40

(1]

(2]
[3]

[4]
(51

T, ¢ MeLaughlin im“@)

References

J. C. E. Dekker, Infinite series of isols, Proc. Sympos. Pure Math. 5, Amer. Math.
Soc., Providence, R. I. (1962), pp. 77-96.

— The minimim of two regressive isols, Math, Z. 83 (1964), pp. 345-366.

C. @. Jookuseh, Jr., Uniformly introreducible sefs, J. Symbolic Logic 33 (4) (1968),
p. 521-536. :

" 8. C. Kleene, Introduction to Metamathematios, 1952.

J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. 69 (1959), pp. 644-653.

Regu par la Rédaction le 10. 11. 1972

On h-regular graded algebras
by

A. Tyc (Torut)

Abstract. Let E be a commutative ring with identity. In the paper the well-known
notion of a regular sequence in B (or an R-sequence) is generalized as follows: A se~
qUence U, ..., Un, Us ¢ R, is called an h-regular sequence in B if (uy, ey Un) # B and
(W s Wpt) (W) = (Ugs es Ugegs B° ) (6= 1, oy ), where hy= h(ws) is the mini-
mum of integers n > 0 such that »f = 0 (if there is no such an integer (u;) = oo and
u® = 0). A local Noetherian ring R is said to be h-regular if its unique maximal ideal
is generated by an h-regular sequence. It is shown that any commutative graded R-al-

(=<}
gebra A = @ A; with the ideal T = @ 4, generated by an h-regular set is of the form
=0 >0
@ R[X]/(XM) for some ks e NU {oco} (¥ is the set of positive integers). Moreover, the
[

Taite resolution of such algebras is found provided R is an h-regular local Noetherian rings

Introduction. Let B be a commutative local Noetherian ring with
the unique maximal ideal m. Recall that a sequence uy, ..., %n, Uz € M,
is called an B-sequence if (uy, oy ty_y)t (Uhg) = (Ugy vony Up_)fOr =1, ..., 1.
In [1] T. Jézefiak adapts this definition for commmutative graded R-al-
gebras. Namely, if A = @ A is guch an algebia, then a sequence o, ..., Uy
of homogeneons element from the ideal I = me(@® 4:;)C A is said to

>0
be normal (ov regular) (*) in A provided
( (Ugy ouey Upy) if deguy is even,
Uy ven T (up) =
o e Wma) © (1) (U y ovey W) it deguy is odd
for k=1, ..,n (we assume #?= 2 for any homogeneons element ¢4
of odd degree). In this paper the notion of a regular sequence in 4 ig

(*) The term “regular sequence” instead of “normal sequence” is used in Jézefiak's
next paper [3]. We prefer the term “regular sequence” also.
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generalized as follows: Leb ty, ..., 4n e as above and let b (uz) = hy bo
the minimum of integers » > 0 such that f = 0 (if u} # 0 for all n, then
we put h(ux) = 0 and 4P = 0). We say that u, ..., ts is an h-regular
sequence in A if the following condition holds:
(thyy evey Uppm) * (Ug) = (U weey Uy, ujF)

for k=1, ..., n. Clearly any regular sequence in A is an h-regular ge-
quence in 4. A set U of homogeneous elements of a commutative graded
R-algebra A is called h-regular it every finite SeQUONCe Uy, .y Un, Up € U,
is h-regular in 4. A commutative graded R-algebra A is called h-regular
i the ideal I is generated by an h-regular seb of homogeneons elements,

Tn Section 1, making use of the methods of [1], we prove that.

a commutative graded R-algebra A is h-regular if and only if 4 is iso-
morphic with the tensor product of graded algebras @ As;, where 4,
1
— R[XY/(X™) for some ks ¢ N U {co}, ks > 0. The Tate resolution (see 1)
of any h-regular finitely generated R-algebra is found in, Section 2.
Throughout the paper all local rings are agsumed to be Noetherian,

T wish to thank dr. T. Jézefiak for helpful discussiomns.

