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Ret v=for: M—>M"G and u =F of: M—U—>(M~—U)"|@. The sets M,
M—T being pu-A-spaces, by Corollary 3.9 A(u)= A(v) and u,v are
u-Lefschetz maps.

Suppose that @, e Fy, that is, @, e f o 74,. Then y, = ra, ¢ Fy for uy,
= Ffy, = Ffrey. Bub @, e fray, this implies

7% = Yo € Tfr®y = TfYy -

If we suppose that @, e U, yo=rmye X qnd hence fy, e (M—U)*@, since
F(X) C (M—U)"/G. Since m, € fra, = Jyo e (M—UM@G, 5, M— U, a contra-
-diction.

Hence @, ¢ M—U and hence rz, = @, Therefore, y, = rz, = 2, ¢ Iy,
2, € friy = fx,. Hence , ¢ Fy. Hence FyC Fy N Fy.

In particular, 4(V) # 0 implies f has a fixed point.

The author is indebted to J. W. Jaworowski for suggesting the
problem and for guidance. The work was done under Associate Instructor-
ship at Indiana University.
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Weights of denumerable topological spaces
by
Stanley Burris (Waterloo, Ontario).

Abstract. Let (X, G) be a denumerable topological space — for |G| < &, we show
that the weight of (X, B) equals |G|; and [B| >, implies the weight of (X ,T) is greater
than or equal to x,, unless G has the power of the continuum.

In this paper we will examine the possible weights of topological
spaces (X, B) where X is denumerable, answering a question of P. Erdos
enroute. Throughout we will use lower-case German letters as well ag
alephs to denote cardinal numbers and lower-case Greek letters to denote
ordinals, the letter w being reserved for the first infinite ordinal. The
transfinite sequence 5, &, ... denotes the cardinals indexed by ordinals
and ordered by size. For o an’ordinal, o, denotes the least ordinal such
that w, has s, predecessors (or members). The cardinal 2% i3 also denoted
by ¢ |A] denotes the cardinal of the set A.

If (X, ) is a topological space we will let w(X, ) be the weight
of (X, ©), that is, the least cardinality of a base of (X, B). (The reader
is referred to Comfort’s excellent survey article [2].) For n < c define

W, = {w(X,B): |X|=,[C=n}.

Clearly e W, implies T < n. First we prove W, is convex for n infinite.
TeaEoREM 1. If 1 is infinite, Le W, and 1< m <1, then me W,
Proof. From the hypothesis of Theorem 1 we see that [« W, implies

[ is infinite. Let (X,, B,) be a denumerable topological space such that

Bl = 11, w(Xy, By) = L. Let X, be a denumerable set disjoint from X,.

Sierpinski [3] shows that it is possible to find a family & of subsets of X,

such that (i) A,BeJ implies |4 ~B|<,, and (i) |F|=m. Let §

={ACX;: X,— A. ¢ 5}, and let G, denote the topology on X, generated
by §. It is not difficult to show that 7' ¢ G, implies T' is a finite inter-
section of members of § intersected with a cofinite subset of X;. Hence

|8 = |8] = m. From this we also see that w(X;, &)= m. Now let X

= X,u X, and let the topology B on X be {d,w Az 4,66y, 41Ty}
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Then
%] = max (|G|, |B,]) = max(m,n) =1,

and
w(X, B) = Max(w(X,, G,),

w(Xy, ) = max ([, m) = m.

Hence m ¢ W, and the theorem is proved.

COROLLARY W, = {m: ¥ <m < c}

Proof. If X is denumerable and 6 is the discrete topology on X then
w(X,B) = 8, 8| = ¢. The corollary {hen follows from Theorem 1.

DerINITION. If B is a family of sets, let

$* = {A: A is the union of a subset of B .

LeMMA (1), If B is o family of subsets of a denumerable set X and

% < |B| < min(s,, c), then |B*| = |B| or |B*|=c

Proof. Let |33] = §,, # < w. Thén we can index members of B by Wr
that is, B = {B,: a< ws}. We can conveniently express $* by

=M. U N{4: 2cd>(weB, &y« B,~ye ).

26X a<wp YyeX

For e X, a<< wy let

Foa =1 {4: 2 eA-+(w € B, &(y e B,—~ycA))} .
yeX

Then ¥,, can be thought of, in a natural way, as a Borel subset of 2%
(see [1]), and hence |¥,, | is either countable or equals ¢. If n = 0 it also
follows that $* is a Borel subset of 2% and thus for » = 0 the lemma is
valid. So assume # > 1. We have

f<a

=N U Fo
reX a<on
=N U(Js
€X a<won
UX U Fop)
fewn a:eX B< Hx}

U N U‘Tx,ﬁ)v

<wn TeX B

t.he last equality following from the fact that e, has uncountable co-
finality. By induction on |a| we can. easily show that

H (U Tl < ol
reX p<a

or equals ¢.

o *51) The author is indebted to P. Erdos for posing the problem of the cardinality
o A :

icm
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If the latter possibility is the case for any « < wn, then |$*| = c. If the

latter is not the case for every a<C wa, then |3 < Y |a| = w,. Butb
- a<wg
> |B| = w, we must have |B* = |B.

The next theorem shows that W, is quite different from W, for n<< c.

THEOREM 2. (i) For n<<c, if 8 <n<8, then W, = {n}.

(ii) For s,<n<¢ me W, implies m > K,.

Proof. Let n be as in (i). If &, < w(X, B) < n, then by the lemma,
18] = w(X, 6), hence w(X, B)¢ W,. Part (i) is also an immediate conse-
quence of the lemma.

The results presented here are far from complete, so we state two
closely related questions which seem to require other methods.

ProBLEM 1. For sy,<<n<c¢, does |'W,| > 2 imply n=c%

ProBrEM 2. Is w;\mﬂ = {8,117

The author would like to express gratitude to D. Higgs and R. Rado
for their interest in this topic.

since |B¥|

Added in proof. R. McKenzie has just informed the author that the answer to
Problem 1 is “yes™.
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