is given the discrete topology. In this
case, 8(X) is, of course, simply the full transformation semigroup on X.
The problem is made a bit more difficult by requiring that X satisfy
various topological conditions and when we discuss some examples, we
will see that for each collection of semigroups, one can produce an arc-
wise connected metric space X so that each semigroup of the collection
can be embedded in 8(X). However, such semigroups are really not our

- main concern here. We are much more interested in semigroups at the

other end of the spectrum, that is, in semigroups of continuous functions
into which very few other such semigroups can be embedded.

The main theorem of the paper is proven in section 4 and it gives
two classes of spaces such that if X is from the first and Y is from the
second, then for each monomorphism ¢ from §(X) into S(¥), there exists
a unique idempotent » of §(¥) and a unigue homeomorphism % from X
onto the range of v such that ¢(f)="hofoh  ov for each f in S(X).
‘We then look at some special cases in more detail and to give some idea
of the type of result we get, we mention the essential ingredients of
a result on S(I) and one on S(R) where I is the closed unit interval and
4 — Fundamenta Mathematicae T. LXXXV
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R is the space of real numbers. Basically, we produce a fairly extensive
class of spaces such that for any space X in t'he clajss, 8(X) can be em-
bedded in §(I) if and only if X is homeomorphic to either I, the two-point
discrete space or the one-point space. Moreover, .S(X) can be embedded
in S(R) if and only if X is homeomorphic to e1thelj R, I, a half-open
interval, the two-point discrete space or the one~p01nt space. In. other
words, there exists a fairly extensive class of semigroups of eontmuou.s
" gelfmaps such that from this entire class, precise}y three of the semi-
groups can be embedded in S(I) and precisely five can be embedded
in S(R).

2. Some definitions and preliminary results.

DEFINITION (2.1). A topological space X is an 87 -space if it is T, and
for each closed subset H of X and each point p € X— H, there is a continu-
ous selfmap f of X and a point g € X such that f(x) = ¢ for x ¢« H and
f(p) #q. :

DEFINITION (2.2). A space X is a strong 8*-space if it is T, and for
a pair of disjoint closed subsets A and B of X, there exists a continuous
selfmap f of X and distinet points p and ¢ of X such that f(z) = p for
ze A and f(x)= ¢ for w e B.

§*-spaces were introduced in [4] and strong S*-spaces in [5]. It is
observed in these papers that any completely regular Hausdorff space
which contains an arc is an §*-space and a normal Hausdorff space which
contains an are is a strong S*-space.

In this paper, when we say a space is 0-dimensional, we mean simply
that it is Hausdorff and has a basis of sets which are both closed and
open. By a Lebesgue 0-dimensional space, we mean a Hausdorff space
in which every finite open cover has a refinement by a partition of the
space onto open sets. This agrees with the definition given in [1, p. 246]
if one considers only normal spaces. It is well known that a Lebesgue
0-dimensional space is 0-dimensional but that a 0-dimensional space
need not be a TLebesgue O0-dimensional. However, a 0-dimensional
Lindel6f space is Lebesgue 0-dimensional [1, Theorem 16.17, p. 247].

Now, we observed in [4] that any 0-dimensional space is an S*-space.
Ag for strong S*-spaces, we prove

ProrosITION (2.3). Every Lebesgue 0-dimensional space is a strong
8*-space.

Proof. Let A and B be disjoint closed subsets of the Lebesgue 0-di-
" mensional space X. Then {(X—A4),(X—B)} is an open cover of X and
hence there is a partition {V,}Y, which refines it. Define

W= {Vi: V4C X—A}.

° ©
I:'?“ Semigroups which admit few embeddings 149

The W is both closed and open, 4 C X—W and B C W. Select two distinet
points p and ¢ of X and define a selfmap f of X by flz)=1p for xe W
and f(x) = g for # ¢ T—W. The function f is continuous and it follows
that X is a strong S*-space.

DEFINITION (2.4). A topological space X is said to be strongly con-
formable it it is a first countable strong S*-space and for each pair of
compact, countable subspaces 4 and B each having exactly one limit
point, there exists a continuous selfmap f of X mapping A into B such

_that B—f(4) is finite.

If, in the latter definition, one replaces the requirement that X be
a strong §*-space by the requirement that X be merely an 8*-space,
then one has the definition of a eonformable space which was introduced
in [6, Definition (3.3)]. The proof of the following result is essentially
a combination of the techniques used in the proofs of Theorems (3.4)
and (3.5) of [6] and will not be given.