1. h-regular sequences. Let B be a commutative ring with identity.
By a graded R-algebra we mean in this paper a positively graded R-al-

gebra A= @ 4, satisfying the following conditions:
1=0

(i) wy = (=2 if @ cdp,y €4y,

(i) #=0 if zeAp and p is 0dd,

(ii) 4= R. »

We write 2(s) = p if @ ¢ 4, and say that @ is a homogeneous element
of degree p. The ring R is & graded R -algebra with trivial grading B, = E,
Ri=0 for i>0. If A is a graded R-algebra, then the ideal @ 4. will
be denoted by I’. One can easily check that for any graded A-:;gdule N
the equality NI'= N implies N = 0. ‘

1.1. DerINmroN. Let # be an element of a graded [R-algebra 4.
The height of # (shortly h(x)) is the minimum of integers » = 1 such that
a™ = 0. If there is no such an integer, then we pub h(s) == oco.

Observe that k(w) = 2 for any non-zero homogeneous element  of
odd degree.

12 Lvma: If hiw)=1h and (0): (@)= (&*) (%), then (0): (2")
= (a" %) for 0 <i<<h.’

(*) In this paper we use the following conventions: co—i= oo if i< oo, co—00
=0, 2°=0, 2°=1.

iom®
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The proof is easy and we omit -it.

1.3. DEFINITION. Let A be a graded R-algebra. A 5equence i, ..
of homogeneous elements of A with h(us) = h; is called h-regular in ji
the following econditions hold: '

1° (”//1, ey ’Mn) # -A7 R

2° (thyy wovy Yppmg) 3 (W) == (Uyy weey Uy, WP, k=1,.,0 (for k=1
we 8ot (Uy; wey Ugn) = 0).

Let N> denote the set N v {0}, where IV is the set of positive integers.

Bxaurpre 1. Suppose B’ is a commutative local ring and u, ...,
is an R’-sequence. It is not difficult to show (see [4]) that for any se-
quence iy, vy bau, ,Zw e N®, h>1, i=1,..,n, the images .., us
of w8 in B = R'[(u,™, ..., u;*) form an k-regular sequence in R. Moreover,
h(us) = T for 1<i<m. ’

ExAMPLE 2. Let # >0 be a fixed integer and let &y, ..., kn, by, oy By
be a sequence of elements of N* such that k<< oo for i=1,...,% and
hi=2 for k odd. Then clearly R[X,]/(X%) with the grading given by
8(Xy) = ks is a graded E-algebra for all 1 <4< n. Denote by T the

Un
if

n
graded R—algebra. ® R[XJ/(X™), where “®” is the tensor produet in

=1

the catiegory of graded E-algebras. One can easily check that the images
Zyy ey @ Of X' in T form an h-regular sequence in T and A(z) = ki,
1< N

1.4. LEMMA. Let Uy, .o, Un be o sequence of homogeneous elemenis of
w graded R-oalgebra A with h(us) = hi. Then %, ..., %n 8 an h-regular se-
quence in A if and only if for some & wy, ..., u,_, 8 an h-regular sequence
in A and the images Tgy ..., % of ws in A= Al(uy, .., Uy_y) form an
h-regular sequence in A with k(%)= hiy, i=1, .., %

Proof. Hagy.

1.5, PROPOSITION. If @y, ..., Uy %8 an h-regular sequence in a graded
R-algebra A, h(ws) = hy and wiel’, then for any permutation iy, ...,
of the set {1, ..., 0}, Uy ooy Uy, 18 aN ‘h-regular sequence in A.

Proof. In view of Lemms 1.4 and the fact that each permutation
is a composition of transpositions of the form (%, k1), it suffices to prove
the proposition for the transposition changing 1 and 2. Consequently
we have to show equalities 1 and 2 below:

Lo(0) = (wa) = (ufr™®), 2. () ¢ (uy) = (ugy 03*7):

Tor'the proof of 1 we need the following

1.6. LEMMA. If wy, u, 48 an h-regular sequence on A with h(ud) = he
and yuy= 0 for some y ¢ A, then for all b, 0 < k < hy, there are a, b e A such
that y = a-ub=t 4 bl
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The Lemmsa easily follows by induction on %.

