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Abstract. The aim of this paper is to investigate radicals of semi-group rings. In
particular, radicals of rings of matrices and polynomials are considered. The results
obtained in the paper generalize known theorems on radicals of rings of matrices and
polynomials. Methods used here are similar to those of Amitsur and Ortiz.

Introduction. The aim of this paper is to investigate radicals of
semi-group rings. In particular, radicals of rings of matrices and
polynomials will be econsidered. All the necessary informations about
radical properties can be found in [4]. The results obtained can be trans-
ferred, methods of investigation unchanged, to narrower classes of rings
or algebras. Some part of the results concerning semi-group rings is known
in the associative case [11]. Since in this paper rings need not be associative,
then, for an arbitrary ring R, we shall denote by N (R) the set of all a e B
such that for any «, ¥ ¢ R the following equalities hold:

(aw)y—a(zy) =0,
(za)y—wz({ay) =0,
(zy)a—m(ya) =0 .

Thus N (R) is the nucleus of R. Moreover, by Z(R) we denote the center
of the ring R, i.e., the set of all a ¢ N (R) such that az = za for all 2 ¢ R.

‘When saying that I is an ideal of B we shall always mean that I is
a two-sided ideal of R.

Tor elements of an arbitrary semi-group we shall use terms applied
in the case of a multiplicative semi-group of an associative ring.

Let R be a ring and G a semi-group. Consider the set of formal sums

> 149, where 75 e B and 7, = 0 for almost all g « & Two. such sums are

pEG

considered identical, 3 r,g= Y r,g if and only if r,=r, for every
geG g

g % 0. This set, together with operations of addition and multiplication
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defined as follows:

(1) g+ drsg = Drgtra,

geG ge@ geqd
" . o ot y ol ’
(2 2799 270.‘7 = 2 an"ygg
geG g'e@ geG o' e@

is a ring which we shall call a semi-group ring and denote by R[G].
The set of formal sums ' r,g may be considered without any re-
€@
lation and such a set togethgr with operations (1) and (2) is also a ring
called sometimes a non-contracted semi-group ring. Let us denote this ring
by R[Glne. If the semigroup G does not contain a zero element then
R[G@sc= R[G]. If @ contains a zero element then R[Glu. = R[G'] where
G’ is identical with the semi-group & but we forget that the zero is the
zero element of the semi-group. Therefore all the results obtained for
semi-group rings of semi-groaps without zero are valid for non-contracted
semi-group rings. In the sequel we shall always assume that every semi-
group contains at least one.non-zero element.

1. Semi-group rings. The following lemma, which is a modification
of well known results [3], [6] will be usefull when investigating the radicals
of semi-group rings.

Lemma 1. Let B be a ring, C an ideal of B, and h: C—~B a mapping
such that

1° R(ey)+ hie)—N(e,+¢) e O for ¢, 6 e O

2% B(R(0)) C C+4(0);

3° (1(0))BC O+1(0);

4% D(eye)—h(cy)h(c) e O for ¢, 6, € C.

Then C = 8(B) for some radical property 8 implies h(0)C C.

Proof. Denote by D the set O+ i(C). From the conditions 19 2°
and 38° it follows that the set D is an ideal of B. Denote by ¢ the mapping
of the ring ¢ onto the ring D/C defined as follows: ¢(¢) = h(¢)+}- C, where
¢ e (. It follows from the conditions 1°-4° and from the definition of D
that @ is & homomorphism onto the ring D/C. If ¢ is an §-ring, then
D/0 is also an §-ring, and thus D is an §-ideal of B. Hence D C §(B),
and as §(B) = €, we have h(0)C C.

TrrorEM 1. If B is an ideal of A such that A = B+ N (4), then for
any radical property 8, 8(B) s an ideal of A.

Proof. Denote by (' the set S(B) and by 4’ the set of all those a ¢ 4,
for which a0 C € and Ca C . Of course A’ is a sahgroup of 4 and BC 4’
Let @ e« N(4). Denote by » a function defined as follows: h(e) = ae for
¢e (. Since ¢ C B and B is an ideal of A, then 2(0)C B. We shall verify
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that the function k satisfies conditions 1°-4° from Lemma 1. Tt is evident
that h satisfies the condition 1% Now let b e B, ce C and ¢, € €. Then

bh(6) = b(ac) = (ba)e e BeC C C C+h(C);
h(e)b = (ac)b = a(ch) e aC C h(0) C O+ R(0):
h(ee)—h(6)h(e) = a{ee;)—(ac)(ac,) = (@0)61_((“0)“)61
= (ac— (ac)aje, e BOC C.

