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(8) There ewists a p-ordered sequence of homogeneous generaiors of I

Ugy eory Uy ooy Yy B(Ut) == Py, S0k that the Tate resolution X of A is equal to
X=F,X= ATy, T, 4T;= ;> {Bp4ay +oey Sy a8, = u;u_ITD

with 8(Ty) = 8 (us), w(Te) =1, 3(85)= hs@(ug), w(8y) = 2.
(4) There ewists a p-ordered SEqUENce Uy, ...y Upy vy Un of homogeneous
generators of the ideal I, h(us) = hy, such that

H1(B) = HZ(B) =0,

where Be= ATy, ey Ty @T5 = s} {Spyyy oony Sy 485 = w15,

Proof. The equivalence of (1) and (2) is contained in Proposition 1.14.
Implication (2)=3) follows from Corollary 2.8 and (3)= (4) is obvious:
Finally, implication (4)=> (3) holds in virtue of Proposition 2.6.

2.11. Remark., We do not know if the above theorem is true for
graded R-algebras which are mot finitely generated.

The following example shows that not every graded R-algebra A
with X = F,X iy h-regular, i.e. satisfies one of the equivalent conditions
from Theorem 2.10.

2.12. ExavreiE. Let k be a field and let A = k[X,Y]/(XY), where
9(X)=29(Y)=2. Since XY is a non-zero divisor in E[X, Y], we have
X = F,X by [2], IV, § 2 Theorem 1. At the same time one can easily prove
that 4 is not an h-regular graded k-algebra.
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Absolute retracts as factors of normed linear spaces
by

H. Toruiczyk (Warszawa)

Abstract. It is shown that if X is a (complete) AR (M)-space, then, for a suitable
(complete) normed linear space B, XX B and E are homeomorphic. This implies that
I,-manifolds are characterized as separable, complete, I,-stable ANR (M)’s.

In this paper we deal with products of absolute retracts and normed
linear spaces. We shall show that any absolute retract is a faetor of
a normed linear space, i.e. if X ¢ AR(IN), then there is a normed space E .
such that X X F is homeomorphic to F. We also show that normed. spaces B
of a more special type (e.g. all infinite-dimensional Hilbert spaces) have
the property that each retract of H is also a factor of Z.

The paper is a sequel to [28] and we shall use some terms and no-
tation of [28]. In particular, we shall say that & retraction r of a metrie
space (Y, d) is regular, if r is continuous and

(+) for every & >0 the seb {y ¢ ¥: d(r(y),y) > e} is of positive d-dis-

tance from 7(X).

The main result of [28] was:

TarorEM 0. Let v be a regular retraction of o nmormed linear space
(B, ) and let X =r(H). Then XX, B == 3 B, and if, moreover,
X is complete in the norm | ||, then also X x [ B = [], B. Here, [[; B
= {(t) e B®: 3 |Iti]) < oo} and 3y B = {(t:) e B®: t;= 0 for almost all i},

=1

both spaces being equipped with the norm ||| (#)||1 = 3 lftdl-
=1
To apply this theorem, we examine here regular retractions more
accurately. Unexpectedly enough, it appears (see Section 2) that on any

absolute retract X there is an admissible metric ¢ with the property that
every closed isometric embedding of (X, g) into a metric space ¥ maps X
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onto a regular refract of Y. Combining this with the Arel‘ls—Ee]ls Bm-
bedding Theorem, we obtain in Section 3 the above-mentioned results
concerning products of absolute retracts and normed spaces, and we use
them next in discussing the following subjects: (i) products of ANR’
and normed spaces and the identifying of l,-manifolds (Section 4); (ii)
products and factors of simplicial complexes with metric topology (Sec-
tion 5), and (il) tubular neighbourhoods of Z-embeddings of ANR's
(Section 6). Section 1 is of preliminary character; for convenience in
references we include in it the results of [5], [20] and [27] which we need
in this paper.

The author would like to thank Oz. Bessaga and P. Mine for valu-
able conversations during the preparation of this paper.

