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Absolute Z-sets
by
Jean Pollard Lenaburg (Baton Rouge, Louisiana)

Abstract. A closed subset K of a separable metric space X is said to be a Z-set
in X provided that for each nonempty homotopically trivial open set U in X, U\K is
nonempty and homotopically trivial. We define an absolute Z-sef to be a topologically,
complete separable metric space X such that for each closed embedding f of X into
Hilhert space I,, f(X) is a Z-set in I,. Then main result in this paper is the following
characterization of absolute Z -sets. Let X be a topologically complete separable metric
space. Then X is an absolute Z-set if and only if X is ¢-compact.

1. Introduction. A closed subset K of a separable metric space X is
said to be a Z-set in X provided that for each nonempty homotopically
trivial open set U in X, U\K is nonempty and homotopically trivial.
The concept of a Z-set was introduced by Anderson in [2] as a means
of giving a topological characterization of infinite deficiency. Since that
time Z-sets have been widely used in the study of the topology of certain
infinite dimensional spaces and manifolds.

It is easily seen that each topologically complete (or compact) sepa-
rable metric space can be embedded in separable Hilbert space, I, (or the
Hilbert cube, @) so that the image has infinite deficiency and thus is
a Z-get in [, (or Q). The question then arises as to which spaces admit
closed embeddings only as Z-sets. We define an absolute Z-set to be
a topologically complete separable metric space X such that for each
closed embedding f of X into l,, f(X) is a Z-set in I,. Also, an absolule
compact Z-set is a compact sepmable metric space X such that for each
embedding f of X into @, f(X) is a Z-set in Q.

The main result in this paper is the following chara,cterlzatlon of
absolute Z -sets.

TeeorEM 1. Let X be a topologically complete separable metric space.
Then X is an absolute Z-set if and only if X is o-compact (i.e., the count-
able union of compact sets). :

The next theorem provides an alternate characterization of absolute
Z -sets.
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TeEROREM 2. Let X be a topologically complete separable metric space.
Then X is an absolute Z-set if and only if X does not contain a closed set
which is homeomorphic to the space of irrationals.

The equivalence of these two characterizations is given by the follow-
ing result which is stated in [5] and whose proof follows from Theorem 7
of [6].

ProposITION 1. Let X be a topologreally complete separable metrie
space. Then X is o-compact if and only if X does not contain a closed copy
of the space of irrationals.

The corresponding characterizations of absolute compact Z-sets,
given by the following theorems, are more easily obtained.

~ TepoREM 3. Let X be a compact separable meiric space. Then X is
an absolute compact Z-set if and only if X is countable.

Since a compact separable metric space is countable if and only
if it does not contain a topological Cantor set, the next theorem is obvi-
ously equivalent to Theorem 3.

THEOREM 4. Let X be a compact separable metric space. Then X is
an absolute compact Z-set if and only if X does not contain a topological
Cantor set.

The author wishes to thank Professor R. D. Anderson for his valu-
able suggestions and assistance in the preparation of this paper.

2. Preliminaries. Let s denote the countable infinite product of
the open intervals (—1,1) and regard the Hilbert eube, @, as the count-
able infinite product of the closed intervals [—1,1]. If I, denotes the
space of square summable sequences of reals with the norm topology,
then by [1] s and I, are homeomorphic. By an I,-manifold we mean a separ-
able metric space having an open cover, each element of which is homeo-
morphic to I,. Also, a Q-manifold is a separable metric gpace which has
an open cover of elements homeomorphic to open subsets of §. For each
1 >0, let 7; be the projection function of 1,, s or @ onto its ith coordinate
space; that i, 7;((#,)ps0) = 24 A subset K of 1,, ¢ or @ is said to have
infinite deficiency if for infinitely many i, 7(K) is a point.

Several well known and standard properties of Z-sets are uged in
proofs throughout this paper and are now listed for easy reference.

PROPERTY 1. Any compact subset of s, I, or an I,~-manifold is a Z-set.

PrOPERTY 2. Let X be an l,-manifold. Then X x (0, 1] is an l,-mani-
fold and any closed subset of X x {1} is a Z-set m XX (0,1].
Let X be 3,1, @ or an l,-manifold.