ProrostrioN (2.3). All locally Buclidean normal spaces and all
Lebesgue 0-dimensional melric spaces are strongly conformable.

As in [6], we regard a space as being locally Euclidean if it is Haug-
dorff and each point has a neighborhood which is homeomorphic to some
Euclidean N -space and there is no requirement that all of these neighbor-
hoods have the same dimension.

Now let us recall that a space X is said to be homogeneous if for each
pair of points p and ¢ in X, there exists a homeomorphism % from X
onto X such that h(p)=q. We weaken this requirement considerably
in our next definition.

DEFINITION (2.6). A topological space X is said to be quasi-homogene-
ous if for each nonempty open set ¢ of X and each point p in X, there
exist continuous selfmaps f and g of X such that g(p) ¢ @ and fogis the
identity on X.

The next result gives a simple sufficient condition that a space be
quasi-homogeneous. Before stating it, let us define a space X to bhe an
absolute retract if it is Hausdorff normal and for each closed subset 4 of a
normal space ¥, each continuous map from A into X can be extended to
a continuous map from ¥ into X.

ProrostrroN (2.7). Let X be any absolule retract with the property
that each nonempty open subset contains a copy of X which is closed in X.
Then X is quasi-homogeneous.

Proof. Let @ be any nonempty open subset of X and let P be any
point of X. By hypothesis, there exists a homeomorphism ¢ from X onto
a subspace H of & which is closed in X. Now any absolute retract is
necessarily normal so the function ¢~ which maps H continuously into X
.
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has o continmous extension f which maps X into X. Evidently, both f
and g belong to S(X) and feoyg i the identity on X.

Since for each positive integer N, the closed unit ball BY in Euclidean
N -space EY satisfies the hypothesis of the latter result, we immediately get

COROLLARY (2.8). Hach closed wunit ball BY is quasi-homogeneous.

Ot course each EY is also quasi-homogeneous since it is homogeneous.
The spaces BY are examples of quasi-homogeneous Spaces which. are not
homogeneous. : .

PROPOSITION (2.9). Amy product of quasi-homogeneous spaces is
quasi-homogeneous.

Proof. Let X = J1{¥,: aeA} where each Y, is quasgi-homogeneous.
Let p be any point of X and G any nonempty open subset of X. Then G
contains a basic open set of the form

PYH) ~ Py Hy) » e P (Hy)

where Pj; is the projeetioﬁ map from X onto ¥; and H; is a nonempty
open subset of ¥;. Then there are continuous selfmaps f; and g; of ¥;
such that g(ps) = gs(Py(p)) € Hs and f; o gy = 13, the identity map on ¥j;.
Now define selfmaps f and g of X by

f@)=flty for j=1,2,..., N,
(f@)e= 1t for a¢%#1,2,..,N,
[g@®) = gs(t) for §=1,2,., N,

t, for as1,2,..,N. .

Il

(9@

Then f and g are continuous selfmaps of X such that f o g is the identity
on X and g(p) e @ Consequently, X is quasi-homogeneous.

By a retract of a space X, we simply mean any subspace ¥ of X which
is the range of an idempotent continuous selfmap of X.

DEFINITION (2.10). A topological space X is a spray if it is Hausdorff,
connected, first countable and, in addition satisfies the following three
conditions:

(2.10.1) A discrete subspace can be at most countable.
(2.10.2) Bach nondegenerate connected subset has nonempty interior.

(2.10.3) - Let {4,: 6 ¢4} be any uncountable collection of retraects of X
such that each has more than one point. Then there is at least
one whose boundary intersects the interior (with respect to X)
of another.

icm®
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Conditions (2.10.2) and (2.10.3) are really quite stringent. For ex-
ample, if X and Y are two connected T, spaces each with more than one
point, then X x Y will not satisfy (2.10.2). Merely choose any aeX
and let

A,={{a,y): ye¥}.

Then 4, is a connected subset of X X ¥ but it has empty interior. As
for (2.10.3) suppose that X is Hausdorff and has uncountably many
points and that ¥ is also Hausdorff and has at least two points. Now
A, as defined above is a retract of X X ¥ and since X X ¥ is Hausdorff,
it is closed. Thus, it contains its boundary. Since {4.: a ¢ X} is mutually
disjoint and uncountable, it follows that (2.10.3) is not satisfied.