1. Preliminaries. Throughout the paper we shall denote by R the
set of real numbers and by N the set of posifive integers. The elements
of the extended reals [—co, oo]; a8 well as the [— oo, co]-valued functions,
will be denoted by the Greek letters ¢, d, 2, u, while pogitive integers will
be denoted by 4,4, %, n. The closed intervals of both [—oo, oo] and ¥
will be denoted by [, 8]; thus, {i: A ¢[e, 6]} is the “real” interval, while
by {i: 1e[e, 6]} we mean the intersection of this interval with N. We
a85Ime oo oo = o0,

If not stated otherwise, by “retraction” we mean “continuous re-
traction”. We shall say “r is a regular retraction of ¥” instead of “r is
a regular refraction of (¥, d)” if the metric d is clear from the context.
The notation and definitions concerning Absolute Retracts and Absolute
Neighbourhood Retracts are those of [7]. ;

Given a metrizable space X we denote by Metr(X) the set of all
metrics on X which induce the topology of X; elements of Metr (X) will
be called admissible metrics for X. If ¢ ¢ Metr(X) and 4 C X, then for
%X we let dist,(z,A) = int{p(z, a): a<A}. By dens(X) we mean the
least cardinality of dense subsets of X, card(4) denotes the cardinal-
ity of a set 4, and we shall write (X, A4, ..., 4,) 22 (Y, Byy .oy Ba)

to indieate that there is & homeomorphism f: X 28 Y with f(44) = By for
$€[1,0]. (T, X) denotes the space of all continnous maps from T to X.

Let (B, ]| |)) be a normed linear space. By B* we denote the count-
able Oartesian power of ¥, considered in the product topology, and we
let 3B = {{t) e B*: ¢; = 0 for almost all i} be the topological subspace
of B* (not to be confused with the space 2, B defined in the formulation
of Theorem 0). The convex hull of & set AC B will be denoted by convA.

For the sake of convenience let us introduce the following notation:

- B{A)=1y4), the Hilbert space of square-summable real functions
on A; : )
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(A) = L{A)x I R;

=1,
(4) = ¥(4) 2 {Aely(4): 2(a) = 0 for almost all aeA};

ByA) = U(A) X Q, where Q= [—1, 1] is the Hilbert cube.

To those spaces there correspond some classes of metrie spaces,
which we shall denote as follows:

M, = the class of complete-metrizable spaces; .

9, = the class of metrie spaces which are countable unions of closed,
complete-metrizable sets; »

M, = the class of metric spaces which are countable unions of locally
compact, locally finite-dimensional sefs;

M, = the class of metric spaces which are countable unions of locally
compact sets. . )

The spaces L(N) and I§(N) will also be denoted by I, and 1 respectively.
Below we list some results describing the properties of the spaces Hy(4),
ie[l,4]:

1.1. Let 4 e[1, 4] and let A be an arbitrary set. Then a space X with
dens(X) < card(A) admits a closed embedding inio By(A) if and only if
X e M.

Proof. The assertion is well known for ¢ = 1 (see [20], proof of Corol-
lary 2.4 or [6], p. 606); for the proof in the case ¢ ¢[2, 4] see [27], § 7.

1.2. For any infinite set A we have:

(a) 3B =21 and By(d) = L(4) xY;

(0) UXQ =B, and (hence) By(d) e Y(A)x B,, where B, = {iecly
> PA(I)E < co} is the subspace of 1.

In particular, each of the spaces Ei(4), i« [1, 4], is homeomorphic to
o pre-Hilbert space.

For a proof see [5], § b, and [27], § 7.

1.3. Let X be o space with X X Hy(A) == By(A) ond let ie{3,4}. If
X e My then X X B A) = By A).

Proof. Assume first 4= 3. It follows from [27] that X x U(A)xY
and H(A)x 1 are Jo-absorbing sets in X XI(4)xY and lz(A.)?d{ Tespec-
tively, where 36 denotes the family of all loeally compact finite-dimens-
gional subsets of the space in question. Sinee [(A) X1 = By(A4) (sefa 1.2),
it "follows from our assumption and from .the general properties of
absorbing sets that X xIi(A)xY ~ B(A) %Y. ,

In the easc 4= 4 the proof is similar (veplace Y(4)x¥ by E,(4)
and X by the family of all locally compact sets).

14. Let (B, || |) be a normed linear space and let A be a se of
cardinality dens ().

By
By
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(a) If E is a Bamach space then there ewsists a space T such thar
EXF = (4); . o

(b) If E is a countable union of its closed subsets, each being complete
in the norm || ||, then BXE,(A) == Hy(4A).

