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On a generalization of Mycielski’s and Znam’s
conjectures about coset decomposition of
Abelian groups

by

Ivan Korec (Bratislava)

Abstract. An exact lower bound for the cardinality of a partition of a group into
cosets by its invariant subgroups is given. This lower bound is a function of the index
of the intersection of all the subgroups, cosets by which occur in-the partition. For
Abelian groups the present theorem gives the bound conjectured by Mycieleki and
Sierpinski, and for the infinite cyclic group we obtain the bound conjectured by Znim.

In this paper groups will be considered as multiplicative groups
and their neutral element will be denoted by e. The order of a finite
group & will be denoted by |G| If H is a subgroup of G and a ¢ @, then
[G:H], aH will denote the index of H in & and the set {ah| h ¢ H}, Te-
spectively. If H is ap invariant subgroup of @, then G/H will denote the
tactor group of @ by H. In the notation of the form {®,, ..., Zn} We always
SUDPOSe @y, ..., Zn t0 be pairwise different. :

J. Mycielski and W. Sierpinski {2] made the following conjecture: Let

@) {“IGI, (X P aka}

be a coset decomposition of an Abelian groap @ (i.e., the elements of (1)
aTe pairwise disjoint cosets of & and its set-theoretical union is @) and
let n = [G:G,] be finite. If

(2) n=[ ]2

=1

js the standard form of =, then

(3) E>1+ Z alpi—1) -

i=1
. Znhm made a similar conjecture in which @ is the additive group
’ k
ot integers and the condition n= [G:G] is replaced by n=[G: [ &,
=l
but the proof was not published.
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Theorem 1 of the present paper is a generalization of both conjectures
above.

Tor every (non-zero) natural » with the standard form (2) put

r

(4) Fn)= D alpi—1).
i=1
Lemma 1. For arbitrary non-gero naturals m, n
(3) F (mn) = F(m)+F(n),
(6) Fmy<n.

Proof. () is obviously true. If » is a prime or n= 1, then F(n)
= n—1< n. Let (6) hold for all » which are products of at most & primes,
and let m be a product of k-1 primes. Suppose m = pn where p i a prime.
Then

F(m)= F(p)+F(n) < (p—1)+(n—1) < (p—L)nt+@—1)<m, qed.

DEFINITION. Let G be a (not necessary Abelian) group. (1) will be
called an invariant coset decomposition (ICD) of the group @ if all the

groups Gy, Gy, ..., G are invariant subgroups of G and if every element

of G belongs to exactly one element of (1).
The main result of this paper is:

TurEoREM 1. -Let @ be a group and (1) its ICD. Then

@ B> 14506 6.
i=1

k
Remark. In the following we show the finiteness of [G:(7) G4l
. 0 - - ‘—1
Theorem 1 is obviously a generalization of Znim’s conjecture. It ig also

a generalization of Myecielski’s conjecture because every coset decompo-

ge . ’b
sition of an Abelian group @& is its ICD, and F([G: N 6&;]) = F((G:G]).
) - =1
LemMA 2. Let G be a group and a,Gy, a,@, its cosets. Then either a,Gy ~
A alh=0 or @G a,G, is a coset by Gy~ Gy -

Proof. Suppose a,6h ma,f, =0 and bea, Gy a6, Then a6y
= b@, a,0; = bG, and hence 4,Gy N @@, = b(G, ~ G,), g.e.d.

Lemma 3. If @ is a group, v € G and (1) is an I0D of @, then
(8) {(wa) Gy, (90,) Gy ..., (war) Gr}
is also an ICD of the group G.
The proof is obvious.
Levma 4. Let (1) be a;n ICD of a group @. Let F be an invariant sub-

grouprof G contained in () Gi. Write G = G|F, Gi= GyF and G = aF

=1

* ©
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for every i=1,2, .., % Then
(9) {&1@1; Ezézy (XS] Ek@k}