Thus, it follows for one reason or another that very few products
of spaces are sprays. In the next section, however, we will see a number
of examples of sprays. In fact, we will look at 2 method for construecting
various examples which will be useful to us.

3. A method for comstructing examples. Let {(¥,, p,): a €A} be a col-
lection of ordered pairs where, for each a ¢4, ¥, is a metric space with-
metric d, and p, is a point of ¥,. For purposes of diseussion, it ‘will be
convenient to assume that all of these spaces are mutually disjoint
although this is not really necessary and one will easily see the appropriate
modifications to make when they are not mutunally disjoint. Choose some
point g which is not in any of the Y, and let

; X =[U{Y—{p}: aeA}Iv {g}.
Define a metric 4 on X as follows:
(g, y) = 4 Pas ) when yeX,,
d(z,y) = d(z,y) when @,ye¢¥,,
(@, y) = d(z, p)+ds(ps,y) When =ze¥, and yeX,.

One shows in a routine manner that d actually is a metric on X,

DerFixrioN (3.1). The space X with the metric d is referred to as
the bonded union of the pairs {(¥,,p,): a € A}. For each ¢, the point p, is

. referred to as the bonding point of ¥, and the point ¢ in X is referred

to as the exceptional point of X.

If the family happens to be finite in number, the bonded union
is nothing more than the gquotient space obtained by first taking the free
union of the spaces in the family and then identifying the bonding points.
This is not necessarily true, however, when the family is infinite. For
example, let

In={(®,y) eRXR: y=a/n and 0 <& < 1}
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where n is a positive integer and let
Iy, = Uinlom

- where the topology on Iy is that which it inherits from the Euclidean
plane. One shows easily that Iy, is homeomorphic to the bonded union
of a countably infinite number of copies of the closed unit interval I where
for each copy, the bonding point is one of the endpoints. This differs
from the space I, which is the free union of the spaces L, with the origing
indentified, for the sef

Ul@,9): y=2/n and 0 <o<ln}y,
is open in I, but not in 'INU.
The construction of Iy, can be generalized by letting « be any cardinal
number and taking the bonded tnion of a copies of I where for each copy,
the bonding point is one of the endpoints. We do the same sort of thing

with the space J of non-negative real numbers and the unit circle ¢ of
the Euclidean plane. We gather all this together in the following

DEFINITION (3.2). Let o be any cardinal number. Then

(3.2.1) I, denotes the bonded union of o copies of the closed unit in-
terval I where the bonding point in each copy is one of the
endpoints. ’

(3.2.2)  J, denotes the bonded union of a copies of J where the bonding
point in each copy is the unique endpoint.

(3.2.3)  C, denotes the bonded union of o copies of ¢ where the bonding
points in each copy is arbitrary.

The following result summarizes some properties of these spaces.
PROPOSITION (3.3).

(3.31) I, and I, are homeomnrphiyo and this is the only case where I,
and I, are homeomorphic with « # f.

(3.3.2) - J, is homeomorphic to the space R of real numbers.

(3.3.3) I, d, and C, are all arowise connected for each cardinal number o.

(3.3.4)  The spaces 1,,d,, 0, are all sprays, if and only if « is a finite '

cardinal.

Proof. With the possible exception of (3.3.4) the statements are
rather evident. We verify (3.3.4) for the space Iy, the remaining cases
being similar. First of all, suppose ¢ is a positive integer . We may
take Iy to be the space | J{L,}, where

Ln={#,9) e ExB: y=afn and 0< o < 1}.

©
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Let {4,: d<4} be an uncountable collection of retraets of Iy, each
having more than one point. We consider two cases.

Case 1. An infinite number of the A4, contain the origin g.

We assume that no boundary of any of the retracts intersects the
interior, with respect to Iy, of any other retract and we obtain a contra-
dietion. Let A’ = {6 ¢ 4: ge A} and we consider the subspace I, of Ix.
There are two possibilities:

(1a) Iy~ .4, is a nondegenerate subinterval of I, for some y ¢ 4",

(1b) Iy~ Ay;={q} for each de 4.

If (1a) holds, then each Iy » 4, must be either L, ~ 4, or {g}, otherwise
the boundary of 4, would intersect the interior, with respect to Iy of
some A4;, or conversely. It follows that regardless of which one of (1a)
and. (1b) holds, we may conclude than an infinite number of the 4, all
intersect I; in an identical fashion. Denote the indices of all these A4,
by 4;. In a similar manner, there is an infinite subset 4] of 4] such that
all of the retracts with indices in 4; intersect L, (and of course, I, also)
in exactly the same way. Continuing in this manner, we conclude the
existence of an infinite subset A} of indices such that any two retracts
with indices in Ay intersect I,, 1 <n <N, in exactly the same way.
This implies that all these retracts are identical which is the desired
contradiction since they are, in faet, all distinct.

