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Fixed points of certain symmetric product
mappings of a metric manifold

by
Chandan Vora (Bloomington, Ind.)

Abstract. Robert F. Brown proved a generalization of the Brouwer’s fixed point
theorem by making use of Bing’s retraction theorem. J. W. Jaworowski extended
Brown’s result in a similar sense as the Lefschetz fixed point theorem extends the
Brouwer fixed point theorem. In this paper we generalize J. W. Jaworowski’s result
to that of the compact symmetric produet mappings of a metric manifold.

1. Introduction. Fixed point theorems of symmetric product mappings
of a finite polyhedron were first stadied by C. N. Maxw ell [12]. The results
obtained by Maxwell were generalized by S. Masih [10] to that of polyhedra
(not necessarily finite) and metric ANRs.

This paper deals with symmetrie product mappings of a manifold.

Robert F. Brown [3] proved a generalization of the Brouwer fixed
point theorem by making use of Bing’s retraction theorem [1]. A special
case of Bing’s retraction theorem was used by Henderson and Livesay [7]
to prove a theorem which is now a special case of Brown’s Theorem.
J. W. Jaworowski [9] extended Brown’s result in a similar sense as the
Lefschetz fixed point theorem extends the Brouwer fixed point theorem.

In this paper, we generalize J. W. Jaworowski’s [9] result to that
of the compact symmetric product mappings of a metric manifold.
Brown’s result [3] extended to compact symmetric produet mappings
of a metric mmanifold becomes a special case of the result which we will
be proving.

2. Preliminaries. Let X be a topological space and X", the nth car-
tesian produet in the usual topology. Let G be any group of permutations
of the letters [1, ..., n]. Then @ can be considered as a group of homeo-
morphisms on X™ by defining, for g« G and (@, ..., @n) € X", (@1, ey Tn)
= (@yy)y -y Tgmy)- LHE orbit space under this action with the identifi-
cation topology will be denoted by X*/¢ and called a G-product of X.
Let 5: X"— X*|@ be the identification map. Then the map % is both open
and closed for #7'p(A4)= |Jg4 for any open (closed) 4 C X" is open

ge@

(closed respectively) (g €« & being a homeomorphism).
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Let f: XY De a map. The map f defines a map f*: X"— ¥, where
FHM@ys Bay oeey @) = (f(xl) F@) s ees f(m ) for (@1, @y ooy 2n) € X"

The map f* commutes with the action of & on X" and Y* and hence there
exist a map f: X"/@—Y"/G such that the following diagram commutes

xyn

97X ¥

MG ——>X"g
7

A map f: X->X™G is called a symmetric product map of the space X.
A point # € X is said to be a fiwed point of f if # is a coordinate of f(xz),
that is, if (wy, @y .., 2n) e X" such that #(wy, 2, ..., ¥a) = f(z), then
x = o for some 4, 1 <t << M.

Let X be a metric space with metric d. Let d’ be the metric on X»

. defined by
)= (X, )

where z == (21, 2, ..., 22) and &' = (27, %, ..., 2,) ¢ X"
A metric d is defined on X*/G as follows [11]

d(n(2),n(#)) = Inf{d(z, g2')| g @} where 2,2 ¢X™

For the definition and some properties of the trace of a vector space
homomorphism, see J. W. Jaworowski and Michael Powers [8].

3. Admissible maps, admissible spaces and x -4 - spaces. In the following
sections, the nature of a homology theory under consideration is im-
portant only to the extent that the homology groups be vector spaces,
that they agree with the usual homology groups with rational coefficients
for compact polyhedra and compact ANR’s, and they constitute
a functor H, satisfying the homotopy axiom and the dimension axiom
for the eatecrory & of topological spaces and continuous maps. Thus H,
may be the singular homology, the Cech homology or any other functor
satisfying the above requirements. The homomorphism indueced by a map
f: X—=Y will be denoted, as usual, by Joyt Ho X)—>Hy(Y).

In this ‘section we recall the concepts of admissible category ug,
admissible spaces p-A-spaces, define the concept of admissible ma,ps
and quote or. prove some factorization theorems.

Let us recall the definition of a compact map.

3.1. DEFINITION. Let X and ¥ be two spaces. A map f: X—Y is
said to be a compact map if f(X) is contained in a compact subset of ¥.
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3.2. LemMA (see Masih [10]). Let X be any space. A map f: X—X™@G
48 a compact map iff there ewist a compact subset K of X such that f(X)
C Kv@.

For the definitions of a Lefschetz map and a A-space, see Jawo-
rowski and Powers [8], 2.5.