Proof. Part (a) is shown in [20], pp. 28-29 (cf. [4], p. 266) and
patt (b) in [27], § 7.

2. Regular retractions and regular metrics. Let X be an AR (90)-space.
In this section we shall be concerned with the question whether X can
be embedded in a normed linear space as its regular retract. Let us make
gome introductory remarks. Assume for simplicity that X is a closed
subset of a normed linear space (¥,| |). By the definition of AR (1M)-

. . . onto ‘ )
spaces, there is in this case a retraction r: H—s X; unfortunately, r need
not be regular in any translation-invariant metric of . For example,
it B, denotes the Euclidean plane and X, is the set

{13x[0,1] u {(m, 0): 2> 1} U {(@y, Lfm): 0y > 1},

then it is easy to observe that there is no regular retraction of #, onto X,.
Obviously X, is homeomorphic to X, = {(m, 0): 2, ¢ R}, which is a re-
gular retract of F,. To get the required re-embedding in this special case
we had to “push apart” some “parts” of X,; however, it is not clear how
these parts should be defined in the general situation (*). Are they, for
instance, simply neighbourhoods of distinet points of the remainder of
a properly defined completion of X% It is so for (H, X)= (H,, X,) but
when drawing other examples it appears that one should rather depend

on the interrelation of a fixed retraction r: B X and the affine structure
of B: e.g., in any of the simplest examples one has to “push apart” any
two sequences (ax) and (b») of points of X for which we have hoth
inf|lan—ba] = 0 and inf {diamy, 7([an, b2]): ne N} >0 ([an, by] denotes

{i0n+ (1~ 2A)bn: 2 €[0,1]}). Extending this idea, we shall obtain  the
required re-embedding in two steps: we construct first a metric oonX
such that for no sequence (4,) of subsets of X we have inf {diam, 4,:
neN}t= 0 while inf{diam,r(conv.4,): n ¢ N} >0, and we then show that
any cloged isometric embedding of (X, o) into a normed space (I, [|] [I{)
maps X onto a regular retract of F.

The detailed proofs run as follows:

2.1. PrOPOSITION. Lot r: K% ¥ be a retraction of a comvex subsei K

of a locally convex linear metric space. Then, for every g, e Motr (X), there

. ) We say that a map h: (X,0)—(¥,d) pushes the sets 4,BCX apart, if
disty(4, B) = 0 while distg(k(4), R(B)) > 0,

e ©
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is'a peMetr(X) and a function e: [0, 00]-10, o] such thai: (1) lime(s)
30

=0, (2) for every ACX the o-diameter of r{convA) does mot emceed

g(diam,4), and (3) o = g,.

The o— g, Will be obtained as a sum of 2 countable number of metrics,
each built inductively on the basis of the following

SuBrEMMA. Let K, X and r be as above and let ot € Metr(X) be fized

" Then there exists a o4, € Metr(X) such that

()

For any neN and ACX with diam,, A < 27" we have
diam,7(conv4d) < n~12-",

Proof. Given n ¢ IV, let Uy, be a cover of X consisting of (relatively)
open sets which are so small that diam, 7 (eonvU) < 2" for all
UeUn. By a lemma of E. Michael, there are metrics dn,n e N, such
that every set of dy-diameter less than 1 is contained in a member of U,
(1231, p. 165). We let

iga(®r; Bp) = Zmin(dn(ml’ @), 277

n=1

Ty, 2y X,

Proof of Proposition 2.1. Starting from the metric 0, construct
inductively a sequence gy, g,,.. of admissible metrics on X satisfying
for every > 0 condition (%i), and define ¢ € Metr(X) by the formula

o2y, @) = a2y, 2,)+ 2 min(ei(wu @), 2_“1): @, @y e X .
i=1
If ACX is a set with diam, 4 < 27", then for all < ¢[1, #] we have
diam,, 4 < 27" This gives diamgr(conv4) < #~12" for ¢ ¢ [0,n—1] and,
consequently, diam,r(conv.d)<n-n~2774 31271 = 5.27" Thug, the
i>n

metric ¢ and the function ¢ defined by

&(8) = 106 if 6 € [0,1/2]

and  e(8) = oo if 4> 1/2

satisfy the required conditions.