Now one can prove L. Consider two cases:

(a) B(ey) = Iy << 00, (b) by = co.

In case (a) if yu, = 0, then, applying Lemma 1.6 to y and & = #,—1,
we get ¥ = a-ul "+ bul = a-ult e (u;™). In case (b) it is sufficient
to ghow that ((0).: () I+ (u3*™*) = (0) : (ug) since this equality gives

((0) = (u)/(ur=) X" = (0) : (w)/(w™"%)

and consequently (0): (u) = (uf*™). Let e (0): (u,). By Lemma 1.6
y = a-ul by, for some a,be A. Henco 0= yu,= (buy)u,. It follows
that buy= 0 sinee (0): (u) =0 (h(t)= o). Thus ¥ == a -ul*~ 4 by
€ (1) ((0) 1 (ug) I’ (%, € I'l) and part 1 is proved.

To prove 2 assume Yy e (uy) : (#,). Then yu, = bu,, which implies
b= ¢-ul*tau,. Hence yu, = auu,. Hence we conclude that y-au,
e (ult), ie. ¥ € (uy, wir~"). The proposition is proved.

Proposition 1.5 permits us to speak about finite h-regular sets con-
tained in the ideal I' and justifies the following

1.7. DEFmNITION. A set U of homogeneous elements of a graded
R-algebra A contained in I' is called h-regular in A if every finite subset
of U is an h-regular set in A in the sense of Definition 1.3.

Now we shall characterize those graded [R-algebras for which the
ideal I’ is generated by an h-regular set.

1.8. LEMMA. If W%, .., %n 8 an h-regular sequence of homogeneous
elements of a graded R-algebra A, wiel’, h(us) = hi, and

T=éRmmwm

with &(X¢) = 8(us), then the natural map of graded R-algebras @: T—A
defined by @ (X:) = ui is an injection.

The proof is a slight modification of the proof of Lemma 2.5 in [1]
and we leave it to the reader.

1.9. TErOREM. Suppose A4 is a graded R-algebra and the ideal I’

(= @ 4.) is generated by a set of homogenecous elements {u,ie A} with
>0

h{u)) = hi. Then the following statements ave equivalent:
(1) {us, e A} is an h-regular set in A.
(i) 4 ~ @A,, where Ay = R[X /(XY and 8(Xq) = &(w).
Proof. The implication (ii)= (i) is a straightforward computation.

For implication (i)=> (ii) observe that the natural map of graded RE-al-
gebrag

7t @ Ai—A

©
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given by @(X1) = us is an epimorphism. Moreover, ¢ is an injection by
Lemma 1.8. Consequently @ is an isomorphism and the theorem is proved.
In what follows we assume that the basic ring B is a local ring with

the unique maximal ideal mnd that all the graded R-algebras 4 = 5 Ay
=0

and all graded A-modules I = @ M; under consideration are of finite

. 7=0

type, i.e. A, M; are finitely generated E-modules. Denote by I the ideal
meI'. I is the unique maximal homogeneous ideal in 4 and hence any
%-regular homogeneous set is contained in I. Furthermore, in this situation
we have:

1.10. NAKAYAMA LeMMA. If M is o graded A -module, then MI—= M
implies M = 0.

Using the Nakayama Lemma in part 2 (b) of the proof of Propo-
gition 1.5 (instead of the fact that MI'= M gives M = 0) one can prove
that this proposition is true for any h-regular sequence (not necessarily
contained in I'). Consequently, repeating Definition 1.7, we may speak
about h-regular sets of arbitrary cardinality. Finally, recall that a set
{mq, i eJ} of homogeneous clements of & graded A-module M is called
a minimal set of generators of M if {m;-+MI, ¢ eJ} is a base of the vector
space M/MI over the field A/I.

1.11. PROPOSITION If %y, ..., un 8 an h-vegular set of homogeneous
generators of the ideal I, then w, ..., us i @ minimal set of generators of I.

Proof. Basy.

1.12. DEFINITION. A graded R-algebra A is called %-regular if the
ideal I is generated by an h-regular set of homogeneous elements. If the
trivial graded R-algebra R is h-regular, then R is called an h-regular
local ring.

