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Remarks on the absolute suspension
by

Andrzej Szymanski (Katowice)

Abstract. There is proved that an n-dimensional compact metric space is n-di-
mensional sphere whenever each pair of distinet points is a pair of tops of some suspension
representation and n =1, 2, 3. This is a positive answer, for » < 3, on de Groot’s con-
jecture.

A suspension over Y is a space S8Y formed from ¥ X[—1,1] by
identifying ¥ x {1} and ¥ x {—1} to single points, called the fops of the
suspension (the resulting set being equipped with the quotient topology).

A metrizable compact space will be said to be an absoluie suspension
it for each pair p, q of its distinet points it is a topologically suspension
with tops p and gq. ) :

Tf X is the suspension over ¥, then for F C ¥, we can assume that ¥
and SF are the subspaces of X.

Professor de Groot at the Prague Symposium 1971 asked whether
an absolute suspension is homeomorphic to an #-sphere, whenever it
is m-dimensional. We shall show that this conjecture is true in dimen-
sions 1, 2 and 3. .

Throughout the paper all the spaces will be assumed to be metrie
with the finite dimension in the sense of dim.

As was shown by de Groot in [4], Theorem 2, it suffices to show that
the absolute suspension is a manifold in order to get the solution even
for an arbitrary finite dimension. Thus showing that the abgolute sus-
p engion in the dimensions 1, 2 and 3 is a manifold, is the most important
step in the proof.

Lmyma 1 (Hurewicz; see Kuratowski [2], p. 311). If Y is compact
and dimZ = 1, then dim(¥Y X Z)= dim¥+1.

LenMA 2. If X is compact and X = Y, then Y is compact.

Proof. Sinee ¥ x[— %, 4] is a closed subset of compact space X, it
is compact. Hence Y is compact.
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Leamaa 3. If ¥ is compact, then dim8Y = dimY 1.

Proof. Clearly, the induetive dimension at each point of ¥ x
% (—1,1) is the same as that of the corresponding point in 8Y, hence
it is at most AimY 1, in virtue of Lemma 1. The inductive dimension
in the tops of SY is also at most dimY+1. Hence the inductive
dimension of 8Y is at most dim¥ 1. Since the converse inequality is
easy and the inductive dimension of SY is the same as dim SY, the lemma
is proved.

LEMMA 4. If X and ¥ are non-degemerate conlinua, then no pair of
points of Xx Y disconnects XX Y.

The proof is easy.

CORROLARY 1. If Y is a non-degeneraie continuum, then no pair of
points disconnects SY.

LeMuA 5. If X is an absolute suspension, then X is a locally connected
CORTINUUMN.

The proof is obvious.

LeMwA 6. If X is an absolute suspension and AimX > 2, then Y is
a locally conmected continuum for each ¥ such that X is a suspension over Y.

Proof. 1. The connectedness of Y.

Observe that among those ¥ for which X = S§Y there is at least
one Y which is connected (it is then a continuum in virtue of Lemma 2).
In fact, otherwise, for each two distinet points p and q of X, the space X,

being & suspension with tops » and ¢ with a non-connected Y, would be.

disconnected by {p, ¢}. But if each pair of points ‘disconnects a metriz-
able locally connected continuum, then, by a theorem of Moore (see [3],
p. 188), it is 8" topologically. In particular we have dim X = 1 — & contra-
diction.

Now let Y, be a continuum such that X = S8Y,, whose existence
follows from the above part of the proof. Since dimX > 2,. ¥, is non-
degenerate and, by Corollary 1, no pair of points disconnects X. Now,
if X = 87, then Y is connected because otherwise X would be discon-
nected by tops of SY.

2. To prove the local connectedness of ¥ let us consider ¥ as a sub-
space of X = 8Y. Let y ¢ Y. Since X is locally connected by Lemma 5,
there exist open and connected neighborhoods of ¥ in X having arbitrarily
small diameters and such that the tops of §Y do not belong to those
neighborhoods. The projection of ¥ x (—1, 1) onto ¥ maps these neighbor-
hoods onto neighborhoods of y in ¥ and the diameters are not greater
than those of the corresponding neighborhoods in X.

Lemma 7. An absolute suspension is locally comtractible.
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Proof. This follows from the fact that the space of the form SV is
locally contractible at the tops. .

TIn the sequel, following Borsuk’s book [1], we distinguish between
AR’s and ANR’s with respect to the class of all compact metric spaces
and more wider notions of AR(M)’s and ANR(IMM)’s, absolute retracts
and absolute neighborhood retracts with respect to all metrie spaces.
TFor compact metric spaces these notions coincide.

LemMa 8. If X is an absolute suspension, then X ¢ ANR.
Proof. This follows, in virtue of Lemma 7, from the fact that each

locally contractible compact space is an ANR whenever the dimension
ig finite (see [1], Corollary 10.4, p. 122).

LemMA 9. If X is an absolule suspension, then X\{p} ¢ AR (M) for
each p e X.