PROPERTY 3. If K is a Z-set in X and K’ is a closed subset of K,
then K’ is a Z-set in X.
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PropERTY 4, If K is o closed subset of X which is the countable
union of Z-sets in X, then K is a Z-set.in X.

Let J¢(X) denote the set of homeomorphisms of a space X onto itself.
The following two theorems were the first important results involving
Z -sets.

PrOPOSITION 2. A closed subset K of X (X =s,1, or Q) is a Z-set
in X if and only if there ecmsts Ive J(X) such that h(K) has infinite
deficiency in X.

PROPOSITION 3. [2] Let K be a Z-set in X = s, lo or @ and let h be
a homeomorphism of K into X. Then there emists b™ e (X)) such that
WK =1 if and only if R(EK) is a Z-set in X.

These results have heen generalized to l,-manifolds in [4] and to
Q-manifolds in [3]. We state the homeemorphism extension theorem of [4]
as it is nsed later. Let h e 3(X) and let U be an open cover of X. Then
% is said to be limited by W if for each z e X, there exists U e U sach that
both # and h(x) are in U. A homotopy H of a subset K of X into X is
a map of K x I into X such that H|K x {0} is the inclusion map. If H is
a homotopy of K into X and 9 is an open cover of X, then H is pathwise
limited by U if for each @ e K, there exists U e U such that H({x} x I) CT.
If V is a subset of X and if U is a collection of subsets of X, defice

st(V, W)= U{TeU: UV £0}

and let st'(W)= st(W) = {st(T, W): U eW}. Also, for ecach integer
n > 1, let st™(W) = {st(T, st® X (W)): T e W}

ProposITION 4. [4] Let X be an l,-manifold, let K, and K, be Z-sels
in X, let U be an open cover of X and let h be a homeomorphism of K, onto K.
If there is a homotopy H of K, into X such that H|E, X {1t =h and H is
pathwise limited by U, then k can be extended to h* e R (X) where h* is
limited by st*(W).

3. A characterization of absolute Z-sets. In this section we obtain the
characterizations of absolute Z-sets based on a theorem whose proof
is briefly sketched in this section and presented in detail in the remaining
sections.

First we observe that sinee the image of a closed embedding of
a o-compact space is closed and o-compact and since each closed o-com-
pact subset of 1, is a Z-set in 1, (Properties 1 and 4), it is clear that every
o-compact topologically complete separable metric space is an absolute
Z -set. To complete the characterization we suppose X is a topologically
complete separable metriec space which contains a closed copy # of the
space of irrationals and show that X is not an absolute Z-set. To exhibit
a closed embedding of X into I, such that the image is not a Z-set in L,
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we use the following results. The proof of the first is contained in this
paper and the second can be found in [7].

A subset K of a space X is said to be locally bicollared if for each
p e K, there exists a relative open set U in K containing p and an open
embedding h of Ux{—1,1) into X such that for each z ¢ U, h(z, 0)= .
Let M = {(#;)450 € bt % = 0} and let ¥ be a closed copy of the space of
irrationals in ¥ = {(#;);50 € lat @ = 2}

THEOREM 5. There ewists a closed embedding H of M into 1, such that
FCH(M) and H™F) is a Z-set in M. Moreover, we may trequire that
H(M)NF be locally bicollared.

PROPOSITION B. [7] There exists a closed copy of the space of wmtzonals

in 1, which is not a Z-set in 1,.

By Proposition 5, let F' be a closed copy of the space of irrationals
in 7, which is not a Z-set in I,, let ¢ be a homeomorphism of ¥ onto 7,
and let ' = ¢ (#’). Then F is a closed copy of the space of irrationals
in Y. By Theorem 5, let H be a closed embedding of .M into I, such that
FCH(M)and H{F)is a Z-set in M. Sinee X is a topologically complete
separable metric space, there is an embedding f of X into M such that
f(X) is-a Z-set in M so that Property 3, f(B) is also a Z-set in M. Thus,
by Proposition 3, there exists g < Je(M) where g(f(H))= H )(F). Let
h=@oHogof Then h is a closed embedding of X into I, such that
' C h(X). Note that h(X) is not a Z-set in I, since if it were, I’ would
be also (Property 3). Therefore X is not an absolute Z-set.