1.13. Remark. Any regular local ring is obviously an h-regular
loeal ring.

The following i a goneralization of [1], Theorem 2.6.

1.14. Proposrrion. A graded R-algebra A is h-regular if and only
if R is the h-regular Tocal ring and

' A= @RI XY

ited
for some index set J and a set {hi,ied}, hie N

Proof. This is a consequence of Theorem, 1.9.

1.15. Remark. Tt is shown in [1] that if the ideal I of a graded
R-algebra A is ponerated by a mormal (= regular) set of homogeneous
elements 4, ..., s, then any minimal set of homogeneous generators
of T is regular. This does not hold in the case of h-regular sets.
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Exawrrzs 3. Let A = k[X, Y]/(X?, ¥*), where % is a field ang (X)
=2(¥) = 2. Clearly (X, Y) is an h-regular set of homogeneous gener-
ators of the ideal I. On the other hand, the elements u = X, p = w-+T
form a minimal but not h-regular set of homogencous generators of I
because &(v) = b whereas (u): (v) = (u, v?) 5 (u, v%).

2. Tate resolution of h-regular, finitely generated 12-algebras. As before,
let B be a local ring with the maximal ideal m and the residue field
k= Bfm. In [1] an analogue of the Tate resolution of @ loeal ring wag

defived for graded R-algebras. We shortly rocall the basic constrmetions -

uged there. For notions of a bigraded commutative 4 -algebra and a dif-
ferential A -algebra, which we use below, see [1] also.

Let A be a fixed graded R-algebra and let 4 be a differential A -gl.
gebra. For any homogeneous cycle u e Ay, we define

Ao A(AT) if ;py—}-g is even,

AT, 0T = uy = . :
Ao ALY i p+q is odd,

where A(AT), I'(AT) are bigraded commutative A -algebras given hy
the egualities:

AAT)= Ao AT, T=0, o(T)=p, w(T)= g1,

DA = ATOe ATWs .., 7070 — P gasn

g
oTM=pi, wIM=i(g+1).

(Recall that for a symbol X and the integer p = 0 AX i a graded 4 -mo-
dule A e, RX, where (RX), = RX and (BX);=0 if j % p.) COlearly
A C AT, 4T = w). In the bigraded commutative A-algebra AT, A1 == u)
one can define a differential d sueh that d{a) = dg(a) for aed, dT=u
and A<T, dT = vy with d is a differential A-algebra. The variable T
“kills” a given cycle «. In fact, Hu(A<T, 4T = w) == Hy(d)]od, whare
0 = u+ By(d) e Hi(d). IE wy, ..., up is a sequence of homogenecous cycles,
then “killing” successively u,, oy Un We get a differential 4.-algebra de-
noted by ATy, .., Ty, dT; = wiy. The above congtruction may be
generalized in such a way that one can “kill” an arbitrary set of homogene-
ous cycles {u;,j eJ}. In this case tho corresponding differential 4.-algebra
is denoted by ATy, dT; = u;>. It is proved in [1] that for every cyclic
graded A-module N there exists a differentinl A-algebra 4 which is
& free regolution of the A-module N , L.e.

1° Ay, ave free graded A-modules for all % =0,
2° Hy(d) = 0 for i > 0, Hyd)= N.

icm°
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I N=rk=A/I (I=me(®A4)), then one can find a differential
i>0

A-algebra A which is a minimal free resolution of %, i.e. it satisfies the
additional condition: d(4)C AI. Moreover, such an algebra A is unigue
up to an isomorphism of differential A-algebras and is ecalled the Tate
resolution of A. We denote it by X. The algebra X is obtained as the
ynion of an ascending chain of differential A-algebras F,XCF,XC ...
By definition: FoX= (FyX)yo=4, F,X=F,XTy, .dTi = ug), where
{us} is a minimal get of homogeneous generators of the ideal I and F,,, X
= Fn X{(T;, T == vy, where {v;- B,(F, X)} is a minimal set of homogene-
ous generators of the graded A-module H(F,X).