Now, by Lemma 1, k{0)= aCC C. Analogously, one can prove that
CaC C and thus a € A’. Since 4 = B+ N(4), A’= A. Therefore ¢ is an
ideal of 4.

TEEOREM 2. If @ is any semi-group and 8 any radical property then,
for any ring R, S(R[G1) is an ideal of R*[G], where B* is obtained from R
by an adjunction of the unity element by the ring of integers in the usual way.

Proof. Since R*= R+Z then RG] = R[G]+Z[G]. Moreover
R[6G] is an ideal of RG] and Z[6]1C N(R*[G]). Therefore Theorem 2
follows from Theorem 1. ‘

COROLLARY 1. If G is a semi-group and contains a unity element, then
{S(R[G)) ~ R)[61C 8(R[GD.

Proof. Of course

S(R[G]) ~RC S(R[G]),
whence

(RTGT)(S (R[G)) ~ R} C (R'TGT) S (RG]} -
From Theorem 2 it follows that \

(RG] S(RLG]) CS(R[G]).
Moreover
(R*[G])(S(R[G’]) ~ R) = ($(R[G]) » R)[G] , a
therefore
{S(R[6) ~ R)[G1C S(R[G)) .

DeriNrTioN 1. Let 8 be any property and G a semi-gronp. A ring
R is called a GS-ring it and only if R[@] is an §-ring (ef. [12]).

In the following, we state several theorems about the property G8s.
Some of them can be found in ([11]). Basy proofs will be left to the reader,

THEOREM 3. If the property § is radical, so is the property GS.

Proof. It is evident that a homomorphic image of a GS-ring is
a G8-ring. Suppose now that any non-zero homomorphic image of fshe
ring R containg a non-zeco G§-ideal.

We will show that R is then a GS-ring, that is, R[G] is an §-ring.
Let J be the union of all these ideals I of R for which I[G]C S(R[G])-
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Then J[G] C S(R[G]). Suppose that J # R. Then there exists a non-zero
G8-ideal A/J in the ring R/J. Since 4 5 J, A[G] ¢ S(R[G]) and heunce
(A[G1+ S(R[GD)/8(R[G]) is a non-zero ideal of the ring R[GYS(E[G)).
But (A[G]+ 8(R[G])/S{R[G]) is a homomorphic image of (4/J)[G] and
(A}7)[@] is isomorphic to (A[GD/(J[G]). Thus (A[G]+8(RIGD)/S(RIG)
is an 8-ideal. This is a contradiction with the fact that B[G]/S(R[F]) is
an §-semi-simple ring. Then J = R and so R[G]C S(R[G]), wheuce
R[G]= §(R[G]).

We shall say that a property S is radically inherited by ideals (one-
sided ideals, subrings) if auny ideal (one-sided ideal, subring) of an §-ring
is also an S-ring.

ProrostTiON 1. If the property S is vadically imherited by ideals,
one-sided ideals or subrings, so is the property GS.

A radical property S is supernilpotent if every zero-ring is an
§-radical ring.

ProrosirioN 2. The property S is supernilpotent if and only if the
property @8 is supernilpotent.

Proof. If R iy a ring with zero multiplication then the ring R[G] is
a4 direct, sum of its ideals Rg, g # 0, which are isomorphic with R. There-
fore R[G] is an' §-ring if aud only if R is an S-ring.

_ ProrosrmioN 3. If % is @ homomorphism of the semi-group G ownio
a semi-group G, then for any radical property 8 the inequality G8 < G'S
18 satisfied.

PROPOSITION 4. If G is a semi-group without zero then GS <8 for
any radical property 8. )

ProOPOSITION B. If G and G’ are semi-groups then for any property 8
we have G(G'8) = G'(G8) = (@ ® G') S, where @ @ F = G X @ is a semi-
group with operations defined co-ordinate-wise if 0 ¢ G and 0¢ @'z if of
least one of the semi-groups contains the zero element then @ @ @' = G X G/ ~,
where ~ is a relation defined as follows:

(g,9)~(h, R')
< (g=hAag =h)Vig=Th=0)V(g = ' = 0)v
Vig=1 = 0)v(¢g"=h=0)]

for ¢, h €@, g', b ¢ @ and where the class of a pair with at least one zero
co-ordinate is considered as a zero element of the semi-group G ® @'

PROPOSITION 6. For any semi-group G and any properties S and S,
if §< 8 then G8 < GS'.