: ko k
is an ICD of the group G and [ G =1[G:[) Gl
i=1 i=1
Proof. By Theorem 2.3.2 and Theorem 2.3.4 of [1] G, Gy iy &
are invariant subgroups of @. Denote by ¢ the canonical homomorphism
from @ onto @. Since, for every i = 1,2, ..., k, ¢ (@) = a:6y and (1) is
3 3
a partition of &, (9) is a partition of G Since o~ Gi)=[" Gi, we
i=1 i=1
_ Kk k
have [G: () Gi]1=[G: ) Gi]

i=1 i=1
k

LuwMA 5. Let G be a group and (1) its ICD. Then [G:) Gil< o2
i=1

and [G:G] << oo for every i=1,2,...,k

&
Proof. Since every coset by [} G4 is an intersection of some cosets

+ d=1

k k
by Gi, we have [G:[) Gi] < []1G:@G:]. Hence it -is snfficient to prove
i=1 =1
[G:Gi]< oo for i=1,2, ..,k Let % be the smallest natural number
for which there exists a group ¢ and an ICD (1) of ¢ such that [G:Gr]
is infinite for some 7 =1, 2, ..., k.

Suppose at first that [G: G4 ~ Gyl is infinite for some i,j= 1,2, ..., k.
By Lemma 3 without loss of generality a; = ¢ can be assumed. Theu the
non-empty elements of the sequence

(10) Gi 0,8y, G 0 0yGhy ey Gi 003G

form an IOD of G with less than & elements (because G; N @Gy = D)
and with at least one infinite index [G:: @, ~ Gy]. This contradiction
implies that all the indices [Gi: @y ~ G4] are finite.

k
Denote [ G4 by F. For every s=1, 2, ..., b we have
i=1

. )]
[G: F] = [t () Gs ~ @i < [ [ [Gs: (62 0 G)]
=1 i

k
i=1
and hence all the indices [Gs: F] are finite. Hvery coset a:G: cozllcsists qf
[G¢: F] cosets by F and hence the group @ cousists of [G: Fl= Z[G;:F]
cosets by F. However, [¢: @] <[G:F] for every i=1,2, .T.s,lk, and
hence all the indices [G: G4] are finite, which is a contradiction.

Remark. Lemma 5 is a corollary of Theorem 1 of [4]. That paper
has not been published yet.
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LrvMA 6. Let G be a group, let (1) be IOD of G and let H be a (proper)
mawimal invariant subgroup of G. Then
a) every element of (1) either is contained in some member of G/H or
has a non-empty mterseotwn with every element of G[H.
b) if an element of (1) is contained in some element of G/H, then every
elem{mt of G[H contains & number of (1).

Proof. a) It is sufficient to consider a,G;, and without loss of gener-
ality @, = e can be supposed. Consider the set- theoretical unjon of all
members of G/H which have a non-empty intersection with @&, and
denote it by F. Obviously F = G H = {gh| g € Gy, b « H}. By [1], Theo-
rem 2.3.3, F' is an invaciant subgroup of G. Since H CIFC@, we have
either F=HorF= QI F=H,ie GH=H, thenCﬂCH Let GGH=@
and let 2 be an arbitrary element of G. There exist y ¢ Gy, 2 e H such
that #=yz. Hence &, naH = G nyzH = y6 nyH = y(G, ~ H) # 0,

ed.
! b) Let an element of (1) be contained in some element of G/H. De-

note ﬂ @; by F. Obviously F C H holds. By Lemma 5, [G:F] is finite.

4=1

Suppose that {2,Gy, 0,6, ..., &Gy} is the set of all elements of (1) which
have a noh-empty intersection with every member of G/H. Every inter-
section a;G; N xH (i=1,2,..,7, ©eG) consists of [H ~ Gq:I'] elements

of G/F. Hence (U aiG) ~oH consists of 2 [Hn~ G¢ IF] elements of G[H,

=1 i=1

and then aH—( Uasz) consists of [H:F]— Z‘[H ~ G¢T] elements

i=1 i=1
of @/F. This number does not depend on . Since it is non-zero for some

r
@ ¢ @, it is non-zero for every # e @, i.e. every set wH—( |_J auGh) eontains
=1

at least one coset by F (as a subset). This coset must be contained in some
a;Gy, § >r. By a), a,Gy is a subset of xH, q.e.d.