In what follows the Tate resolution of the graded R-algebra A will
be found provided A is h-regular and finitely generated.

We start with the following

2.3. DEFINITION. A SeqUeNce 1y, .., Up, ..., Un 0of homogeneous
elements of a graded R-algebra A is called p-ordered if uy, ..., uyp is the
maximal subset of the set uy,..,u, such that h(u;)= oo or o(ug) = 2
for =1, ..., p. In particular, it follows h(u¢) << co and &(us) is even for
i=p+1, .., N

2.4, PROPOSITION. Leb Uy, ooy Uy vy Uny B(wg) = by, be an h-regular,
p-ordered sequence of homogencous elements of a graded E-dlgebra 4 and
Tt Y= ALTy, oory Ty @' = ug), where 8(Ts)=8(1s), w (L) = 1 (use Z?({i)!).
Then {0ps,Tpprt+ B Y), ry lnt By X)), with vy = ur™, is a minimal
set of homogenecous gemerators of the graded A-module Hy(Y) if n—p >0
and H;(¥)= 0 if n=p.

Proof. We apply induction on s = a—p. If s =0, ie. n=p, then
Ug,y ey Un 15 @ vegular sequence and by [1], Proposition 8.1, H,(Y)=0.
Now assume that s > 0 and denote by Y’ the algebra A(Tl,.... s T,,,‘_l,
AT = uy. Thon clearly Y= YTy, dTn = Un) ar}d by 1.7h.e mductm];
hypothesis {Ypysy -y Yny With 9= oL+ By YI), is a ml:mmal. set 0n
homogenéous generators of the A-module Hy(Y'). Since & (us) is eve:
(8 >0), Y=Y & A(AT,) and we have the exact sequence

0-Y' S¥YSY' =0,
where o(a') == o' ®@ 1 and v(a’ ® Iy) = a'. This sequence produces the long
homology sequenco n
W H (VY SH(Y) S H(Y)SH(Y) iﬂu( Y.

where, a8 is easy to verify, 4 is a multiplication by s and Hy(Y e))
= AJ(Uy, e, Uy_y). Hence and from the h-regularity of the sequenc
Upy oeey Up it follows that

Tm7, = Kerd = A(’U11.+ By Y')) ) = uﬁ"—l'
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Let 2 e Hy(Y) and let v (r) = av,+By(Y') for some ae.d. Then
£ . . .
74(#) = T4(0Yn), Where Yy = vaTp--By(¥), which l.mplles; r— WY € Kerz,
= Imoe = A?/l"" —}-Ay”_“ Yi= "JiT‘i’['-Bl( Yl)? SINCE Y1y ey Ypoy gener-
ate A-module H,(¥’) and ox(y;) = y,. Consequently = ¢ Ay, + ... + Ay,
ie. 4y, ..., Yn i8 a set of generators of the A-module H,(¥). We have to
prove yet that it is & minimal set of generators. For this aim it is sufficient
k3
to show that the equality } awyi= 0 (a:e4) implies a; ¢ I. Taking in
t=p+1 .
view the form of y;, we see that the above equality is equivalent to the
n .
equality Y ao.ly=dyb for some be Y,,. However, Y,,= Yi,0
T=p+1

o(Yy,® AT,), 50'b=b,-+-b; ® T,,, where bje Yy, j=1,2, and there-
fore 3! a0, = bt A(B) T,—bju. Since ¥, = ¥i, 0 AT,, it fol.

i=p+1
lows that
n—1
() D) awili = abj—bjuy,  antaTn = d(b]) Ty 5
1=p+1

Hence @,v, = 6,4, = d(b;) € B(Y') = (uy, ..., u,_,) and by
Lemma 1.2 ay=ru,+s for some 7 e A and se(ug,..,%, 1) = By(Y).
Let s=d(b’'), where ' e ¥;,. As a result we obtain d(by) = anvn
= {Ptn+ A(0"))vn = A(B")0n = A(b'-by) since @ is an A-homonorphism,
Thus

b — b0y € Zy(Y') .