The characterizations of absolute compact Z-gsets are obtained in
a similar manner. As each. compact countable subset of @ is a Z-set in @,
a compact countable metric space is an absolute compact Z-set. Now
suppose X is a compact separable metric space which contains a topo-
logical Cantor set. To exhibit an embedding h of X into @ such that h(X)
is not a Z-set in @, we use the following results and exactly the same
procedure as in the case of absolute Z-sets.

Let M’ = {(#i);50€@: 2, = 0} and let ¢ be a topological Cantor
set In ¥’ = {(#4);50€Q: 2, > L}

THEOREM 6. There exists an embedding H of M’ into @ such that
CCH(M') and H™Y(C) is o Z-set in M'. Moreover, we may require that
H(M')NC be locally bicollared.

ProrosrrioN 6. [7] There exists a topological Camtor set in Q which
is not a Z-set in Q.

~ Wenow give a brief intuitive argument which if done rigorously would
yield a proof of Theorem 6 as well as the known result which states that
if 0 is any topological Cantor set in B (n-dimensional Euclidean space)
then there is an embedding # of "~ into & such that ¢ C h(E"*). First,
cover ¢ with a finite number of small pairwise disjoint connected open
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sets and then push “fingers” up from M’, one to each element of the
cover. Refine the first cover of ¢ with another finite cover of pairwise
digjoint connected open sets of even smaller diameter and from the tips
of the original “fingers”, push smaller “fingers” toward the elements
of the new cover and inside the elements of the first cover. Continuing
in this manner, we may obtain as a limit of this process an embedding &
of M’ such that ¢ C h(M’) and for each point p of M'\h™(¢), & neighbor-
hood of k(p) is determined after finitely many steps of the process. Thus
we may require that A(M')\C be locally bicollared.

The intuition behind the proof of Theorem 5 is essentially the same
as the above except instead of finite covers of the Cantor set and a finite
number of “fingers” we use countable covers of the irrationals and a count-
able number of “fingers” while requiring at each stage that the closore
of the union of any collection of “fingers® be the union of that collection.

The details of the proof of Theorem 6 are not given. However, the
proof of Theorem 5 is presented in full in the remainder of this paper
and with suitable simplifications, such as using finite instead of infinite
collections, the lemmas to Theorem 5 — indeed, the proof of the theorem
itself — can be easily modified to yield the proof of Theorem 6.

4. Some technical lemmas. In this seetion we develop some notation,
definitions and lemmas which will be used in the rest of this paper. If W is
a collection of subsets of X, then mesh U= sup {diameter U: U e “W}.
Suppose U and U are collections of open subsets of X. Then W is a re-
finement of A7 if for each U e, there exists ¥V e U such that UcCv.
A collection & = {B};-, Of sets in a space X is said to be discrete if (1)
i s § implies B; ~ B;= @ and (2) fov each sabset a of W, U B, is closed.

By N we mean the set of positive integers and 4 or cI(A) denotes the
closure of A.

The following lemmas are ased several times in later proofs.

TEMMA 1. Let K be a closed subset of a separable melric space X and
let {A };, be a discrete coliection of closed sets in X such that for each ¢ >0,
diam A; < & and A; ~ K = @. Then there exists a discrete collection {3}
of open sets in X such that for each i>0, 4, CU;yy UynKE=0 and
diam U; << 2¢;.

The proof is elementary, first using the normality of X to obtain
a pairwise digjoint collection {W};., of open sets in X such that for
each i>0, A4;C W; and W; ~nK = @, and then letting Vi be an &fi-
neighborhood of 4; and U;= Vi Wi,

The proof of the next lemma is routine and is not given explieitly;
the proof uses the previous lemma and the fact that if ¥ is a copy of the
irrationals, then there is an infinite discrete cover of F by open and elosed
sets in F.