© Let us recall some definitions:

Let I', I'q: §—% be two covariant functors from ¥ to %, the category
of topological spaces defined as follows:

For an object X of §, let

I'X)=2X" and IgX)=X"G

and for map f: XY, let I'(f) = f* and I'¢(f) = f. Then I' and I’y are
homotopy preserving functors (see [12]).

Consider the functors H,_, H I',H I'¢: P—V from the category of
compact polyhedron to vector spaces. Let #,.: H I'=H I'c¢ and
n,: H I'=H, be defined as follows. .

For an object X of §, let

¥ = H (%) H(X")~>H (X"@)
and

n
= Z wg: H (X")->H,(X)
=)
where #% denotes the projection of X™ onto its ¢th factor.

If X is a compact polyhedron then Maxwell [11] defined a natural
homomorphism z5: H (X"/¢)—H (X) such that pXy, = x, S. Masih [10]
extended this homomorphism called Maxwell homomorphism to: the
category of ANR’s with morphisms as compact maps by means of the
concept of admissible category.

‘We recall the definition of an admissible category denoted by ug.

3.5. DeFmviTION. A full subcategory ¥ of the category ¥, the category
of all topological spaces is said to be admissible if

(1) CF is subecategory of X,

(2) the natural transformation u,: H,I'¢=>H, on C§ has an extension
pw: H I'e=H_to the category ¥ such that uy, = =, holds on X, where 7,
and =, are natural transformations induced by the identification and
the projections respectively.

3.4. DEFINITION. Let X ey and f: X->X"/G be a continuous map.
Then f is said to be a p-map if uf, is a Lefschetz endomorphism (that is,
of finite type roughly). Then the Lefschetz number, A(f) is defined by

0

A(fy= LA = D) (—1)tr((4f,)a) -
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3.5. DEFINITION. Let X e ug and f: X->X"/@ be a continuous map.
Then f is said to be a u-Lefschete map if fis a p-map and A(f ) 7 0 implies f
has a fixed point.

3.6. DEFINITION. Let X e ug. Then X is said to be a u-space if every
compact map f: X—-XYG is a p-map.

3.7. DEFINITION. Let X be a p-space. Then X is said to be a n-A-
space if each compact, u-map f: X—X"@ is a u-Lefschetz map.

For simplicity, when writing the 1nduoed homomorphisms the di-
mension subscript will be omitted.

3.8. TemorEM. Let f: X—X"@G be o map, X e u% and suppose there
exist o p-A-space ¥ and maps h: ¥—X and g: X— Y@ such that f =1%o g

where b: Y"|G—X"@ is the induced map and either (a) g is compact; or (b)’

Y is Hausdorff and h is compact. Then
(i) fis a u- map
(i) A(f)= A(g o h) where g o h: Y- TG and
(i) f is a u-Leftschetz map.
Proof. Consider the following diagram

MG
9, n
.X———)_X"/G

Consider goh: ¥ TG Y, a p-A-space implies g% is defined and

A(g oh) # 0 implies g o h has a fixed point. Let y, ¢ ¥ be a fixed point
of g ok, that is, y, eg o h(y,).

Consider the following diagram

[N

H (D221 (Y e) L, (T)

P ' ha ha

he

H,(X) ——H (X6 ——H,(X)

It commutes beeause of definitions and naturality of . Since Yis
a u-A-gpace, tr(u¥ 9,h,) is defined. Therefore,

tr(ug,h,) = tr(h,u¥g,) = tr(uh,g,) = te(uf,) -

-Hence, tr (#%F,) is defined and therefore fis a p-map and A(f) = A(goh)
Suppose A(f) # 0. This implies A(g e h) 0 and hence there exisi;
% Yo, & fixed point of gsh
We claim that the point h(yo) is a f1xed point of f.
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Consider fh(yo) =k o g h(y,). Since yoegoh(y) h(yo) ek og o i)
== fh(y,). Therefore i(y,) is a fixed point of f.

Many results derived hy 8. Masih from factorization Theorem 3.10
in [10] can also be proved by asing our factorization Theorem 3.8. So we
do not state or prove those results.

3.9. CorOLLARY. Let f: X—>X"/G be a compact map with X belonging
to g and suppose f can be faciored through a u-A-space or o symmemc
G-product of a p-A-space, then f is a w-Lefschetz map.

Proof. Follows from Theorem 3.8 and Theorem 3.3.10 of Masih [107.

4. Symmetric product maps of subsets of a metric manifold. In this
section we will prove a fixed point theorem for a certain symmetric
product of a metric manifold similar to that of J. W. Jaworowski [9].

4.1 TerOREM. A metrizable manifold (with or without boundary) is
a p-A-space.

Proof. If M is metrizable then it is a local ANR, and hence an ANR
by [6]. Consequently, it is a u-A-space by Masih’s result 3.3.17 [10].