Using again the fact that y;, ..., 4. , generate H(Y'), we conclude
that there are ¢; e A such that

n—1
bi—bo— D' einlicB(Y').
i=p+1
This formula together with equality () gives
n—1 n—1
] Z aw;T;—l— 2 Un 01T € Bl( Y() .
i=p+1 i=p+1
n—1
Consequently ¥ (@—u,c)y; = 0 and from the minimality of the
’ r : 1'=‘P+1
8t Y1y ..y ¥y it follows that a—ume; € I for § — P41, .., n—1. There-
fore ai eI, f?:p—l—l, s B—1 (uy € I). This finigshes the proof since ay
= TUn+$ With s € (uy, ..., 4,_,) belongs to I also.
2.5. LEMMA. Tet A be a differential A-algebra with Hyd) — AR and
let uel, CA,,, p-even, h{u) = h. Further, let

B= AT, aT = uy(8, 48 = w17

° © |
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(note that w T ¢ Z(AT, AT = u)). Then we have
1° 4 Hy(B)=HyB)=0, then : (u)= (3, u") ang H,(4)
= Hy(4)= 0,

2° if Hyd)=0 for i>0 and %A: (u) = (A, u™2), then He(B) = 0
for >0 and Hy(B)= AJ(X, u).

Proof. Let Hy(B)= HyB)=0. It is obvious that
B= A8, d8 = w1y

with 9(8) = (h—1)p, w(8) =2 and 4'= AT, aT — uy with a(T)=p
w(T) = 1. Since d(u'*T)+w (u*T) = (h—1)p+1 i 0dd, B= A’ ® I'(48)
and we have the exact sequence

0—A' 2B B0
with o(¢)=a"®1 and 7(a ® §®) = g e §%1, Hence we obtain the long
homology sequence
) - H(d)S3H(B)SH, (B)SH, (4)—..
oo Hy(B) > Hy(A') S Hy(B) 3H.B) —‘;H;(A’) 2H(B)-0

(v is of degree — 2). It follows that H,(4") é HyB)= A[(U,u) and H,(4’)
='0. Moreover, it is easy to check that A(z)— T+ B)(4') for @
= a4 By(B) e H(B). Now observe that the equality 4'= A e A(AT)
furnishes us with the exact sequence

04543 450
a(@)=a®1, f(a'® T) = ') which induces the long homology sequence
() o E(A) S HA) S HA) B H,_(d) ... Hyd)SH,(4)
—Hy(A') - Hy(A) > H(A) S Hd') 5 B 4) SE () ...

Since & is & multiplication by  and Hy(A') = 0, then Hy(4) = uH,(A),
Therefore, Hy(A4) = 0 by the Nakayama Lemma. It remains to prove
that UA: (u) = (A, »*?) and H,(d) = 0. Consider the following commu-
tative diagram:

Hy(d) = A[, u) > Apr s ap
| A
0 —> Hy(d) > Hy(A) 2> Hy(A') P H (A) -5 H,(4)
The low sequence in this diagram is exa.ct,' a8 & part of the exact

Sequence (xx), and hence the upper sequence is exact. It follows that
4 — Fundamenta Mathematicae, T, LXXXVI
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M () = (A, w*). Moreover, if sutle®, e se(0): (@Y in A/Q[? then
by Lemma 1.2 s = ru(mod®l). Therefore s < (U, u) and the map 41
Al u)— AW is a monomorphism. Ag a consequence wg have: 0 = Kerg,
= Ima, which implies that u: H(A)—H,(4) is an epimorphism. Hence
H(A) = uH,(4) and again by the Nakayama Lemma H,(4)= 0. Thus
1° is proved.