3 — Fundamenta Mathematicae LXXXV
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LuvmA 2. Let F and K be closed subsets of a separable metric space X

such that ' is a copy of the irrationals and F ~ K = @. Then for each & >0,
there emists an infinite discrete collection VU = {V};., of open sets in X
such that: .
(1) for each © >0, Vi nF 3 @;
2) FCUV,, En (UVe)=0; and
>0

(3) meshVU < e. .

Throughout the sequel we let M= {(@i);5qel: @ =0} and I
= {(#:);50 € Lt @ > 0}. A repeated use of Lemma 2 provides a straight-
forward inductive proof of the following,

Lmyva 3. Zet F be o copy of the irrationals in I which is closed in 1,.
Then there emists a sequence (V). of diserete covers of F such that:

(1) for each n >0, V e U, implies that V is open in 1,, VCIF and
VnF +0;

(2) for each n >0, Uy is countably infinite and mesh, < 1/2m;

(3) for each m >0, V, ., is a refinement of Vy: and :

(4) each element of U, contains infinitely many elements of Upay-

S. Construction of an. “w-stage starset system”. Here, we construct
what we call an w-stage starset system. This system, which is a specific
union of ares in I, converging to a closed copy of the irrationals, iy used
in obtaining the embedding of the next section.

By e: we mean the point in I, with 4th coordinate one and all other
coordinates zero and @ is {te;: 0 < ¢ < 1}. We define a subset S of I, to
be a starset at « if there exiscs an infinite subset ¢ of N and h Je(1,) such.
that h(6) = & and () @Qs) = 8 where 6 is the origin of l,. We call z the
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base point of § and for each i e o, we call h(Q;) a basic are of § and h(es):
a tip of 8. If, in a union of starsets, a tip of one starset is not the base
point of another, it is said to be a Sree tip,

A 1-stage starset system, 8%, in I, is the union of a discrete collection
{83150 Of starsets in ,. Inductively, an n-stage starset system, 8", in 1, is
the union of an (n—1)-stage starset system, 8%, and a set T, where
T is the union of a discrete collection, {8%}is0, of starsets in I, such that:

(1) for each ¢ >0, 87 ~' 8" = {4} where & is the bage point of 87%
and a free tip of a starset in §*'; and

(2) for each free tip z in 87%, there is a unique i > 0 such that @ is
the base point of S%.

In this case we say that 8" is derived from §*. Let

quence of %-stage starset systems such that for each
from §"~1. Then §*

(8™)y5p be a se-
>1, 8" ig derived

= | J 8" i3 said to be the w-stage starset system derived
n>0

from (8%),.,. I, in addition, {4}, is a discrete collection of arcs in Iy,
such ‘that for each i>0, 4, n 8% = {2:}, where a; is the base poiut of
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the starset 8% in 8* and is an endpoint of A;, then 8* is said to be based

on A= |JA: at {&};s, The following lemma provides a method of

construc{i;ng an, n-stage starset systern from a given (n—1)-stage starset
system. ‘
LEvyA 4. Let @ €1, and let U be an open set in I, containing «. If K is
a Z-set in 1, and @ < K, then there is a starset, 8, at & such that SCU and
8~ K= {«}. .
Proof. Let « C N such that both o and N\a are infinite. Since K is
a Z-set in I, there exists g e #(l,) such that g{z) = 6 and for each ¢ e a,
7¢(g (K)) = 0 (Proposition 1). Let >0 be such that B(6)C g(U). simd
define f € (1) Y f((@0)150) = (£24)150(B,(0) is the e-ball about the origin).
Then § = ¢~ « f(| @) is a starset at  such that SC U and § ~ K = {z}.

Let 8* be a;am-smge starset system derived from (S"),?o. The_n
J = | JJn is a basic union of arcs in 8* if for each » >0, Jy is & basic

are gf>?m starset in c1(8™\8">) and I ~ Jy 5= @ if and only if m—n| = 1.
The next lemms provides the desired w-stage starset system.