4.2, TeeorEM. Let M be a metric m-manifold (with or without
boundary); let X be a (m—2)-connected ANR imbedded as a closed subset
of M and let U be a component of M— X whose closure is not compact. Let
[ (M—TU, X)~(M"@G, (M—U)"@) be a compact map, and let f': X—
—(M—TUYG denote the map defined by the restriction of f. Then there
ewist u-Lefschetz maps v: M—-M™G@ and u: M—U—~(M—U)"G such
that w is an extension of f' and v is an extension of f, A(uw)= A(v) and
F,CF,~F; (where F; denotes the fiwved point set of f). In pa,rtzcula,r
A(w) = 0 implies f has a fived point.

Proof. By Bing’s Retraction Theorem [1], there exist a retraction
X v U—X which extends to a retraction r: M—>M—U [9]. This induces
a retraction 7: M*/G—(M— U)"/@ defined by, for every [#;, ..., Ta] € MG

Fl®yy vy Bn] = [7{(@1), ooy 7 (@a)] -
Since M is a metric manifold, by Proposition 4.1, M is a u-4-space.
Since M is metrie, it is a local ANR and hence an ANR by [9] o see [5].
Congequently, since M— U is a retract of M, M—TU iz a metric ANR

and hence a u-4-space.
Consider the following diagram

M"G
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Ret v=for: M—>M"G and u =F of: M—U—>(M~—U)"|@. The sets M,
M—T being pu-A-spaces, by Corollary 3.9 A(u)= A(v) and u,v are
u-Lefschetz maps.

Suppose that @, e Fy, that is, @, e f o 74,. Then y, = ra, ¢ Fy for uy,
= Ffy, = Ffrey. Bub @, e fray, this implies

7% = Yo € Tfr®y = TfYy -

If we suppose that @, e U, yo=rmye X qnd hence fy, e (M—U)*@, since
F(X) C (M—U)"/G. Since m, € fra, = Jyo e (M—UM@G, 5, M— U, a contra-
-diction.

Hence @, ¢ M—U and hence rz, = @, Therefore, y, = rz, = 2, ¢ Iy,
2, € friy = fx,. Hence , ¢ Fy. Hence FyC Fy N Fy.

In particular, 4(V) # 0 implies f has a fixed point.

The author is indebted to J. W. Jaworowski for suggesting the
problem and for guidance. The work was done under Associate Instructor-
ship at Indiana University.
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Weights of denumerable topological spaces
by
Stanley Burris (Waterloo, Ontario).

Abstract. Let (X, G) be a denumerable topological space — for |G| < &, we show
that the weight of (X, B) equals |G|; and [B| >, implies the weight of (X ,T) is greater
than or equal to x,, unless G has the power of the continuum.

In this paper we will examine the possible weights of topological
spaces (X, B) where X is denumerable, answering a question of P. Erdos
enroute. Throughout we will use lower-case German letters as well ag
alephs to denote cardinal numbers and lower-case Greek letters to denote
ordinals, the letter w being reserved for the first infinite ordinal. The
transfinite sequence 5, &, ... denotes the cardinals indexed by ordinals
and ordered by size. For o an’ordinal, o, denotes the least ordinal such
that w, has s, predecessors (or members). The cardinal 2% i3 also denoted
by ¢ |A] denotes the cardinal of the set A.

If (X, ) is a topological space we will let w(X, ) be the weight
of (X, ©), that is, the least cardinality of a base of (X, B). (The reader
is referred to Comfort’s excellent survey article [2].) For n < c define

W, = {w(X,B): |X|=,[C=n}.

Clearly e W, implies T < n. First we prove W, is convex for n infinite.
TeaEoREM 1. If 1 is infinite, Le W, and 1< m <1, then me W,
Proof. From the hypothesis of Theorem 1 we see that [« W, implies

[ is infinite. Let (X,, B,) be a denumerable topological space such that

Bl = 11, w(Xy, By) = L. Let X, be a denumerable set disjoint from X,.

Sierpinski [3] shows that it is possible to find a family & of subsets of X,

such that (i) A,BeJ implies |4 ~B|<,, and (i) |F|=m. Let §

={ACX;: X,— A. ¢ 5}, and let G, denote the topology on X, generated
by §. It is not difficult to show that 7' ¢ G, implies T' is a finite inter-
section of members of § intersected with a cofinite subset of X;. Hence

|8 = |8] = m. From this we also see that w(X;, &)= m. Now let X

= X,u X, and let the topology B on X be {d,w Az 4,66y, 41Ty}
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