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A characterization of locally connectedness
by means of the set function T

by
Donald E. Bennett (Murray, Ken.)

Abstract. In this paper the connective properties of the set function 7' are in-
vestigated. In particular, the images of closed sets under T are shown to contain closed
connected subsets which are also in the image of 7. These results are used to give
a characterization of locally connectedness in unicoherent continua. This characteri-
zation generalizes a result of Kuratowski which concerned continua contractible with
respect to S

A continuum is a compact connected topological space. Throughout
this paper X will denote a continuum. If 4 C X, then the interior of 4
in X will be denoted by intxA and 2% will denote the collection of 21l
non-empty closed subsets of X. If 4 2% and p e X—A, then X is said
to be aposyndetic at p with respect to A provided there is a subcontinuum M
of X such that p € inty M C M C X— 4 [3]. The set function T is a mapping
from 2% into 2% such that for each 4 2%, T(A)= A vu{reX| X is not
aposyndetic at z with respect to A}

For terms used but not defined herein, the reader is referred to [4]
and [6].

It is easily seen that for each A 2%, T(4) is closed in X. In [1] it is
shown that if 4 is connected, then T(4) is also connected. In [5] Vought
proved that if X is n-aposyndetic and A is a set consisting of n-+1 points
then T(A4) is connected. We shall extend these results coneerning the
connective properties of T.

The proof of the following lemma parallels that of Lemma 3.1 of [5].

LEMMA 1. Suppose S € 2%, 8 is totally disconnected, p < T(8)—8, and
for each closed proper subset S’ of 8, p ¢ T(S'). Then T(8) is connected.

Proof. Let §, be a non-empty subset of § which is both open and
closed in §. Since p ¢ T(S—8,), there is a subcontinnum H such that
peintxH CHC X—(8—8,). Let {U)2, and {V,}o., be decreasing
sequences of open sets such that for each positive integer , 8—8,C Un,

8, CVa, U1“V1=U1“H=71n{p}:®’ and S—_SO:OlUn while
Soszn-

n=1
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For each n, let Op be the component of X—U, that contains H.
Since p is not in the interior of the component of 0— V, in which it lies,
let {01}, be a sequence of distinet components of C,—V, such that
for each positive integer j, 05~ Vs # 0 and p e Qp = Lm0, Then for

J->00 .
each #, 0, is a continuum, On C Cp—Vyu, » € On, and On ¥V, # G. Let
0 =1im0,. Then 0 is & continuum containing p and O S, # @,

Now 0 C T(8). For if not, there is a ¢ « 0— T(S) and a subeontinmum
K such that g eintxK C K C X— 8. It follows that there is a positive
integer ¥, such that for n > Ny, K C X—(TUn v V4). Since ¢ € (intx K) ~ 0,
there is a N, such that for » > N, (intxK) ~ Oy # @. Let m > N, + N,.
Since (intxK)n On # @, there is a N, such that for j > N, (intzK) ~
A 0f, # 0. Let j > N;. Then 07,C C,, and K  C,, # @. Thus K C Cp—V
so K is contained in some component of Cy,—V,. This contradicts the
fact that for all j > Ny, (intx K) ~ 0], 5 @. This establishes that 0 C T(S).

Now let s ¢ 8. There is & sequence {Ss}>., of subsets of § such that

for each %, Sy is both open and closed in §, and {s} = (1) S». By the previ-
=1

ne
ous construction, for each n there is a continuum 4, C T(8) such that
pedy and Ay 8y # O, Let A, =1limAd,. Then 4, is a continuum,
4,CT(8), and {p,s}CA,. o

Let A= {JA4,. Then 4 is connected and §C A C T(S). For each

seS
e T(S) let C; be the component of » in T(S). Then by Corollary 1.1
of [2], C2n~ 8 #@. Thus C; ~ A # @ and it follows that

T@S)=Av(J{0:d zeT(8)
is connected.

We now show that “fotally disconnected” ean be dropped from the
hypothesis. '

TeEoREM 1. Suppose G € 2%, p e T{G)—Q, and for any closed proper
subset & of @, p ¢ T(G). Then T(@) is connected.

Proof. Tf T(@) = X, then the theorem is established 5o assume T (@
is & proper closed subset of X. Let Q be an indexing set and for each
acQ let @, be a component of G such that if o = g then G ~G,=0.
Then D= {G,] aeQ} v {m| me X— @} is an upper semi-continuous de-
composition of X and the hyperspace X* of this decomposition is a con-
tinuum.

Let = be the quotient map from X onto X* and let A* — {z* e« X*|
there is an a 2 such that a~Y(z+) = G,}. Then & is a monotone mapping
and A* is a closed totally disconnected subset of X*. Thus by Lemma 1,
T(A*) is conmected in X™*. Since a [ T(4")]= T(&) and = is monotone,
it follows that T(@) is connected.
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The following is the key theorem of this paper concerning comnective
properties of the funetion T'.

THEoREM 2. If A 2% and 2 e T(A)— A, then there is a B « 2% such
that (1) BC A, (2)# e T(B), (8)if De 2% and D g B, then @ ¢ T(D), and (4)
T(B) is & CONBINUUIM.