To prove 2° assume that Az (u) = (%, w"t) and Hy(Ad) = 0 for 4 >0,
Clearly Hy(B) = A/(¥, ). So we have still to show that Hy(B)= 0 for
§>0. In virtue of the exactness of the sequence (se)y Hy(A")= 0 for
i>1 and H(d')~Kerd= A-u"" where Z= 9. Hence, making use
of the exactness of the sequence (x), we get Hy(B) = H; (B) for & >2,
H,(B)~ Coker4 and H,(B)~ Kerd, where 4: A[(U, u) = Hy(B)—H,(4')
= A-3*1C A is a multiplication by . However, 4 is an. isomorphism
ginee, by the assumption, A (w)= (U, #*1),  Qonsequently H,(B)
= H,(B) =0 and the required equality Hy(B)= 0 for i >0 follows from
the above-mentioned formula H,(B)= H; ,(B), k& > 2. This completes
the proof of the lemma,

Now we are in & position to prove the main result of the section.
As before, let A sbe a graded R-algebra and let wy, .., tp, .y tta be
a p-ordered sequence of homogeneous elements of the ideal I with
h(us) = hy. Moreover, let Y= ATy, .., Tk, ATi = ).

2.6. Propogrrion. The following conditions are equivalemi:

(1) Uy, .eey Un 18 an h-regular sequence in A.

(2) B= Yul8,4q; ) Oy A8y = ul"'T > is a free resolution of the
graded A-module Al(ty, ..., Un), ’

{3) H;(B)= Hy(B)=0.

Proof. For the proof of implication (1)=-(2) we apply induction

on s=mn—p. If §=10, then the proposition follows from [1], Propo-
sition 5.1. Let s >0 and let the proposition hold for all k-regular se-
quences with n— p << s. It is obvious that B= B'{T,, dTn = tn){Su, 48n
= ulr Ty, 8(Tn) = 0{tn), w(Tn) = 1, 3(8p) = hin-8(%n), w(Sn) = 2, Where

B =Y, (8pi1y s 8y_qy @8;=ul™ Ty, TUsing the induction as-
sumption, we have

Hy(B') = Af(ugy ivey tgy)

Hy{B)=0, i>0.
., Now implieation (1)= (2) follows from Lemma 2.5 (&(us) is even
gince § > 0). ’

.Imp]ica.tion @)= (3).is eleax}, To prove the last implication, (3)= (1),
again induction on s=mn—p ‘will be msed. If s=0, then B= Y¥a
= ATy, ..., T, @Ti = uy) and by [1], Proposition 5.1, t;, ..., %, is & Te-
gular . (hence h-regular) sequence.in A. Let s>0. As above, B
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= B'(Tn, 4Tn = Uny<{Su, @8n = w»=T,> and 8(Ty) = & (uy)
- By the assumption, Hy(B) = Hy(B) = 0; thus, in virtue of Lemma 2.5
Hy(B'Yy= HyB') = 0 and (%, ..., )t (%) = (%, veuy 1, 1y U1, Moxl-ez
over, applying the induetion hypothesis to the h—regulz:.@'r s,e(fuence u
ey Uy oes Uy and the corresponding A-algebra B’, we conelude %],ha,t
Ugy eeey Uy 18 a0 R-rvegular sequence in A. This finishes the proof.
2.7. Remark. Proposition 2.6 is valid for graded algebras over any
commutative (not necessarily loeal) ring B provided the set Uy
under consideration is contained in the ideal I' = @ 4,. ’

is even (s > 0).

ey Un

i>0
2.8. COROLLARY. If ty, .y Up, oo, tly 18 am h-regular p-ordered se-
quence of homogeneous generators of the ideal I, then the Tale resolution X

of A is equal to
X =Ty X = ATy, ey Ty AT = 4y (S ey By A8y = w1 Ty

Proof. This is a consequence of Propositions 2.4, 2.6 and the ebn-
struction of X. O

2.9. CoroLLARY. Suppose that B, B’ are local rings and A, A’ are
graded algebras over B and R', respectively.  Moreover, l6t f: A—A" be
a homomorphism of graded rings and let w,, ..., Up, ..., Un be an h-regular
p-ordered, homogencous sequence in A such that vy, ..., s, o= f(us), is
an h-regular sequence in A’ with h(vy) = k(). Then

Tor{ (Af(tyy ooy ur), A)=0 for k=0,..,n and i >0.