Case 2. Only a finite number of the 4, contain the origin gq.

Let 4'= {6 ed: ¢g¢ 4} and note that 4’ is uncountable. Then for
each ¢ e 4, the retract 4; is contained in Iy— {¢} which is just the free
union of & copies of a half-open interval. Since 4, is connected it must
be contained in one of these half-open intervals. It readily follows that
some L,—{g} contains an uncountable number of these 4,. Now each
of these 4, is a nondegenerate subinterval of the half-open interval L,— {¢}
and it follows easily that the boundary of one of the 4, must intersect
the interior (with respect to Iy) of another. Thus, condition (2.10.3) is
satisfied and since the remaining conditions in Definition (2.10) are also
satisfied, we conclude that Iy is a spray.

Now suppose that a is an infinite cardinal. We show that I, is not
a spray. Let 4 be any index seft whose cardinal number is a and for each
6 ed, let hy; be a homeomorphism from the closed unit interval I onto
a space Y,. Then I, is topologically the bonded union of the pairs
{{¥,, h(0)): 6 € 4}. Now for each proper nonvoid subset Q of 4, we
associate a retract of I, as follows: let

Ap= J{T,: 60}.


GUEST


154 K. D. Magiil, Jr.
It is evident that there are uncountably many such subspaces. To see
that they are retracts, choose any y « 2 and define a function f as follows:

flo)=2
f(@) = (k5 (=)

The function f is continmous and it is the identity on its range which
is A,. Thus, f is idempotent and, consequently, 4, is a retract. Now in
each of these A, the boundary is the exceptional noint which we denote
by g, so if the boundary of one of these retracts was to intersect the
interior with respect to I,, of another, say 4,, then ¢ would be contained
in some open subset of I, which would be contained in A,. This, however,
is impossible since such an open subset would intersect each ¥, in more
than one point while A4, intersects at least one Y, at only one point, the
exceptional point ¢. This follows since £ is a proper subset of 4. Thus,
we have produced an uncountable family of nondegenerate retracts with
the property that given any one, its boundary will not intersect the
interior of any other. Hence condition (2.10.3) is not satisfied and, conse-
quently, I, cannot be a spray when o is infinite.

for wed,,

for 2e¥, 6¢0.

Remark. Iy, satisfies every condition of Definition (2.10) with the
single excepfion of (2.10.3) so it was necessary to work with condition
(2.10.3) to show that I, is not a spray when « is an infinite cardinal.

Now we are in a position to verify a statement which we made in
the introduction.

PROPOSITION (3.4). Given any collection of semigroups, there ewists
an arcwise conmected meiric space X such that each semigroup in the -col-
lection is isomorphic to a subsemigroup of S(X)

Proof. Since each semigroup in such a collection can be embedded
in §(4) where 4 is a sufficiently large discrete space, we need only show
that for any discrete space 4, there exists an arcwise connected metric
space X such that 8(4) can be embedded in §(X). We use the same
notation as in the proof of Proposition (3.3). The symbol 4 represents
an index set of cardinality o and we show that S(4) (where 4 is given
the discrete topology) can be embedded in §(I,) where, as in the previous
proof, I, is taken to be the bonded union of the pairs {(¥, y(0)): 6 € 43
For any fe8(d4), we define a function ¢(f) on I, as fo]lows

(‘P(f )(‘7" = f(a)( (m))
le(r i =1q where ¢ is the exceptional point .

One shows rather easily that ¢(f) is a continuous selfmap of §(I,) and
just as easily that p is a monomorphism from 8(4) into 8(I,).

for  weXY;—hy(0),
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PROPOSITION (3.5). Given any collection of semigroups, there ewisis
a compact, connected, Hausdorff strong S*-space X such that each semi-
group in the collection is isomorphic to a subsemigroup of 8(X).

Proof. We use the notation of Proposition (3.4). It is sufficient to
show that §(I,) can be embedded in some 8(X) where X is a compact,
connected, Hausdorff, strong S8*-space. The candidate for this is pI,
the Stone- éech compactification of I,. Since I, is connected pI, is also
and since BI, contains an arc (I, is arcwise connected) it follows thatb
pI, is a strong S*-space [5, Theorem (2.6), p. 327]. The embedding is
obtained by mapping f in S(I,) into its Stone-Cech extension in § (BL,).