Proof. Since, by Lemma 8, X ¢ ANR, we have, by a theorem of
Hanner ([1], Theorem 10.1, p. 96), X\{p} ¢ ANR(M) for arbitrary p
in X. Let g e X\{p}. Since X is an absolute suspension, p and ¢ are the
tops of 8 for some ¥ such that X = SY. Clearly, SY\{p} is contractible
to the point g. Hence X\{p} is contractible. But & contractible ANR (1)
is AR(M) ([1], Theorem 9.1, p. 96).

LeMMA 10. If X is an absolute suspension and dim X > 2, then X is
unicoherent.

Proof. Let us assume that X is not unicoherent. Then X, being
a locally connected continuum, contains, according to Borsuk’s theorem
(see [3], . 437), a simple closed curve § which is & retract of X. Since
dim X > 2, there exists a point p in X\S. By Lemma 9, X\{p} « AR ().
The curve §, being a retract of X, is a retract of X{p}. This means that
§ is an absolute retract — a contradiction.

LEeMMA 11. If X is an absolute suspension and X == 8Y, then ¥ ¢« ANR.

Proof. Let p and ¢ be the tops of S¥. Then X\{p, = ¥x(—1,1),
topologically. Since X\{p, ¢} is an open subset of AXNR-space X, in
virtue of Lemma 8, we have ¥ x (—1,1) ¢ ANR(I), by Hanner’s theo-
rem loco cit. Thus Y, being a factor of ANR(IM)-space ¥ X (—1,1),
is ANR () ([1], Theorem 7.2, p. 92). Then Y ¢ ANR, being compact
in virtue of Lemma 2.

Levuma 12, If X is an absolute suspension and dimX > 2, then no
arc disconnects X. .

Proof. Suppose that there exists an are L C X which disconneets X.
The arc I contains a closed subset F which irreducibly disconneets X
(see [3], Theorem 3, p. 250). By Lemmas 5 and 103 X is unicoherent
and therefore ([3], Theorem 3, p. 437) F is a continuum. Hence, by

Lemma 6 and Corollary 1, F is an arc. Let b be an Inner point of F. Let 4
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be a component of X\F. Let B denote the union of all components of X\z
different from 4. We have ([3], Theorem 1, p. 249) Fr(, = Fr(C,=F
for each two different components of X\F and therefore FrA = FrB=F
because F is irreducible. Since b ¢ F, cL O\{b} is connected for an arbitrary
component € of XN\F. Since (elC,\{b}) ~ (clOp\{b}) = F\{b} for arbitrary
two different components €; and €, of X\F, clB\{b} is connected. Hence
X\{b} is not unicoherent, being a union of the above-mentioned closed
(in X\{#}) and connected sets clAN{d} and clB\{b}, whose inter-
seetion is not connected. But X\{b}, being contractible and being an
ANR (M) in virtue of Lemma 9, is unicoherent (see [3], Theorem 2,
p. 435) — a contradiction.

Lemyma 13. If X is an n-dimensional absolule suspension, then each
(n—1)-dimensional sphere 8™ contained in X disconnects X.

Proof. There exists a point p ¢ X\S"L. We infer that 8*! is con-
tractible in X\{p} because, by Lemma 9, X\{p} is contractible, being
AR (). Hence, by Theorem 16.1, [1], p. 191, 8", being cyelic in di-
‘mension #n—1 must disconneet X, X being an n- dimensional homogeneous
ANR and X\{p} being a proper subset of X.

Levwma 14 (Borsuk [1], Theorem 15.1, p. 191). An = -dimensional
connected ANR is a manifold whenever it is homogeneous and contains
topologically a Buclidean m-ball.

THEOREM. If n=1, 2 and 3, then the n-dimensional absolute suspen-
sion is an n-dimensional sphere, topologically.

Proof. If » = 1 and 2, the conclusion follows from Lemmas 8 and 14
and Theorem 2 of de Groot, cited at the begining.

To prove the conclusion for # = 3 let us note that, by Lemmas 3,
6 and 12, Y is a locally connected continuum without cut points and

dimY = 2 for each ¥ such that 8Y is a 3-dimensional absolute suspension..

Let us see that each one-dimersional sphere S contained in ¥ discon-
nects ¥. Otherwise S8, the suspension over §' (with the suspension
structure inherited from SY), does not disconnect SY, since ST\
= (I\8)x (—1, 1), and this contradiets the fact that S8 = 8> discon-
nects Y in virtue of Lemma 13. Hence, by Young’s [5] characterization
of two-dimensional manifolds (as two-dimensional locally connected
continua without cut points and such that “small” one-dimensional
spheres diseonnect them) we infer that ¥ is a two-dimensional manifold.
In particular, ¥ contains a two-dimensional Euclidean ball and there-
fore 8Y, being a suspension over Y. , contains a three-dimensional
Euclidean ball. Hence, by Lemma 14, 8Y is a three-dimensional manifold.

According to the de Groot reduction, SY is a three-dimensional sphere,
topologically.
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