PROPOSITION 7. Let G be any semi-group with unity element and
8 — any radical property. Then GS(R) C S(R[G]) ~ R. If (S(R[G]) ~ B)[¢1
is an S-ideal of R[G], then G8(R)= S(R[GF]) n R for any ring R.
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CorOLLARY 2. If 8 is radically inherited by ideals and G is a semi-
group with a unity element, then GS(R)= R ~ S(R[G]) for any ring R.

An example of a semi-group @ and a cadical property S such that
G8(R) # S(R[G]) » B is not known to the author.

DeriNiTION 2. The property § is G-normal if for any ring R there
exists an ideal A C R such that S(R[G]) = A[G].

ProrositioN 8. If @ is o semi-group with umiy element, then for
any radical property S the following conditions are equivalent:

1° 8 is a G-normal property;

2° for amy ring R S(R[G]) = (S(R[G]) ~ R)[GL:

3° for any ring R, if S(R[G]) %0 then S(R[G]) ~R # 0.

The proof is obtained by taking into account the Corollary 1.

ProrosITION 9. If the property S is G-normal, then

1° if ® is a strong radical property, so is the property GS;

2° if the property S is semi-simply inherited by ideals (one-sided ideals
or subrings), so is the property GS.

DErFINITION 3. If the property § is G-normal and GS = 8§ then the
property 8 is called G-invariant.

2. Matrices. Let us consider now a semi-group M; composed of all
kX k matrices e and tne element zero, where e is the matrix with 1 in
the ijth place and 0’s elsewhere. For such a semi-group, the ring R[M;]
is isomorphic to the ring R of all kX ¥ matrices with elements in the
ring R. Therefore the results of the first part of this paper may be applied
to matrices.

From now on the Mj-invariant properties for any k will be called
matrically imvariant.

PrOPOSITION 10. Any radical property is My-normal for every k > 1.

Proof. It follows from Theorem 2 that for any ring R, S(Ry) is an
ideal in (R*); and so it is of the form Ay for some ideal 4 of R¥ since
R* is a ring with unity element. Clearly A C R.

THEOREM 4. For any k> 1 and a radical property S the following

- implications are true:

(a) if the property 8 is vadically inherited by one-sided ideals then
M8 = My, 85

(b) if 8 is a strong radical property [5], then M8 < My, 8.

Proof of (a). Let B be any M,,,8-ring. Then B, is an §-ring.
Denote by I the set of all those matrices of R,.; whose last row is zero,
and by ¥ the set of all those matrices of R, ., whose last columu is zero.
The set I is a right ideal of B,,, and ¥ is a left ideal of R, hence
I A %is a left ideal in I. From the fact that the property 8 is radieally
inherited by one-sided ideals it follows that I and I ~F are S-rings.
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The rings T ~ 3 and F; are isomorphic to eacfh other a.nd 50 Rk is an
.8-ring, ie., R is an Mi8 -ring which establishes the implication (a).
Proof of (b). Suppose that B is an M8-ring. Let I a:nd F be as
defined above. Since Ry is an §-ring then I ~F is & left S -ideal of the
ring I. From the fact that S is a strong radiecal propelfty 1t.follows that
I~ is contained in S8(I) and (I ~3%) I is contained in S(I). ]:fut
(I~%) I=1I whence (I H+IF is an ideal of I'and (I P+ s
contained in S(I). Let h be a mapping of the ring R into I such that

<0¢11 ay, 00...0a,
Blo.ooooons =100 ...0 a4
gy - Opy 00...00

I

Olearly for any two matrices A and B in R, h(A+B)= h(4)+h(B)
and h(4-B)eI*C 8(I), h(4)h(B) e I C 8(I). Furthermore for any ma-
trix O of I there exist matrices A el g and B C Ry such that A4
+h(B)= 0. Let % be the superposition of h with the natural holec‘)-
morphism of I onto I/S(I). It follows from the conditions n,bovte that & is
a homomorphism of the §-ring Ry onto the §-semi-simple ring I/S(I).
Hence I/8(I) =0, ie, 8(I)= 1. .

Denote by I’ the set of those matrices of the ring R, whose fl.I‘S’D
row is zero. It can be proved, similarly as for I, that Sy =1TI. Us%ng
again the fact, that § is a strong radieal property we obtain the following
inclusions: IC 8(Ryy,) and I'CS(Ryyq) Hence I—?—I’C S(Rys1)s 'but
I+I' = Ry, and so Ry, is an §-ring, that is, B is an M, . ,8-1ing.

COROLLARY 3. If a strong radical property S is radically inherited by
one-sided ideals then 8 is a matrically invariont property.

This can be proved by induction on k.

TarorEM 5. If a strong radical property 8 is radically inherited by
ideals and R is an S-ving, then R is also an 8-ring, where R is the zero ring
on the additive group of E.