By a uniform embedding of a metric space (X, o) into another one
(¥, d) we shall mean here any embedding »: X—Y such that both
and A~ are uniformly continuous when considered as maps between
the metric spaces (X, g) and (h(X), d).

2.2. PropPOSITION. Let K be a convex set in a linear metric space,
onto

let r» K—> X CK be a retraction, and let o e Metr(X) and a function :
(0,001-(0, 0] satisfy conditions (1) and (2) of Theorem 2.1. Then, for
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every closed uniform embedding b of (X, ) into a melric space (X, d), there
is a regular retraction of (X, d) onto h(X). .
Proof. Let ((AU,zU))UE% be a Dugundji system foF .(Y, h(X), d),
i . we assume that {Ap)gey, is & (continuous and locally f}mte) partition
of unity on ¥\k(X) and, for every U e W, 2y is o point of A (X) such that

(D) it y e ¥ satisfies Ap(y) # 0, then d(y,2p) < 4distyly, b(X))

(for the construction of systems of the required type see [8], p. 188).
We define a retraction ¢: Yﬂh(X) by the formula

I yeh(X),

y
9@ = \w( > ) B Nep))  E v e TNB(X) .
UeUs

Obviously, ¢ is continuous on the open set Y\A(X). Thus, the proof
will be completed if we show that ¢ satisfies condition (*) (for ¢ will then
also be a continuous map).

For n = 1,2, let & (0, 00]—(0, c0] be a function such that lime.(s)
30

= 0 and
d(h(wl); h(‘”z)) < 51(9(”17 wz)) and. 9(77'—1(?/1)7 7171(?/2)) < az(d (%1, (’/2)‘)

for all @, ¢ X and y;, ¥, ¢ Y. Without loss of generality agsume that
&1, & and & are non-decreasing functions. Fix for a moment y ¢ ¥, let Uy,
denote the finite set {U € W Ay(y) # 0}, and choose V e Uy,. Setting
d=106(y)= distd(y, 1(X)), we have d(y,2y) < 46 for all U « Uy, whence
diam,{zy: U e U} < 88 and diam,{h (2y): U € Wy} << &,(86). This gives
diam,r(conv {h ™ (2y): U € Up}) < & o ,(80) and, in particular,

o(h2g(), W(zp)) < & 0 £x(80) .

Letting &(u) = 4u-+-2; 0 & 0 &,(8u), we get d‘(Q(f'/); By) < 8y 0 & 0 6,(80) and
gy, ¥) < &fd) = &6 (y)). Since this inequality holds true for all ye ¥
and since limey(u) = 0, the assertion is proved.

w0

Let us say that a metrie g defined on an AR (I)-space X is a regular
meiric for X if o ¢ Metr(X) and, given any closed uniform embedding of
(X, ) into a metric space ¥, the image of X is a regular retract of ¥.
Using the fact that every metric space admits a closed embedding into
a convex subset of a normed linear space (Kuratowski, Eilenberg and
Wojdystawski), we infer from Propositions 2.1 and 2.2:

2.3. TarorEM. If X is an AR(M)-space, then for every o, ¢ Metr(X)
there ewists a regular metric g for X such that o > Q- ,

icm°
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_ The applications of 2.3 discussed in the subsequent sections depend
on the following theorem of R. Arens and J. Hells:

(AR) Hvery metric space (X, o) admits an isometric embedding I into

a Banach space, such that the set h(X) is both linearly independent and
closed in its linear spamn.

This theorem, which generalizes earlier results of Kuratowski, Kunu-
gui and Eilenberg-Wojdystawski, was established in [3]; for some shorter
proofs see [24] or [30]. Obviously, (AE) and 2.3 imply a positive answer
to the question stated at the beginning of this section.

3. Absolute retracts as factors of normed spaces. Theorems 0 and 2.3
combined with the theorem of Arens and Bells yield:

3.1. THEOREM. Given X < AR(IN) there is a mormed linear space B
such that X X B =~ and dens(H) = dens(X).

Unfortunately, 3.1 does not give any information on the topological
type of the normed space whose factor is X. The remainder of the section
will be devoted to obtaining some results in this direction, at least for
absolute retracts belonging to one of the classes M, e [1 , 4], discussed
in Section 1.