LeMuA 5. Let F be a copy of the irrationals in I which is closed in 1,
and let (™), be a sequence of covers of F as described in Lemma 3. If A is
the union of a discrete collection {4}, of arcs in M ~ I such that A nF
=@ and for each i >0, A; has an endpoint p; < Vi where Vs = {Vikino,

then there ewisis an w-stage starset system 8% = | J 8™ based on 4 at {Pi}iso
n>0

and having the following properties:
L) F*=8*VF, S nF=0 and §8* ~ M= G; .
(2) if J = \UJn 18 a basic union of ares in 8*, then diamd, << 18/2%;
>

0 . -
3) if J a:;ad J' are distinet basic unions of arcs in 8%, then JNJ
%= JJN\J'; and )
(4) ],‘or each n >0, VU, = {V7} and the free tips {57}, of 8" can be
ordered so that s} e V7.

Proof. We will inductively construct a sequence, (8"),54; 0f 'n,; stage
starset systems such that the derived w-stage starset system, 8%, has
the desired properties. .

Since A is a closed o-compact subset of I,, 4 is a Z-set in I, (Pro-
perties 1 and 4). Thus, by Lemma 4, for each >0 let Ti= 'U Ji; be

i>0
a starset at p; such that Ty C VF and Ty~ A= {1‘7¢}. Denote the free
tip of Ji by s¢. By Lemma 3, each V} contains infinitely many elements
of U,. Denote this set of elements by {V3;};», and let 1 € ViNEF v Tyo A).
Then both sy and ty are in V3 and thus d(sy, ts) < . As 4, U {su}

i>0,4>0
U {ty} are closed o-compact subsets of the 1,-manifold
>0,7>0

and

3%
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(M U IFNF, they are all Z-sets in (M w I3 )\F. Property 2 implies M ig
also a Z-seb in (M v IFNF. Since {8i}im0,750 304 {ty}is0,550 are discrete
collections, f;, defined by fi(sy) = #; and fil(4d v M) =1id, is a homeo-
morphism. Let !

= (Byp(@): @€ (M © LINF}
where
{ye (MO N diz,y) < i}

Bm(m)

Since for each ¢ >0 and j >0, ¥y € Byp(sy) and Byp(sy) is arcwise con-
nected, f, is elearly homotopic to the identity by a homotopy which is
pathwise limited by $. By the Homeomorphism Extension Theorem
(Proposition 4), there exists fi ¢ %(M o I7)\F) such that ff extends f,
and f7 is limited by st4($). Note that fy limited by st4($) and Iy C B, (si)
implies diam(f{(Js)}< 9. For each ¢ >0, let Si= Ufl(Ju) and let

= |J 8% Then §}is a starset at p; and S is a 1~stage starset system.
>0 )
Now assume an (n—1)-stage starset system, S™~%, has been defined
so that the following conditions are satisfied:

(W) FCH, I (MUF) =0 and 7~ d= Ulpd

(2) if {s¥7},., denotes the set of free tips in §*~* and 1E Un = {1} o0
then §77 ¢ V7; and

(3) if st e V% is a free tip of a basic arc J of a starset whose base
point is in V eV, _;, then V7 CV and diamJ < 1827,

Since 8" U 4 is a closed o-compact subset of M U I}, it is a Z-seb
in M v 7. By Lemma 4, for each i > 0, let I% = UJ” be a starset at s7*

such that TP CVAF and TP~ (8" 1w d) = {s?‘l}. For each 7 >0, let
{V%};5, denote the infinite set of elements of U, , which are contained
in V% and let & e VE™\(F v 8" w A v M). Denote the free tips of T%
by {8%};-0 and observe that, as in the first stage, §°77, U {4 U {5h M

0,7 >0 >0,7>0

and 4 are all Z-gsets in (M o I)F. Let B, = {Bl/m cwe (M OIFNF}
Note that % eB ,g,,( W) J5 C Bypn(sy) and Byua(sh) is arcwise con-
nected. 'I'}ms, let fn e (M ©IFINF) such tlm,t Ials%) = 17

i

faMudAo S8 =id

and fy is limited by st4(%H,). Observe Lhtnt diam (™,
Jeb 8= Ufu(T5) and let "= 5o (L 80,

that the derlved w-stage starset &ystem, 8% has the properties listed
in the statement of this lemma.