Proof of Theorem 1. In the sequel, & “group” means an invariant
subgronp of @ and a “coset” means a coset of G by an invariant sub-
group of G. By Lemma 4 and Lemma b it is sufficient to consider the
case |G| < oo and | ﬂ G4 = 1. Now we can prove Theorem 1 by induction
with respect to |G|

k

If |G|=1 then k=1, [ ¢i= G, and (7) obviously holds.

i=1

Let |@| >1. Denote by I the set of all such non-empty subsets M
of {1,2, ..., %} that there exists a partition

(11) {Xy, Xyy ooy X}

icm

On a generalization of Mycielski’s and Zndm's conjeciures 45

of the group @ so that every element of (1) is contained in a member

of (11), every coset by () G is also contained in a member of (11) and
ieM
(12) m=1+F([G: N G]) .
teM

Suppose now {1, 2, ...
of @ that m >

k} € M. Then there exists such a partition (11)
14+ F([G: ﬂ @]). However, k> m and hence (7) holds.
Therefore to finigh the proof of Theorem 1 it suffices to show that
{1,2, .., ke M.
PB.OPOSITION A. The set M is non-empiy.

Without loss of generality @, = e¢ can be put. Since @y is a proper
subgroup of &, there exists & maximal proper subgroup H of & containing .
The non-empty members of the sequence

(13) HnaGy, HnaGyy ooy H oG

form an ICD of the group H because H n Gy, H ~n Gy, ...
invariant subgroups of H. We may suppose that

(14)

yH ~ Gy are

H ~a,Gyy HaGyy ooy HasGy

are non-empty and that the other members of (13) are empty. We have
|H| < |@| and heuce, by the indaction hypothesis,

(15) > 14-F(H: m (H ~6)))=1+F(H: N é.

=1

Let [G:H]=h and G/H = {H', B ..., H"}, H'= H. Consider the set

s s
; arsGs, 0P— U ai(h, ey H— U aiGi} .

i=1 =1

(16) {061, 06, ...

The elements of (16) are obviously pairwise disjoint and their union

iy the set @. Clearly o,GyCH and hence by Lemma 6 every coset

Hi, §=2,..,} also contains an element of (1). Therefore the sets
8

H! — LJMG“ i=2,.,
=1

of the group @. By Lemma 6 every member of (1) either has a non-empty

intersection with every element of G/H or is a subset of some H,

j=1,2,..,h Hence every element of (1) is contained in an element

of (16). It is easy to see that every coset by (1) G:is also contained in some
i€l
s} e M it remains to verify that

%, are non-empty, and hence (16) is a partition

element of (16). To prove {1,2, ..,

bl 14 F (G () G

=1
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By Lemma 1 we have

s+h—1>1+5([H: ﬂ Ga)+[6: H)—

i=1

114 y([ﬂ:ﬁ &) + 7 ([6: /)

8
=14+ 5([6: H][H: ﬂl @]) =1+ f;l-‘([&’:iﬂ1 Gg). q.ed.
i -

ProrosITION B. No proper subset of {1,2,...,
element of M.

Assume on the contrary that M = {1, 2, ..., k} is & maximal element
cof M. Without loss of generality M = {s,s+1,..,%} and a; = ¢ can
be assumed. Let (11) be a partition of G such that every element of (1) is
contained in some element of (11), every coset by ﬂ G4 is contained

1) and let (12) hold. Put F = ﬂ Gq.
teM

k} is a mawimal

in some element of (1 Obviougly

FralGi=0 for ie M and hence the non-empty members of the se-
quence
(17) Fomby Foaly, o Foa Gy

form a partition of the group F. We may assume that
(18) FrwaG, Foaly, .., Foael,

are non-empty and that the other members of (17) are empty. Clearly
|F| < |G| and hence by Lemma 2 and the inductive hypothesis
r
(19) r=14+F(F:N (F&)).
i=1 :
The group F is contained in some member of (11); suppose F C Xp.
Then every coset a4@i, 1=1,2,..,7, is also coutained in X, because

it is a subset of some member of (11) and has a non-empty intersection.
with 7. Consider now the set

(20) {aGhy 4Gy ooy WGy Xy, Xy, ... U abhi} .

.., 7}. BEvery coset by ﬂ Gi= () G) T is con-
ieM

tained in some element of (20). Every element of (1) is also contained
in some element of (20). The number of non-empty elements of (20) is
at leagt r4+-m—1 and we have

’m—l 7

Tet N=Mu{1,2,.

rbm—13 14 5(F: m (F ~ @)+ F((6:F])] = 1+ F((6: ﬁl (F ~ @)

=1+ F((@:( n Gmm @)= 1+ F(6: N &) .

i=1 ieN

Hence N ¢ M, contrary to the maximality of M.
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Propositions A and B imply {1,2,..
q.e.d.