4. The embedding theorem. In this section, we prove the main result
of the paper.

MarN THEOREM. Let X be a strongly conformable, quasi-homogeneous,
completely regular space which is not totally disconnected and let ¥ be a spray.
Then for each monomorphism ¢ from S(X) into S(X), there exists a unique
idempotent v of S(Y) and a unigue homeomorphism h from X onio the range
of v such that

g(f)=hofolov
for each f in S(X).

Proof. Let ¢ be a monomorphism from S(X) into S(Y) and let L
denote the collection of all constant functions on X. Then L is a left zero
semigroup. Moreover, since X is completely regular and 7, and is not
totally disconnected, it must have uncountably many elements. Thus,
L is an uncountable left zero semigroup and consequently, I* = @(L)
is also. We first show, by contradiction, that at least one function in L* is
constant. Assume that the contrary is true. Since each function in L* is
idempotent, the range of each such funetion is a nondegenerate retract
of ¥ and it now follows from (2.10.3) that there exist two functions o
and w of L* such that

1)-

where V is the range of v, W, is the range of w, bd ¥ is the boundary of V
and intW is the interior (both with respect to ¥) of W. Let » be any point
in bdV ~ intW. Since retracts are closed in Hausdorff spaces, 7 ¢ ¥V and
hence v(r) = r. It follows that

bdV ~nintW £ 0

(2) 7 e IntW ~ o7 (it W) n el(T—T) .
Consequently,
(3) W ~ o7 Yt W) n (Y —V) # O

.
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and we choose any point ¢ which belongs to the latter set. Then,

4 te W=V
and
(5) v(t)e W.

Since w is the identity on its range, it follows from (5) that w(v )= »().
However, it follows from (4) that v(¢) % ¢ = w(f). All this implies that
w o » 5 w which is a contradiction since L* is a left zero semigroup. There-
fore T* must contain a function which maps every point of ¥ into some
point p in ¥. We denote this function by {(p)>. But then for any feL*,
we have f= fo <) = (f(p)>. That is, L* consists entirely of constant
funetions. This fact allows us to define a mapping A from X into ¥. Let
@ e X be given. Then <z) e L and ¢<{x) ¢ L* is a constant function. Thus,
e{wy = y) for some ye Y. We define h(x)= y and we note that

(6) . plz)y = {h(z)> for each xeX .
‘We use this latter fact to get
Lp(NB@) = p(f) o h(@)> = p(f) o g <o)

=¢(f o @) = o< fla)> = {h{f ()
which implies that ‘

0 o(f)eh="hof for each feS(X).
One uses this fact to prove that
(8 (@) = B(X) ~ (@ ()] h(2))

for each » ¢ X and f ¢ §(X). We verify only one inclusion ginee the other
follows in a similar manner. Suppose that

Y eh(X) (ga(f))—l(h(m)} .
Then y = h(a) for some ae¢ X and (q)(f))(il(a)): h(z) or, equivalently
' P(f) o 94> = p <)
which is the same as
p{fla)y = o<z .

Thus, {f(a)y = <z} since ¢ is injective. and this implies that « ¢ ).
This, in turn, implies that y = h(a) e B{f~(x)).

Now, since X is an §*-space, the sets of the form f~i(z), z ¢ X and
fe8(X) form a basis for the closed subsets of X and it is now immediate

©
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from (8) that A~ is a continnous map from h(X) onto X. Next, we want
to show that h is also continuous and since X is first countable, we can
use sequences to do this. Suppose that {a; w1 18 @ Seguence of distinet
points of X which converges to a point p in X which is distinet from all
the points in the sequence. We must show that the sequence {h(z,)}> .
converges to %(p). Since X is uncountable and A is injective, 7(X) is
also uncountable and, in view of (2.10.1), has a nonisolated point q.
Moreover, &(X) is first countable since Y is, so there exists an infinite
sequence of distinct points of h(X) which converges to g. Denote the
set consisting of the points of the sequence together with the limit point ¢
by 4. Then 4 is a compact, countable subset of A (X) which has exactly
one limit point. Now ™" iy injective and continuous and since X is Haus-
dorff, the restriction of 2™ to 4 is a homeomorphism. Consequently,
h7Y(4) is a compact countable subset of X with exactly one limit point.
Now let

B=[U{mladv {p}.