If 8% is an w-stage starset system which fulfills the requirements
of Lemma 5, then we say that 8% converges to F.

)<< 18/2™. As before,

) Then it is easily verified
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6. Proof of Theorem 6. The first lemma of this section is essentially
the inductive step in the proof of Theorem 6 which follows. A halfspace
in I, is a pair [¥, K] of subsets of I, for which there exists & e ¥(I,) such
that R(¥Y)= M w1 and h(K)= M, where as before

M= {(5‘74){>0 €l @y = 0} IF = {(#)iso € bt

TLEMMA 6. Let [Y, K] be a haifspace in Iy, let A be an arc n ¥ with
endpoints p and g where A ~ K = {p}, and let 8= {JJs be a starset at ¢
i>

and @ > 0} .

where A~EK = {p}, and le¢ 8= \JI; be a starsel gt g where

i>0

SA(AUE)={g. If W is an open set in l, containing A, then for
any open set V in 1, containing q, there emist (1) @ relative basic open set U
in K with pe UCW and (2) o @< R(l,) such that G|INW =1id, a(0)
CV ~ W and for each i >0, G(U) nJ; is a point different from gq.

Proof. Since [Y, K] is a halfspace in I,, there exists fe Jﬁ(lz) sueh
that f(¥)= M v I and f(K)= M. We may also assume that f(p)=0.
A = {te1 0t 1} andfor eachi > 0,J;= {(1+1)e;4te;,: 0< t <1}
and if 8’ = {_ J;, then there is a homeomorplnsm oot Mo f(d) v f( S)

i>0

omto M u A’ w § such that R|M =id, b'(f(4)) = 4’ and W' (f(8))=

As MoUflA)uf(®) and MU A w8 are Z-sets in Mol 1e1:
hed(M v l“') be an extension of &’ and define H ¢ 2(l,) by H|(M v If)
— b and H|L\(M v If) = id. Then g = H o f is in 3¢(l,) and carries 4 v 8
onto A’ §’. Considering I, as RXM and B, w) {ye M: d(z, y)<< &},
let r be. such that [—r7, 1+r]><BZ, (6) Cg(W) and {1472} x B{6)C
C g(W n V). Note that for each i >0,

(L2} X B0) n = {A+7/2 e+ (7/2) €5} -

Let ¢ be a piecewise linear homeomorphism of [—r,1-7] onto itself
such that ¢(—7) = —r, @(0)=147/2 and e(1+r) =147 For each 1,
0<t<2r put =g if t<r and ¢,= (2 r—f)/’r)qp-l—((t—-r)/r)id it t>r
Now define F ¢ (R x M) by F(u, ) = (px(®), 4} where we[—7,1+47]
and z € B,,(8) and F{(Rx M)N[—7, 171X Boy(0)) = id. Let G e B(l) be
defined by G =g ' oFog and let U= g7%B6)). -

Proof of Theorem 6. Let (VU,),. be a sequence of covers of F as
described in TLemma 3. Let D be a Z-set in M which is homeomorphic
to the space of ur&flonals (D can be obtained by letting « C N be infinite,
letting M’ = {(®;);ogcly: & =0 and =0 if ¢ea} and using Propo-
sition. 1.) By Lemma 2, let § = {@;};5, be an infinite discrete collection
of relative open sets in M such that mesh§< } and for each ¢ >0,
G, nD+#@. Now for each i>0 Iet _’szG’«; D and let Ay
= {ie, -+ pa: 0 <t < 1}. Also let gs e VINF, where Uy = {Vi}isos and define f’
by f'le;+p¢) = qi and f'|M = id. Since U{el—)—pi}, U{Qi} and M are
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all Z-sets in the l,-manifold (M v IF)INF and sinee f' is homotopic to the
identity on (M u IF\F, by Proposition 3, let fe %((M w I NF) be an
extension of f’. Observe that for each ¢ >0, f(4¢) N F = @. By Lemma 5,
et §* be an o-stage starset system in IF Whlch is based on 4 = U F(4y)

ab {gi};, and which converges to F. In the remainder of this proof we
use the notation developed in the proof of Lemma 5.