3.2. TEEOREM. Let ¢ <[1,4]). If X is an AR (M)-space with X « M,
then X X Bi(A) = Hi(A), where A is a set of cardinality dens(X)

Proof. We shall consider separately the cases i — 1L, i=2 and
ie{3, 4} ' ’

(a) 4= 1. Lt g ¢ Metr(X) be a complete metric on X, let o ¢ Metr(X)
be a regular metric with ¢ > p, and let h: X —T be an isometric embedd-
ing of (X, o) into a Banach space I of density character equal to that
of X. Then ¢ is a complete metric, and therefore & is a closed embedding.
By Theorem 0 we get X X B =~ H, where B denotes the Banach space
[T L. Thuy XX BXF o B xF for every space F, and X X I,(4) o L(4)
by 1.4 (a).

(b) ¢=2. By 1.1 and 1.2 (a) we can consider X as a closed subseb
of I} @ 1,(A). Let || || be the norm of I @ I,(A) and let g, denote the metric
indueed by ||| on X; further let p be a regular metric for X such that
03> 0y, and let 7 be an isometric embedding of (X, o) into a Banach
space ' with dens(F) == dens(X). It is easy to see that

@+ (h(2), ) e Mol olL4)

is a closed uniform embedding of (X, ) into the normed space
E=TFollol(A). Applying Theorem 0, we get X X 3, B = Y B, which
combined with 1.4(b) gives XX By(d) o2 XX 3, EX Byd) = 3, BxX
X Hy(A) o2 Ty(4).
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(c) ie{3,4} We have M C M, and therefore XX Hy(A) = EyA)
by the case (b) above. Thus the assertion follows 1.3 (%)

Tor separable spaces the formulation of the case i = 4 of Theorem 3.2
can be simplified:

‘ 3.3, CorOLLARY. If X ¢ AR(I) 48 a countadle union of compact sets,
then XX B, o B,, where B, = {J € ly; D #A(1)2 < oo} is the subspace of 1,
izl
Proof. By 1.2(b) the space @ X 1} is homeomorphic to B,.
Theorem 3.2 can be equivalently stated in the following form

3.4. CoROTLARY. Let B be a space of the form By(4), where ie[1, 4]

and A is an infinite set. Then, for every retract X of B, we have XX E ~ B, .

Question: Does every linear metric space B have the property
that each retract of B is a factor of both B® and 3 B¢

4. Ydentifying of manifolds. By a cone over a metric space X we
mean the topological space (OX, )= (X x(0,1]w {0}, ), where G is
the topology gemerated by open subsets of X x (0,1] and sets {0}v
v (0,1n)xX, neN.

4.1. Lemma. If B is a linear metric space such that either T is locally
convex or B o B or B == 3 B, then OB is homeomorphic to a retract of X E.

Proof. By results of Henderson ([11], [12, p. 322]), the open cone
OB F x {1} is homeomorphic to B X R. Since CEZ can be embedded as
a refract of CENE x {1}, the result follows.

The following results correspond to 3.1 and 3.2.

4.2, TeEOREM. If X is an ANR (IM)-space, then there ewists a normed
linear space B such that dens(E) = dens(X) and X X E is homeomorphic
to an open set U C B with (B, BNU) == (0X x B, {0} X B).

Proof. By (AE), one can consider X as a neighbourhood retract of
a normed linear space F' with dens(F) = dens(X). As is easy to see, 0X is
a retract of OF (cf. [16], proof on p. 43) and therefore, by Lemma 4.1,
CX can be treated as a retract of F'x R. Thus there iy a normed linear
space B, such that dens(B,)= dens(X) and CX X B, o= B,. We set E

= 5,x B, and U= h((0X\{0})x H), where h: 0Xx B3 7 is a homeo-
morphism. Then U o~ X X (0, 11X B == X X ((0, 1]x L) X H,; since (0, 1] X
X b, =2 1, (this result belongs to V. L. Klee and follows also dirvectly from

Theorem 3.2), we have U = X X1, X B, >~ X X H, which completes the
proof. ‘

(*) In the separable case the use of 1.3 can be avoided. (Follow the proof of (b)
and use results of Klee [18, p. 190] and of Bessaga-Pelezyiiski [5, pp. 176-178], cf.
[28, p. 82].)