Proof. Similarly as in the proof of Theorem 4(b) for k= 1, we obtain

ab

for an §-ring R that the ring I of mad;rices of the form [0 O] , where

0b
a,beR, is an §-ring. The set L of matrices of the form {0 0] , ‘Where

b <R is an ideal of the S-ring I. Therefore L is.an §-ring. The theorem
follows now from the fact that L and R are isomorphic to each other.

COROLLARY 4. If a strong radical property 8 is radically imherited by
ideals in the class of algebras over am arbitrary but fiwed field F and there
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exists a non-zero 8-algebra over T, then the property 8 is supernilpotent in
the class of all F-algebras.

Proof. By Theorem 5 there exists a non-zero §-algebra over F with
zero multiplication, hence, for algebras over a fixed field F, every algebra
with zero multiplication is an §-ring.

COROLLARY 5. If a strong radical property 8 is radically inherited by
ideals, then the property S is supernilpotent in the class of all rings if and
only if therve exists an S-ring R, whose additive group contains an element
of infinite rank. !

Proof. If the property 8 is svpernilpotent, then we may take R = Z
where Z is the zero ring on the group of integers.

If R is an §-ring, then by Theorem 4, R is also an S-ring. Let a be
an element of R cf infinite additive rank. Then the set 4 of multiplicities
of @ is an ideal in R. It is clear that 4 and Z ave isomorphic to each other.
Since the property § is inherited by ideals then Z is an §-ring and thus
every cyclic group considered as a ricg with zero multiplication is an
8-ring. Therefore every ring with zero multiplication is an §-ring.

THEOREM 6. Let § be any class of semi-prime rings such that 0° if every
non-zero ideal of a ring R can be mapped homomorphically onto some non-
zero ring of T, then the R must be in F; then if the following three conditions
are equivalent

1° Re?,

2° Rr e for every k=1,

3° there exists an integer k=1 such that RBred, the upper radical
property determined by the class T is matrically invariant.

To prove this theorem we need the following lemma:

LevmMA 2. If I is a semi-prime ideal in the ring Ry then there exvists
a semi-prime ideal A C R such that Ay = I.

Proof. Denote by A the set of those a ¢ R for which there exists
a matrix in I having @ as one of its elements, and by 4 the set of finite
sums of elements of 4. From the fact that I is an ideal of Ry it follows
that A4 is an ideal of R. Moreover I contains (RpAdx)Rr and Rg(ArRx)
and Ay is an ideal of Ry. It follows from the inclusions above that I+ A7
is an ideal of Ry and (I-+.43)2C1I. Since I is semi-prime, I contains
I A%, therefore I contains A%, whence I contains 4. Since I is contained
in Ay, I = Aj. It can be easily verified that 4 is a semi-prime ideal of R.

Proof of Theorem 6. Denote by S8 the upper radical property
determined by the class §, and let k be a positive integer. It suffices to
show that M8 = 8. Let R be a non-M;8-ring, i.e., Rz is a non-8-ring.
Then there exists an ideal I in Ry such that the ring Rx/I is in the class 7.
Hence I is a semi-prime ideal. By Lemma 2 there exists an ideal AC R
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such that I = Ay. The rings Ry/I = Ri/Ax and (B[A) are igomorphie to
each other, (RjA); 9. From the latter it follows that also (R[A)ed
what means that R is a non-8-ring.

Suppose now that B is a non-§-ring. Then there exists an ideal 4
in R such that the ring R/A is in the class 7. Hence, by 2°, Bx/As is also
in the clags § and thus Ry is a non-§-ring. This means that B is a non-
M8 -ring.

COROLLARY 6. The Brown-McCoy radical property is matrically in-
variant.

Proof. It is sufficient to prove that for an arbitrary ring R the
following conditions are equivalent: ‘

(i) R is a simple ring with unity element;
(ii) for any k> 1, R is a simple ring with unity element;

(iii) there exists an integer k=1 such that Rz i8 a simple ring with
unity element, and the corollary follows from Theorem 10.

We have thus shown that the Corollary 3 is not an if and only if
condition, as the Brown-McCOoy radical property is not strong [5]. Moreover
this property is not radically inherited by one-sided ideals (see Example 3).

There exist radical properties which are not matrically invariant.

Bxavpre 1. Let A be an arbitrary non-empty subset of positive
integers and let F' be a field. Denote by ¢ the set of all those rings of ma-
trices Fp for which % < A. Since the sef T consists of simple rings with
unity element, there exists the upper radical property determined by &,
which we denote by 8. It is easy to verify that M;8(F)= 0 if aud only
if 4 ¢ 4. Hence, if 4 is not the set of all positive integers, the property
8 is not matrically invariant.