Then B is also a compact, countable subset of X and since X is strongly
conformable there exists a continuous selfmap f of X which maps A~!(4)
into B in such a way that B—f (k‘l(A)) is finite. Thus, there is a positive
integer N such that 2, belongs to F(RY(A)) for n = N. It also follows that

(9) g =m».

Now for each n > N, choose a point in 4 which feo ™" maps into x, and
denote the point by y,. In this way, we get a sequence {y,} .. of distinet
points in 4 which must necessarily converge to the point ¢. Then, for
n = N, it follows from (7) that

h(@n) = R{f{( ) = ¢ (1) (B a)) = ¢ () (9)
and from (7) and (9), we get

h(®) =2(f17(9)) = ¢ (N (A @)} = ¢ () (@) -

Since ¢(f) is continuous on ¥ and limy, = ¢, it now becomes apparent
that limA(z,) = h(p). Thus, b is continuous and ‘we have now established
that » is & homeomorphism from X into Y.

Next, we show that h(X) is a closed subset of Y. Suppose, to the
contrary, that this is not so. Then there exists a sequence {a,}7  of distinct
points of 2(X) which converges to some point 7 e Y—h(X). The set
{@,}-1 has no limit points in A (X) and since % is a homeomorphism, the
set {h7*(a,)}y_, has no limit points in X. Thus {7 (@)}, and
{h™ (@) ey are disjoint closed subsets of X and since X is a strong
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S+ space, there exist distinet points p and ¢ in X and a continuous self-
map f of X such that

f(h—l(%n—1)) =p and f( “zn)) =4q
for each positive integer n. We again appeal to (7) to conclude that
() {ts) = h(p) and @ (f)(g,) = k(g .

Since %(p) and h(q) are distinet, the sequence {p(f)(a,)}a-, does not
converge. This, however, is a contradiction since {a,};_, does converge.
This establishes the fact that h(X) is a closed subset of Y.

Now let 4x denote the identity mapping on X.. Then ¢(ix) is an
idempotent of §(¥). We denote it by » and its range by V. We next want
to show that

(10) hX)=T.

One inclusion is rather easy to get. For any @ « X, we have

(@) = v o (@) = @(ix) o p<{ad = @(ix o (o)) = p<{@> = <h(@)).

Thus, o(k(z)} = h(x) which implies that h(X)CV. Suppose, however,
that (10) does not hold. Then A(X) is a proper closed subset of V' which
is connected since it is & continuous image of the conmnected space Y.
It follows that there exists a point p such that

(1) P eh(X) o eIy (V—h(X)).

Since X is not totally disconnected, neither is %(X) and condition (2.10.2)
assures the existence of a nonempty open subset @ of ¥ such that
G Ch(X). Then 27*(@) is a nonempty open subset of X and since X is
quasi-homogeneous there exist continuous selfmaps f and g of X such
that g(h™(p)) e @) and fog=ix. It follows from this and (7) that

@)(2) = 9(9)(n((p)) = h(g(h*(io))) <@
and, hence, there exists an open subset H of Y such that
(12) peH and g(g)(H)CG.
From (11), we conclude that there is a point ¢ such that
13) ' geH n(T—h(X).
The statements (12) and (13) together with the fact that GC (X).result in
(14) P(0) (@) < B(X) . ‘
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We use this and the fact that g7V to geb

g=1(g) = ¢(ix)(@ = ¢(f > @) = 2 (Np(9) (@) € P(N{F (X)) -
That is, ¢= ¢(f)(k(x)) for some @ X. But (7) implies that ¢ (N (@)

= k(f(»)) which, in turn, implies that ge Rh(X). This, of course, contra-

dicts {13) so we conclude that statement (10) is, indeed, valid. Because
of (10), we have v= hs k™' o v. We use this and (7) to show that

(13) p(f)=hofoehtop for each feS(X).
Let any fe S(X) be given. Then,

e(f)=g(feix)=o(f) cplix) =o(f) o0
=-'¢P(f) choh™top= hofuh_ln‘u
which verifies (15).
In order to complete the proof of the theorem we need only to show

that the function b and » are unique. Suppose that there also exist fune-
tions k and w such that

(16) e(f)=Fkofokow for each feS(X).
Then {15) and (18) together yield

v =gix) =W
and for any xe X,
i)y = plo> = k()
which implies that k= E.