Proof. Let By, By, ..., By, ... be a decreasing sequence in 2% with
the property that for each positive integer 4, z ¢ T'(Bs). Let B = Bi.

i=1
Now if # ¢ T (B), there is a subcontinuum FC X— B such that p e intxFy.
) N
Sinee F is compact, there is a positive integer & such that F C | (X— Bj)

i=1
which contradicts the fact that e T(By). Thus » e T'(B).

Thus the property that z ¢ T(A) is an inducible property on A.
Therefore properties (1), (2), and (3) follow immediately from the Brouwer
Reduction Theorem [6]. Condition (4) follows from Theorem 1.

As a corollary we show that if F' « 2 then the components of T'(F)
are also in the image of the mapping T.

CoroLLARY 1. If ¥ e2%X and K is o componeni of T(F), then K
= T(E ~F).

Proof. Let F ¢ 2%, K be a component of T(F), and k ¢ K. T fqr each
closed proper subset F of F, & ¢ T(F'), then by Theorem 1, T(F) is con-

ected. Thus K = T(F)= T(K nF).

B Suppose there is(a, )closed proper subset & of F' such that ke T'(G).
Then there is a @ ¢ 2% satisfying conditions (1)-(4) of Theorem 2. Smc(?
T(@)C T(F) and T(§)~ K # @, it follows that T(&) ,CK' Now &
CT(@)CEK, thus ¢ CK ~F which implies that T(G") C T(K ~nF).
Hence KC T (K nF). .

nLet ¢ be( a coniponent of T(K ~F). By Corollary 1.1 oif. 2] ¢~
A(KE~F)# 0. Thus C~nK # 9 so T(E~F)=EKuv{C| Cis & com-
ponent of T'(K ~ F)}is connected. Since T' (K ~F) C T(F) and T(K nF)n
~K # O, then T(EK ~F)C E. Therefore K = T'(K ~F).

Tt is well known that if & continwum fails to be locally con.nt.ec’ﬁed
at a point p, then there is a non-degenerate subeontinuum L con:s}:ml.gg
p such that the continuum is not locally connected at a.ny'pomt of th[ ;1
In the following theorem we show a similar result for the image of the
mapping. '

TrEOREM 3. Suppose A € 2% and e T(A)—A. Then there is a mon-
degenerate subcontinuum N of X such that » e NCT(4).

Proot. By Theorem 2, there is an A’ ¢ 2% satisfying conditions (1)-(;1)(;
Let V be an open subset of X such that @ eYCVCX—AI., K be N
component of & in ¥ ~ T(A’), and let ¥ = K. Since V A~ T(A") is an ope
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subset of the continuum 7T(A’), then N intersects the boundary of T.
Thas N is a non-degenerate subcontinuum contained in T'(4).

The continuum X is unicoherent provided that if H and K are proper
subeontinua such that X = H U K, then H ~ K is & continuum.

TamorEM 4. Suppose X is a unicoherent continuum. X is locally con-
nected of and only if for each C e 2% which separales X between two poinis &
and y, there is a component B of O which separates X between x and y.

Proof. First suppose X is locally connected, C ¢ 2%, and O separates X
between = and y. Let 4 be the component of  in X— C and B be the
component of b in X 4. Then both A and B are open nX, X— (A~ B
C(X—B)uB, 2eX—B, and y ¢ B. Thus 4~ B is a closed set which
separates X between  and y. )

Let £ be an indexing set and for each a < let S, be a component
of ¥—J such that §,nB=@. Then A v ({JS,) is connected and

aeR
X =[A o (JB,)] v B. Since X is unicoherent, 4 ~ B=[4 v (U 8)]~B
aefd ae _
is a continmum. Let E Dbe the component of ¢ which contains 4 ~ B.

If ¢ and y aTe in the same component of X— B C X—(4 ~ B), then &
and y are in the same component of X— (A ~ B). Since this is not the
case, B separates X between x and y.

Now to prove the condition is sufficient, suppose X is not locally
connected, hence not connected im kleinen at a point p e X. There is
a A 2% such that p e T(A)—A. Let B 2% satisfying conditions (1)-(4)
Theorem 2. Let ¢ ¢ B and O be an open set such that p e 0 COC X—B.
Then the boundary of O is a closed set which separates X between o
and p so there is a component  of the boundary of O which separates X
between. p and =.

Let U and V be.open sets, U nV =@, such that X—N=UCV,
pelU, and 2¢V. Then H=Nu U and K= N uV are continua and
X=HoUK. Since 2¢Bn K, then BnXK # 0. If BnH =3, then
p ¢ T(B) which is contrary to condition (2) of Theorem 2. So assume
BnH # @. Since B~ H and B n K are non-empty closed proper sub-
sets of B, it follows from (3) of Theorem 2 that there are continuna Iy
and I, such that p eintxl, CL, C X— (B n H) and p eintxL, C L, C X—
—(BnK). Again if Lin(BnK)=@ or L,n (B~ H)=0, it follows
that p ¢ T(B). Assume that Ty~ (BAK) £ 0 # L~ (B H). Let X,
=T, v K and X, =T, w H. Then X, and X, are continua and X = X, v
w X,. Now the unicoherence of X implies that X; ~ X, is a continuum.

Then p e intix (X, ~ X,) CX; ~ X, C X—B implies that p ¢ T(B) which -

is contrary to condition 2 of Theorem 2. Therefore X is locally connected.

e ©
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