Most ‘of the results of this section can be extended to infinite ma-
trices with finite number of non-zero entries.

3. Polynomials. Denote by P, a free abelian semi-group with unity
element, the set of generators of which hag cardinal number 7. Then the
ring R[P,] is isomorphic to the ring of polynomials R[X.], where X, is
the get of commutative indeterminates with cardinal number z. We can.
therefore apply here the results of the first part of this paper (ef. [12], [13])-

The P,-invariant properties will be called polynomially invarient.
The P,-normal properties will be called polynomially normal properties
or Amitsur properties. )

There exist radical properties which are not polynomially normal.
One can verify this fact considering the upper radical determiuned by an
arbitrary finite field [8].

Let v and 7’ be any two cardinal numbers. Then the semi-groups
P,x P, and P, are isomorphic to each other. Therefore, for any radical
property 8§, we have P, .8 = P,(P.8)= P,(P.8). Moreover, if 7' <7,
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there exists a homomorphism of the semi-group P, onto P, and there-
fore for an arbitrary radieal property S we obtain the inequality P, 8
< P_8. In partieular, P .8 < 8.

THEOREM 7. For any cardinal number t there exists a field F and a radical
property S in the class of algebras over the field F such that if ' < v then
P.8>P.S8.

Proof. There are three possibilities to consider

(a) T>8,. Let F be an arbitrary field with cardinal number v and
let F(y) be the field of rational functions-over F in one indeterminate y.
Let 8§ denote the upper radical property determined by the field F.
Cousider the field F. We show that F is a P, 8-ring for any ' < 7, but
is not a P, 8-ring. The dimension of F(y) over F is equal v and for any
1’ < v the dimension of F[X_] over F is 7's,. Since 7 > 8, '8, < 7. Compa-
ring the dimensions of F(y) and F[X ] we see that there does net exist an
F-homomorphism from F[X_] onto F(y) and therefore F[X ] is a P.S8-
ring for any ' < 7. .

Now let T be a set with cardinal number 7. The field #(y) has a base
with cardinal number = over F. Denote by a;, where ¢ T, the elements
of this base. Similarly, indeterminates in the ring F[X] will be denoted
by ;, where teT. Define the mapping h: F[X 1-=F(y) by h(a)= a,
a e F and him) = az, t ¢« T. One can easily see that » is & homomorphism
onto. .

From the fact that such a homomorphism exists it follows that
F[X,] is not an §-ring and therefore it is not a P,§-ring.

(b) 7= 8,. Let F be any denumerable field and F(y) the field of
rational functions in one indeterminate ¥ over F. Denote by 8 the upper
radical property determined by the field F(y) in the class of algebras
over F. Congider the field F'. We show that F' is a P8 -ring for any positive
integer &, but is not a Py S§-ring. The Hilbert’s Nullstellensatz [10] implies
that, for any % >0, there does not exist an F-homomorphism of the
ring F[,, ..., 2] onto the field F(y). Hence F is a Pp8-ring for every
% > 0. The dimension of F(y) over F is 8,. Let the elements a;, 1= 1,2, ...
form a base of F(y) over F. Similarly as in (a), an F-homomorphism of
F[Xy]= Flm, £, ...] outo F(y) can be defined. This implies that F is
not a Py, S-ring. .

(¢) T=m, where n is a positive integer. Let F, be any field of
characteristic p > 0. Denote by F the field Fy(yy; -, Yn) of rational
fnnetions in » commutative indeterminates ¥y, ..., ¥n over Fy and by & its

extension Hy f/ Yyyoeny Il’/fy_n). Let 8 be the upper radical property determined
by the field @ in the class of all algebras over F. Consider the field 7.
‘We show that F is a Py S-ring for any k << » and that F is not a P»8-ring.
The field G is an algebra over F generated by the elements !lj/:;/—l, vy Vz;: .

5 — Fundamenta Mathematicae LXXXV
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The dimension of @ over is p™ and of e ¥ for every a in G. Hence @ is

not generated by k elements for k< n. For any & <n the radical P8 (F)
is equal F since every F-homomorphism of the ring F[®, ..., x] Sepds
it onto an F-algebra generated by % elements. However, there el.UStS
an F-hemomorphism & of the ring F[ay, ..., %] onto the field G defined

by the equalities h(x:)= 1ij/@/i, where 4= 1,...,%n. The existence of this
homomorphism implies that P,8(F) is not equal . This completes the
proof.

The following theorem is a weaker version of the preceding one for
the class of all rings.