@ © ’
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4.3. TEROREM. Let i € [1, 4], let X € M, and Tet A be a set of cardinality
dens(X). If X ¢ ANR(M), then X X Hy(A) is homeomorphic to an open
set U C Hi(4A) such that (By(A), B ANT) o (0X x By(4), {0} x By(4)).

The proof is analogous to that of Theorem 4.2.

Theorem 4.3 implies the following version of a special case of
Henderson’s [12] Open Embedding Theorem:

4.4, COROLLARY. Let B be as in 4.3 and let X be a pardcompact con-
nected manifold modelled on E. Then X is homeomorphic to an open set
U CHE such that (B, E\U) = (0Xx B, {0} X B).

Proof. By [15], Theorem 6, X admits a closed embedding into B,
and by results of Anderson and Schori [2], [26] the spaces X x B and X
are homeomorphic (*). Using this, we obfain the assertion from 4.3 and
a result of [25], p. 3, which states that X ¢ ANR ().

Also, we obtain the following characterization of certain infinite-
dimensional manifolds:

4.5. PrOPOSITION. Let X be a metric space, let A be a set of cardinality
dens(X) and let ¢ € [1, 4]. Then, X is an Ei(A)-manifold if and only if X is
Ei(A)-stable (i.e. XX Hy(A) = X) and X ¢ M; ~ ANR(IN).

Proof. 1.1 and the proof of 4.4 combine to show that every -
Bi(4)-manifold is an E(A)-stable space belonging to M~ ANR(M).
The reverse implication fellows from 4.4.

Below, two applications of Proposition 4.6 to identifying I,-manifolds
are given; they depend on “stability theorems” for spaces of continmous
mappings, due to R. Geoghegan and J. Keesling.

4.6. COROLLARY. Let X be a separable complete ANR (IM)-space,
X,y ey X, its ANR (I)-subsets of type G,, T a compact space and
T,,.., T, CT disjoint closed seis. If U is a cone-paich (in sense of [10])
for T such that U C Ty or U~ (Tyu ..u T,) = @ then the space {f ¢ O(T, X):
f is non-constant on U and f(T,) C X, for ie[L,n]} forms an l-manifold
when considered in the compact-open topology.

Proof. By results of Geoghegan (see proofs on pp. 168-169, 171
and 174-175 in [10]) the space in question iy I-stable. Since it is also
an open subset of ¥ = {feO(T, X): f(T;) C X, for ie[1,n]}, the result
follows from 4.5 and the fact that ¥ is a separable ANR(It)-space
(see the proof of VI. 3.1 in [16]) and i8 a G,-subset of the complete
space C(T, X). '

This easily implies (c.f. examples on p. 168 of [10]).

(®) Cf. Theorem 5 of [15]. The assumptions of the last theorem are gatisfied since,
by 3.2, 1.1 and the theorem of Dugundji [8, p. 188], we have F ~ ExE® if F is a Hilbert
space and B o FX 3 E otherwise.
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47, CorotLARY. Let X, Xy, vy Xy be as in 4.6, let T be a compact
finite-dimensional manifold and 16t Tyy .oy Ty CT be disjt??}m closed sets,
Then {f e C(T,X): [ is non-constant amd f(T;) CX,; for ie[1,n]} forms
an lymanifold. In particular, the space of mon-constant paths from X,
to X, and the space of non-constant’ closed ourves starting from X, form
1,-manifolds (%).

The second application is: .

4.8. CoroLLARY, Let X be a separable metric space which admits & non-
rivial flow, let A and B be subsets of X, and denote by Authy (X, 4) the

onto

space of all Tomeomorphism f: X —> X with f(A) = A and f|B = identity
{Authg (X, A) is regarded under the compact-open topology). If Authy (X, A)
is an ANR(IN), then it is an l-manifold.

Proof. Apply Proposition 4.5’ and & result of Keesling [17], p. 6.