Proof. By Proposition 2.6,

B= ATy, ooy Ty T = w3 (Bpiys wony Oy 88, = w27
is a free vesolution of the A-module Af(uy, ..., ur) and
B = ATy oy Ty T 3= 0,5 {8p1y5 ey By, A8, = v}71T,>
is a free resolution. of the A'-module A'/(w, ..., vi). Furthermore, it is
easy to see that B'= B o4 A’'. Consequently
Tord(Af{(tuy, v, uz), A')= Hi(Bes A') =0 fori>0.
2.10. TumormM. Assume that A is a finitely generated, graded R-d-
gebra. Then the following conditions are equivalent:
(1) B is the h-regular local ring and the ideal I =m e (@ Ai) is
i>0 .
generated by an h-regular set of homogeneous elements. ’
(2) R is the h-vegular local ring and A=~ @ R[XJ(X™) for sgome
1
hi e N>,

4%
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(8) There ewists a p-ordered sequence of homogeneous generaiors of I

Ugy eory Uy ooy Yy B(Ut) == Py, S0k that the Tate resolution X of A is equal to
X=F,X= ATy, T, 4T;= ;> {Bp4ay +oey Sy a8, = u;u_ITD

with 8(Ty) = 8 (us), w(Te) =1, 3(85)= hs@(ug), w(8y) = 2.
(4) There ewists a p-ordered SEqUENce Uy, ...y Upy vy Un of homogeneous
generators of the ideal I, h(us) = hy, such that

H1(B) = HZ(B) =0,

where Be= ATy, ey Ty @T5 = s} {Spyyy oony Sy 485 = w15,

Proof. The equivalence of (1) and (2) is contained in Proposition 1.14.
Implication (2)=3) follows from Corollary 2.8 and (3)= (4) is obvious:
Finally, implication (4)=> (3) holds in virtue of Proposition 2.6.

2.11. Remark., We do not know if the above theorem is true for
graded R-algebras which are mot finitely generated.

The following example shows that not every graded R-algebra A
with X = F,X iy h-regular, i.e. satisfies one of the equivalent conditions
from Theorem 2.10.

2.12. ExavreiE. Let k be a field and let A = k[X,Y]/(XY), where
9(X)=29(Y)=2. Since XY is a non-zero divisor in E[X, Y], we have
X = F,X by [2], IV, § 2 Theorem 1. At the same time one can easily prove
that 4 is not an h-regular graded k-algebra.
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Absolute retracts as factors of normed linear spaces
by

H. Toruiczyk (Warszawa)

Abstract. It is shown that if X is a (complete) AR (M)-space, then, for a suitable
(complete) normed linear space B, XX B and E are homeomorphic. This implies that
I,-manifolds are characterized as separable, complete, I,-stable ANR (M)’s.

In this paper we deal with products of absolute retracts and normed
linear spaces. We shall show that any absolute retract is a faetor of
a normed linear space, i.e. if X ¢ AR(IN), then there is a normed space E .
such that X X F is homeomorphic to F. We also show that normed. spaces B
of a more special type (e.g. all infinite-dimensional Hilbert spaces) have
the property that each retract of H is also a factor of Z.

The paper is a sequel to [28] and we shall use some terms and no-
tation of [28]. In particular, we shall say that & retraction r of a metrie
space (Y, d) is regular, if r is continuous and

(+) for every & >0 the seb {y ¢ ¥: d(r(y),y) > e} is of positive d-dis-

tance from 7(X).

The main result of [28] was:

TarorEM 0. Let v be a regular retraction of o nmormed linear space
(B, ) and let X =r(H). Then XX, B == 3 B, and if, moreover,
X is complete in the norm | ||, then also X x [ B = [], B. Here, [[; B
= {(t) e B®: 3 |Iti]) < oo} and 3y B = {(t:) e B®: t;= 0 for almost all i},

=1

both spaces being equipped with the norm ||| (#)||1 = 3 lftdl-
=1
To apply this theorem, we examine here regular retractions more
accurately. Unexpectedly enough, it appears (see Section 2) that on any

absolute retract X there is an admissible metric ¢ with the property that
every closed isometric embedding of (X, g) into a metric space ¥ maps X
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