TarorEM 8. For any cardinal number vz %, there ewists o radical
property 8 such that P8 >P.8 for «' <.

Proof. We consider two cases. . _

(a) T >8,. Let F be any algebraicaily closed field with ca'rdnml
number = and let F(y) be the field of rational functions over ¥ in -one
indeterminate y. Let § denote upper radical property determined by F(y)
in the class of all rings. Consider the field #. We show that I is » P8 -ring
for any ' < = but is not a P.8-ring. Let 7' < 7. Suppose there exists
a hemoemeorphism % of the ring F[X,] onto the field F(y). This homo-
morphism gives the field F(y) a now structure of vector space if we p.ut
aca=h{a)a for aeF, aecF(y). Since F is algebraically closed with
cardinal number = and F(y) is not algebraically closed, the dimension
of the vector spaces F'(y) defined above is greater or equal 7. The homo-
morphism % is an F-linear mapping of the vector space F[X./] onto the
considered space F(y). The.comparison of dimensions of these vector
spaces leads to a contradiction. Analoguously as in the case (a) of
Theorem 7 we obtain that P.8(F) # F.

(b) 7= 8. Let B be a prime field and F(y) the field of rational
functions over F in one indeterminate y. Denote by § the upper radical
property determined by the field F'(y) in the class of all rings. Since every
homomorphism of the ring Flay, ..., %] into the field F(y) is an F-linear
mapping, then, similarly as in the preceding theorem, we have Pg8(F)=F
for any positive integer & and Py 8(F)=0.

‘We shall show in the seqael, that for many radical properties § the

oo
following coundition is satisfied: P,8 = Py 8= [ PaS for any v = %,
n=0

oo .
where () P8 is the largest radical property smaller then P8 for
n=90
i=0,1,2,.. Properties satisfying this condition will be called pro-
perties of finite type.

LeMMA 3. If § = P, 8 and 8 is o property of finite type then, for any =,
PS=S8.
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Proof. Since P,,,8 = Py(P,8), we have Pnd =& for any m and

therefore § = P8 = Py 8= P8 for any 7, as the property § is of

n=0 -

finite type.
‘We shall denote the Brown-McCoy property by M.
Prorosition 11. The Brown-McCoy property is of finite type.

Proof. From the preceding we obtain the following inequalities for
any property 8 and any cardinal number 7 > ng:

oo
PR=2P8> .2\ P8=>Py8=P.4.
n=0
Since every polynomial in the ring B[X,] depends only on a finite number
of variables, then, by the definition of the property M, we have that
o]
P.M> () P,X. This completes the proof,

n=0

4. Associative rings. In this section ounly associative rings will be
considered.

Levwia 4. If B is an algebra over a commutative ring F and h is
a homomorphism of the ring R[x] into some ring A with unity element, then
the homomorphism h may be in one and only one way estended to a homo-
morphism kb of the ring R*[x] onto A, where R* is obtained from R by an
adjunction of unity element by the ring F.

Proof. The ring R[#] is an ideal of R*[@]. Therefore the homo-
morphism  (as it is well known [4]) may be extended to %. It can be eagily
verified that the homomorphism % is uniquely determined. ‘

Consider now a ring B and a homomorphism h of the ring R[#] onto
a simple ring A with unity element. The homomorphism % determines
in B a sequence of ideals In(h) defined as follows: an element r of R is
in In(h) if and only if there exist elements rq, 74, ..., 7,,_, in B such that
the polynomial #,+7,%+4...7,_;@-+7z" is in the kernel of h. Lemma 4
implies the following properties of the ideals In(h):

(i) In(h)C Ipyq(R) for 5=10,1,2, ..;

(ii) there exists a positive integer j such that Ij(h) # I(h);

(iii) I(k) is a prime ideal of R;

(iv) if R is an algebra over a commutative ring F then the ideals
I(h) are F-ideals of R.

LevmA 5. If R is an algebra over o field ' such that M(R)= R and
h is a homomorphism of the ring R[x] onto a simple ring A with unity element
then k(x) is transcedental over h(F), where k is the ewtension of h defined
in Lemma 4.
5
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Proof. The field F being contained in the center of Rf‘[w], R(F) is
contained in the center of A. Hence the ring A may be considered as an
F-algebra if we put f-a = h(f)-a for f « F' and a ¢ A. The homomorphism
% is an F-linear homomorphism of R*[#] onto the F-algebra A. The same
holds for h and R[z]. ‘ N