5. Applications of the main theorem. The results in this section show
that, in a certain sense, the semigroups of continuous selfmaps on
a number of sprays contain very few subsemigroups which are isomorphiec
to semigroups of continuouns selfmaps.

THEOREM (5.1). Let X be a sirongly conformable, quasi-homogeneous,
completely regular space which is not totally disconnected. Then for each
positive integer N, S(X) can be embedded in S(Ixy) ) if and only if X is homeo-
morphic to the closed unit interval I.

Proof. We use the same notation as in the proof of Proposition (3.3).
Tn particular, we take Iy to be | {L,}5-, where

In={(z,9) e RXR: y=a/n and 0 <z <1}.

First, suppose that X is homeomorphic to I. Then there exists a homeo-
morphism % from X onto L, and an idempotent » of .§(Iy) whose range
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is I,. The mapping which sends f in §(X) into ko feh™ow is an em-
ing .of §(X) into S (In).
beddgi)%lversel(y, )suppose( S ()X) can be embedde?d into 8(Iy) with some
monomorphism ¢. Then, according to the main theorem, there exists
an idempotent v of §(Iy) and a homeomorphism % from X onto ?;he range
T of v such that ¢(f) = & o f o 17 o v for each fe §(X). Thus, X is hom.eo~
morphie to the retract V. We must show thatb ¥ is homeomorphic to I. First
of all ¥ bas more than one point since X does. Furthermore, any non-
degenerate retract of Iy is homeomorphic to some Ipr where 1 << M < N
so ¥ is homeomorphic to such an Ipr. We only need to show that M eannob
exceed two since I, and I, are both homeomorphie to 1. S'mqe .T/’ is homeo-
morphic to X, it must be quasi-homogeneous. T-his prc_)hﬂmts M f_rom
exceeding two since otherwise there could not possibly eglst two cont?nu-
ous selfmaps f and ¢ of Iy; so that f o g would be the identity on In while g

would map the origin into the open subset

{(@,y) e RxR: y=w and $ <o <3}.

This latter theorem was essentially proven by appealing to the main
theorem and then determining which retracts of Iy were quasi-homogene-
ous. The same technique yields analogous results for the spaces Jy and Oy
and we state these results without proof.

. THEOREM (5.2). Let X be a strongly conformable quasi-homogeneous
completely regular space which is not totally discommected. Then, for {mch
positive integer N, 8(X) can be embedded in 8 (Jn) (N = 2) if and only if X
is homeomorphic to either I, R or a half-open interval.

TaEOREM (5.8). Let X be a strongly conformable gquasi-homogeneous,
completely regular space which is not totally disconnected. Then for each
positive integer N, S(X) can be embedded in 8 (Cn) if and only if X is homeo-
morphic to either I or the unit circle C.

In each of the previous three theorems, we required that X not be
totally disconneeted. It turns out that when one is considering embedding
8(X) into either S(I) or §(R), this requirement can be dropped without
significantly increasing the number of possibilities for X. The precise
statements are given in the next two results.

THEOREM (5.4). Let X be a strongly conformable, quasi-homogeneous,
completely regular space. Then §(X) can be embedded into S(I) if and only
if X s homeomorphic to either I, the two-point discrete’ space or the one-
point space.

Proof. (Necessity). Suppose that S(X) can be embedded in S(I).
It is immediate from Theorem (5.1) that if X is not totally disconpected,
then X is homeomorphic to I. We consider the case where ¥ is totally
disconnected and we show that X cannot have more than two points.

icm
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Assume to the contrary that it does. Since it is not connected, it is the
union of two nonempty disjoint clopen (both closed and open) subsets 4
and A’. One of these, say A’, has more than one points and since it is not
connected, it must be the union of two nonempty disjoint clopen sub-
sets B and C. Then 4, B and C are mutually disjoint nonempty clopen
subsets of X whose union is all of X. Choose points a ¢ A,beBandece(
and define a function f by

fly=0b for w=zed,
flz£y=¢ for =zeB,
f@)=a for =zeC.

Then f is continuous and {f, f*, f*} is a subsét of S(X) with three elements.
This implies that §(I) has a subgroup of order three and we have reached
a contradiction since Theorem (5.6) of [3, p.-145] assures us that the only
finite subgroups of S(I) (and S(R) as well) have order either one or two.

Thus X, in this ease, has no more than two points.