By Lemma 1, let {Wi},., be a discrete collection of open sets in I,
such that for each ¢ >0, f(A)C Wi, WinF =0 and WlnMCGi
Since for each ¢ >0, 8= UJ}, is a starset in 8* at ¢y, by Lemma 6

there exist (1) a relative basm open set U} in M where p; e U3 C (Wi ~ M)
and (2) Blede(l) such that Wi|,\Wi=id, KT} C(WinTVy) and for
each § >0, hY(UL) ~J% is a point different from g;. Define &y by Iy |W;
= hi| W} and hy|( ZE\U W 1y = id. Then &, e Je(l,) since {Wil, s a discrete

collection.
In the following we let H; = hiz o hy_; o ... o hy and assume hy, .., b
e d(l,) have been defined so as to have the following properties:
(1) for each starset 877" = UJ"‘, =1 oin el(SPN\8"?%), there exists

a relative basic open set U} in 73 sueh that diam Ut < 1/2"“1 [ 75 o

nD #0, Hﬂ_l(U’;‘l)CV“‘l\F where V,_, = {Vi "}, and for each

§i>0, H, (U™ nJ%™ is a point other than the base point of 857
2) {U7 iso I8 & 1efinement of {U7?

n—1

o3

(8) Py | Hp o M\ U U™ = id;

(4) d(h,_y,id) < 5 (1827-%); and

(8) Hyy(M) nF =0.

For each >0 and j >0, let A} =JF "'~ H, (Mo l) and pd

4N H, (M), Sinee {4%}in0,450 and {pw}bo,po are countable we

may denote these collections by {A%};., and {p;}., respectively. By
Lemma 1, let {W%},,, be a discrete collection of open sets in I, such
that A} CWE, WinF =0, (Wi H, ,(M)CH, (U7 and diamW;
< 2diam A7. Since for each i >0, there is a starset, S%, in 8" at the free
tip of A%, we apply Lemma 6 again to obtain (1) a relative basic open set
U%in M sueh that ps e H, (U7) C W} and Uf ~nD 5@, and (2) K} e B(L)
such that AF|L,\WE=id, W}(H,_(U%))C W2~ V7 and the intersection
of W {H,_( U‘”)) with each bagic arc of 8% is a point other than the base
point of §7. Define hn, by hn|W%=h2[W? and ha|l\ U W= id.

Then &y € 3(l,) since {W7},,, is a Jiscrete collection. Note tham d(hy, id)
< mesh ({W3}5,) < 3 mesh ({47} ,.,) < 3-(18/2"Y) (Lemma B5).

Since for each n >0, d(h,,id) < 3-(18/2"), we have that for each
weM ,( n(w))n>0 is a Cauchy sequence and thus converges to a point

icm

©
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If H of M into 1, is defired by H(»)= lim Hu(z), then, by the
n—>00
above and the fact that each H, is edatinuous, it is easily seen that H is

continuous. Since for each n >0, U, = {V7},,, is a cover of F and
H,(U?) CV?, then FCH(M). To show H is one-to-one, let x, yelM
with o # y. If there exists n >0 such that 2,y MN  U%, then Hy()

— H(z) and Haly) = v

in l,.

H(y) so that H(x) # H(y). If there exists n, sach
that for n >y, x e UF and y= U} with ¢ #§, then for each n = ng,

Hy(z) e VT and Haly) e V; and thus H(x) # H(y). Finally, if for each
n>0, xe U U7 and there exists m >0 sach that ye M\ U Up, then

H(x) e B, H('y)eHm (M) and Hm(JL[) AF =@ so that H(z) ¢H( ) and
H is one-to-one. As k. |H (M\ | U"’) = id and for each i >0, Hn(T7)

C V%, we have that H™* is cnntmuous‘ Thus H is an embedding. Since

i)

H-YF)CD and D is a Z-set in M, by Property 3, HYF) is a Z-set
in M. Moreover, R, | H,(M\ i | TU}) = id implies that H(M) is locally

i>0

bicollared at each point in H(IN\F).
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