Suppose there exists a polynomial ¢ of degl“ee n with co_efflclents
in F such that p(k(s)) = 0. Let k be the smallest integer such that Iy(h)
£ Iy(h). First, we show that there exists a polynomial p(x) in R[] sue;h
that h(p) = 1 and the degree of p is smaller or equa.l k. Since Iy(h) is
a prime ideal of B, (Ix(h)* & Iy(h), (Iu(h))'[#] is an ideal (?f_R[m] and
(Ik(h))"a; = kerh. By the homomorphism theorem there ex1s1,§ a poly-
nomial ¢ in (Zx(h)["[#] such that h(q) = 1. If the degree of ¢ IS‘ =n we
have g= qyp--¢:, where the degree of g is smaller then the Q.egree of ¢
and R(g) = 1. We may therefore assume that the degree of ¢ is <n. Let
q= Zl,‘ biw', where 1< n, bie(Ix(h)f*. If 1>k, then, since bye (Te(m))",

§=0 1 :

we can find a polynomial ¢’ of degree ! in (Iu(h)*[«], q'=i§; ',

e € (I(B))"?, such that ¢, = b, and h(¢g’)= 0. Thus h(g—¢’) =1, the
diegl(eg( o)f) q—i q' is smaller than ! and ¢—g¢’ is in (Ik(h))"‘l[m]. Dfs‘note, ’t}}e
degree of ¢—¢' by s. If s>k then we .can find a Izolynlrim.m.l g" in
(Ty(R))"~*[] such that h(g")=0, the degree .of (g—q¢")—q" is sma_lh_zr
than ¢ and h(g—q'—g'") = 1. Proceeding in this manner, one can obtain
a polynomial p e I3(h)[#] of degree smaller than & and such that h( P) = 1
not more than n—¥k times. Let p, = ry+7, %+ ...+ rma™ be a polynomlz.bl
of minimal degree such that %(p,) =1 and m < k. Since M (B) = R, m is
positive. Let » be any element of the ring E. Then h(per— ) = O-and
therefore 747 belongs to Im(h) = Iy(h). The ring I(h) being a prime ideal
of R, rn belongs to I,(h). Hence

m—1 m—1 '
1= 7e0) -+ (rm) h(a™) = h(zwi) ,
T==0 =0

a8 h(ry) = 0. This is a contradiction with the choice of the polynomial p,.
Therefore h(x) must be transcendental over F.

TarorEM 9. If R is an algebra over a field T with cardinal number v,
T > 8%, and the base of R over F has cardinal number v < =, then P, M(R)
= M(R). ; ]

Proof. Clearly, M(R)D P, M(R). Suppose there exists a hon@o—
morphism % of the ring (M(R))[@] onto some simple ring 4 with unity
element. Then, by Lemma 5, k() is transcendental over F. Since elements

~ of the form 1/(h(z)—a) for a<F are linearly independent over F, the
cardinal number of the base of 4 over F is also greater than v But the
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cardinal number of the base of (M(R))[z] over F is <t's, — max {7’, &y}
<< 7. As h is F-linear, then 4 cannot be the image of (M (R))[#]. Then
(M (R))[m] is an M-ring and therefore M (B) is a P, M-ring. Therefore
M(R)C P, M(R) and so M(R)= P,M(R).

COROLLARY 7. In the class of F-algebras satisfying the conditions
of Theorem 9 the equality M = P_M Tolds for any cardinal number 1.

. Proof. Tt follows from Theorem 9 that in the class 4z the equality
P, M = M is satistied. Since the class 4, together with B contains the
algebra R[z] and the Brown-McCoy property is of finite type (Propo-
sition 11), Corollary 7 follows from Lemms 3.

CoROLLARY 8. If R is a finitely generated algebra over an undenwmer-
able field F, then, for any cardinal number 7, M (R)= M(R).

Proof. This ecorollary follows immediately from the fact that the
dimension of any finitely generated algebra over a field is not greater
than . )

TrEEOREM 10. If B is a simple ring then M (R) = P, M(R).

Proof. Clearly P, M (R)C M(R). Now, let B be an M-ring. To show
that B is a P, M -ring we prove that R[z] is an M -ring. Suppose that
there exists a homomorphism % of the ring R[] into a simple ring 4 with
unity element. Let %k be the smallest integer such that Tx(h) 5= Iy(h).
Since B is simple, Iy(h) = 0 and Ix(h) = R. Let p € R[x], P = rytret+...
...+ 722", 7y #* 0 be a polynomial of minimal degree such that A(p) =1, -
le¢A. Since R is an M-ring, n > 0. Were n > k, 1o would be in Ix(R)
= In(k) and one would find a polynomial q = SoF+8&+... 48, "
72" such that h(g)= 0. Then h(p—gq)=1 and the degree of p—gq
would be smaller than n. This contradicts the choice of the polynomial p.
Therefore n<C k. Let # be any element of the ring R. Then pr—r is in
the kernel of % and therefore r,-r belongs to I(k) = I(h) = 0. Hence
taB =0 and Br, = 0 and thus R*= 0, R being a simple ring. Therefore
(R{2]) = B*[#] = 0. In particular 1= h(p% = L(0). This contradiction
shows that R is a P, M -ring.