Actually we have proved more than Theorem 1. For an arbitrary
group @ and its invariant subgroup F such that [G:F]< cc define

, k} € M. Therefore (7) holds,

3

(21) 8(6,F)= ) ((He:H;,]1-1),
i=1
where H,=F, H,, .., H;= @ is a maximal chain of subgroups of @

such that H; is invariant in H,, for all 1= 0,1, ..., s—1. By [1], Theo-
rem 8.4.4, §(G, F) does not depend on the choice of the chain H,, Hy, ...

., Hs. The following theorem can be proved in the same way as
Theorem 1: )

THEOREM 2. Let G be a group and (1) its ICD. Then

k
(22) E=148(6,MN Gy .
i=1
If the group @ is Abelian, then the right sides of (7) and (22) are
equal. However, there are (non-Abelian) groups and their ICD (1) for
which the right side of (22) is greater than that of (7).

Remark. Theorem 1 does not hold if we replace the words “in-
variant coset decomposition” by the “left coset decomposition” or “right
coset decomposition”. We give some examples. Let G = §; be the sym-
metric group of degree 3, 8, one of its two-elements subgroups and
A, Ay, 4; (vesp. By, By, B;) right (resp. left) cosets of 8; by 8,. If we
consider the set {4,, 4,, A;} (vesp. {B,, Bs, Bs}) as a left (resp. right)
coset decomposition {a G, a,G,, a;Gs} (resp. {Giay, Gray, Gyas}) of the
group @, then Gy n Gy~ Gy= {¢}. We have k=3 and 1+ &F([G:{e}]}
= 14-F(6) = 4. Hence (7) does not hold.

We give one more example. If we consider

{A; X By, Ay X By, A3 X By, 83X By, 83 X Bg}

as a left (resp. right) coset decomposition {a,Gy, ..., a;Gs} (resp. {Gay, ...

Gyag}) of the group G = §;%8;, then G "G .. G= 8 X {¢}
(resp {e} x 8,). In both cases % = 5 anJ the right side of (7) is1-+F(18)=6.
Hence (7) holds neither if (23) is considered as a left coset decomposition
nor if it is considered as a right coset decomposition.

(23)
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A new definition of the circle by the
use of bisectors

by
A. D. Berard, Jr. (Wilkes-Barre, Pa.) and W. Nitka (Oran)

Abstract. The subset B(z,y) = {g «X: o(z, ) = o(y, q)} in a metric space (X, o}
is called the bisector of a pair x, y. It is known that any connected metric space in which
each bisector is a unique point, is topologically an interval of the real line R.

If each bisector consists of exactly two points, then X has DBP property.

The question whether every connected metric space with DBP is homeomorphic
to the one-sphere S* is still open.

A metric space is segment-convex if for each pair p,  of its points it contains an
are joining p to r which is isometric to a line segment.

‘We show that any segment-convex metric space with DBP is isometric to a metrie
one-sphere with its natural geodesic metric.

1. Introduction. For any pair of distinet points # and y in a non-
trivial metric space (X, g) the subset B(z,y) = {g ¢ X| o(®, ¢) = o(y, ¢)}
will be called the bisector ([3], see also [1] where it is called the midset).
If each bisector is & unique point, then X has [1] the unique bisector pro-
perty (UBP). If each bisector consists of exactly two points, then X has
the double bisector property (DBP).

It is known {1] that any connected metric space with UBP is homeo-
morphic to a subset of the real line R, and is tnerefore an interval.

The question whether every connected metric space with DBP is
homeomorphic to the one-sphere S is still open.

The aim of the present paper is the following result: If (X, p) is
a segment-convex metric space with DBP; then X is isometric to a metrie
one-sphere.

The proof will be based on the following three auxiliary propositions:

Let a; and a, be two distinet points of X, and let B(ay, a)
= {%, %}, then

1° I, = & a, w a3, and L, = &, a, v 4,3, are two simple arcs joining
@y, 10 @y, and L, n L, = B(ay, ay).

2° More precisely, I, and L, ave two metric segments joining @, to z,.

3° Liul,=2X.

"4 — Fundamenta Mathematicae LXXXV
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