(Suifficiency). It is immediately evident that if X is homeo-
morphic to either I or the one-point space, then S(X) can be embedded
in 8(I). It is slightly less immediate when X is the two-point discrete
space S0 we give an argument for this case. Choose any continuous self-
map of I so that f # 4;, the identity map on I, but fo f = i;. For example,
the map which sends a point # into 1— 2 will do. Then choose two points
a and b such that f(a) = b and () = a. One readily shows that §(X)
is isomorphic to the subsemigroup of 8(I) consisting of the functions
<ay, <by, f and ;.

The analogous theorem about S(R) is proven in much the same way
so we will be content with merely stating it.

THEOREM (3.5). Let X be a sirongly conformable, quasi- homogeneous,
completely regular space. Then S(X) can be embedded in S(R ) if and only
if X dis homeomorphic to either B,I, a half-open interval, the two-point
discrete space or the one-point space.

Now let us observe that there are many monomorphisms from § (I)
into S(I) which are not automorphisms. We need only choose an idem-
potent » different from the identity map and a homeomorphlsm h from I
onto the range of » and define

gfy=hoefelou

Then ¢ is a monomorphism from §(I) into §(I) which is not an auto-
morphism. The concluding result of thls paper ShOWb that the situation
is quite different for S(R).


GUEST


K. D. Magill, Jr.

TaEOREM (5.6). Evefy monomorphism from 8(R) into S(R) 48, in fact,
an automorphism. .

Prooif. Let ¢ be a monomorphism from §(R) into S(R). By the
main theorem, there exists an idempotent v of S(E) and a homeo-
morphism A from R onto the range V of » such t.ha.t qu( f y="hofoh™? °®
for each f in S(R). Now V is closed in R and since .11; is .homeomorp@c
to R, we must have ¥ = R. This forces » to be the identity map which
means that ¢ is an automorphism.

6. Some concluding remarks. Let § be a semigroup with identity ¢ and
let 7' be an arbitrary semigroup. The notion of embedding 8 into T with
an a-monomorphism was introduced in [2] and we recall the definition
now. A monomorphism ¢ from § into 7' is an «-monomorphism jif for each
left zero ze T, p(i)z = 2 implies zep(8). Now for any two spaces X
and Y, if one chooses an idempotent continuous selfmap v of ¥ and if
there exists a homeomorphism » from X onto the range of v, then the
mapping ¢ defined by :

0 p(f)=hofohon

is an a-monomorphism from §(X) into S(Y). It was shown. in [6, Theo-
rems (5.6) and (5.7)] that for a great many spaces X and Y all the
a-monomorphisms are obtained in exactly this manner. For example,
it follows from Theorem (5.6) of [6] that if X is any Hausdorff S*-space
then any o-monomorphism from §(X) into 8(BI,) (we recall that I, is
the Stone-Cech compactification of the bonded union I,) must take the
form. (). This places a considerable restriction on X ‘since it must then
be homeomorphie to a retract of fI, which, among other things, forces
it to be compact, connected and to contain a dense arcwise connected
subspace. And yet, we observe in the proof of Proposition (3.5) of this
paper that any semigroup ean be embedded in (fI,) if one chooses the
cardinal number y to be sufficiently large. This means that for a large
cardinal number y, there are many monomorphisms from semigroups of
continuous selfmaps into §(8I,) which are not a-monomorphisms. The
main theorem of this paper shows, among other things, that quite the
opposite is true about sprays. That is, for a great many X. If there is
2 monomorphism from §(X) into §(¥), ¥ a spray, then it must be an
a-monomorphism,

‘We conclude this paper with one more observation. and that is that
various semigroups of relations are a great deal more lenient in allowing
embeddings than are the corresponding semigroups of continuous self-
maps. For a specific examyle, let X be any Hausdorff space and S[X]
denote the semigroup of all compact relations (compact subsets of X x.X)
under ordinary composition of relations. Tf X happens to be compact,

for each fe S(X)
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then 8(X) is a subsemigroup of G[X]. At any rate, it follows from Theo-
rem (3.2) of [7, p. 72] that if X is any compact metrie space, then S[X]
call be embedded in S[I] while Theorem (5.4) of this paper tell us that
among all the semigroups S(X) (X strongly conformable, quasi-homogene-
ous and completely regular) only three can be embedded in & (I)- In
particular, it follows that for the closed unit ball BY in Euclidean X' - space,
& >1, there is 2 monomorphism from S[B¥] into S[I] (in fact, there
are many) but it must map some functions in §(BY) into closed relations
con I which are not continuous functions on I.
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