Baer, Levitzki and Jacobson radical properties are inherited by
one-sided ideals and are strong. Therefore, from the results of section 2
it follows that these properties are matrically invariant. The Brown-
MeCoy radical property is also matrically invariant. The question whether
Koethe radical property is matrically invariant is equivalent to the
Koethe problem which may be formulated as follows: are the one-sided
nil-ideals contained in two-gided nil-ideals ([9], [12])%

TEEOREM 11 ([1] and [8]). Baer, Levitzki, Kdethe, Jacobson and Brown-
McCoy radical properties are Amitsur properties.

TeEOREM 12 ([1]). Baer and Levitzki radical properties are polynomially
invariant and therefore of fimite type.
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The problem whether P;J = K is equivalent to the problem of Koethe
mentioned -above ([9], [12])-

Amitsur ([2]) introduced the following definition: ‘

DEFINITION 4. An algebra B over a field F' has the LBI property
it and only if every finite-dimensional F-subspace V of R consists of
bounded index nilpotent elements.

Amitsur has shown that the LBI property is radical in the class of
algebras over a fixed and iufinite field F' and that LBIL = Py K = Py,J.
The following theorém is also due to Amitsur (2m.

TaEROREM 13. In the dass of algebras over an arbitrary undenumerable
field B! K = Py K = LBL

Below we give another proof of this theorem.

Let R be an arbitrary nil-algebra over an undenumerable field ¥ and
let the polynomial p(x) be in B[#]. For any aeF the mapping &, defined
by hg) = g(a), where g e R[z], is an F-homomorphism of the algebra
RB[#] onto R. For m, a positive integer, denote by Fn the set of all
those o« in F for which (h,,(p))’": 0. Since R is a nil-algebra, then for
any o in ¥ there exists an integer k& >0 such that (ha(p))E = 0, i.e. 0 € F.

From this is follows that F = | Fm. Since the field F is undenumerable,
=1

m:
there exists an integer ¢ >0, such that F; is au infinite set. From the
fact that mappings h, are homomorphisms it follows that 0 = (h,(p))*
= h(p?) for a in Fy. The set F; being infinite, p*= 0. Thus, we have
shown that the algebra R[] is nil and therefore K = P, K. Our theorem
now follows from Lemma 3.

Now, if we confine onrselves to the class sy of algebras B over a fixed
field F with cardinal number T > &, such that the cardinal number of the
bage of R over F is ©' < 7, then, as it is well-known (2), J = K, i.e. J = LBL
Tn the class of all rings the only sequence of radical properties we can
write is the following:

(=] xR
J>E>PJ=PE=PJ>P,EK=..2 PuJ=) Pl >L.
n=0 =0
In fact, since J > K (see Example 2), Ppd = P, K for all n. It is well
known (1) that K > PJ, so P,K > P, J for all n. Moreover, one can
verify, that nil-algebras constructed by Golod [7] arve Py K -algebras.
Those nil-algebras are not L-algebras and therefore Py K > L. It seems
to be interesting to investigate the above sequence of properties.
In the class of all rings neither J < P, M nor P, M < J holds.
ExampLE 2. Let F be any field and let B be the ring o‘f.' all rational
functions over F' in one indeterminate y of the form yf(y)/g(y), f(y) and
g(y) in Fy] and g(0) = 0. One can easily verify that M(R) = J(E) =R

icm
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and K (R) = 0. Since the ring R is commutative then, as it is well known
1], M(R[z])=J(B[z]) = (K(R))[J:] = 0. Thus we have shown that
P, M(R)=0. Now, if F is an undenumerable field, P, M(R) # M(R)
= J (R) = R. Therefore we cannot ommit the condition on the dimension
of B in Theorem 9.

ExampLe 3. Let R be the ring of all matrices with elements in an
arbitrary field F. The ring R is simple without unity element. Therefore,
by Theorem 10, R is a P, M -ring. However R is not J -semi-simple. Let I be
an ideal of R composed of all matrices which have non-zero elements in
the first row only. It is easily seen that there exists a homomorphism of
the ring I onto the field #. Therefore I is not an M-ring.
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