Tt was shown by R.Luke and W. K. Mason [21], [22], that the space
H(X) = Auth,x(X, X) is an ANR(IN) for every compact [0, 1]>-manifold
X. This implies: '

4.9. CororzARY. If X 48 a compact 2-dimensional manifold, then
H(X) is an ly-manifold.

5. Products and factors of metric simplicial complexes. By a metric
gimplicial complex we mean here the geometric realization X of & sim-
plicial complex (say, K), endowed with the metric topology of X ([16],
. 99). We shall say that the metric simplicial complex X is induced by K
and, since only simplicial complexes are copsidered here, we ghall some-
fimes write “metric complex” instead of “metric simplicial complex”.

The following is an extension of a result of J. B. West [32].

5.1, ProrosrrioN. If X is o meiric simplicial complex ond A is
a set of cardinality dens(X), then X X Y(A) is an (A -manifold and X ¥
X L(A)X D' B is an L(A)X > E-manifold.

Proof. By its definition, X iy a closed subget of i(A) and it is well
known that X ¢ ANR(IR) ([16], p. 106). Thus X e M, C M, and the asser-
tion follows from Theorem 4.4. )

We note that the density character of the metric complex induced
by a connected simplicial complex K is equal to the supremum of the

cardinalities of simplices belonging to st(v), the supremuwm being taken
over all vertices v of K. :

(*) The assertion is also true if we omit the words “non-constant”. This results
from the following fact, which can be established by using 4.6 and a techniquo of
Cutler: If X ¢ ANR(M) and there is a Z-set 4 in X (see Section 6 for the definition)
Emch that XN\A i8 a l,-manifold, then X itself is an I,-manifold. A proof will appear
in amthor’s note “Concerning Z-sets in ANR’s and - characterization of %-manifolds”.
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5.2. Prorosirion. Let X be a metric simplicial complex and let A be
a set of cardinality dens(X). If X is complete-metrizable, then X % I,(A) is
an To(A)-manifold.

"Proof. Apply Theorem 4.5.

It is clear that a metric complex induced by a simplicial complex
K is complete-metrizable iff for every vertex v of K there is no infinite,
strictly increasing sequence of simplices belonging to st(v) ([16], p. 107);
in particular, every locally finite-dimensional metric complex is complete-
metrizable. (For locally finite-dimensional complexes the assertion of
Proposition 5.2 follows from more general results of J. BE. West [31].)

Theorem 4.5 allows us also to characterize the spaces which stabilize

to metric ecomplexes (see [14] for results on spaces stabilizing to count-
able OW-simplicial complexes).

5.3. ProrosrrioN. Let X be o connected meiric space and lef A be
a set of cordinality dens(X). Then the following conditions are equivalent

(a) X is homeomorphic to & retract of & meiric simplicial compler;

(b) X e ANR (M) and X is a countable union of locally compact, locally
finite-dimensional sets;

(¢) There are metric simplicial complewes B and U such that X X B =~ U,
T = TY(4) and U is homeomorphic to an open subset of U(A).

Proof. Implication (a)=> (b) follows from [16], p. 106, and from the
fact that for every metric simplicial complex the differences between
its successive finite-dimensional skeletons are locally ecompact and finite-
dimensional.

(b)= (¢). By Theorem 4.5 the product X X I§(4) is homeomorphic
to an open subset of I(4). Since the space Ii(A) is homeomorphic to
a metric simplicial complex [15], and since every open subset of a metrie
complex is homeomorphic to another metric complex, the implication

is proved.

Implication (¢)=>(a) is trivial.

6. Tubular neighbourhoods with infinite-dimensional fibre. Let h: X —¥
be an embedding. By a trivial tubular neighbourhood of h we mean & triple
(E, %, U), where I is a linear metric space, U is an open subseb of ¥,

and 7: IxBZR U is a homeomorphism such that %(w, 0) = h(w) for
all » ¢ X. The space B will be called the fibre of the tubular neighbourhood,
and, allowing a lack of precision, we shall sometimes say that b oxr U
itgelt form a tubular neighbourhood of k. If X is a subset of ¥ and ¢ de-
notes the inclusion, then we shall say “tubular neighbourhood of X7
ingtead of “tubular neighbourhood of 4”. It is easy to see that an open
get UC Y is a trivial tubular neighbourhood of an embedding 4: X—¥
if and only if it ig a trivial tubular neighbourhood of the set A (X).


GUEST


64 H. Torudezyk

Tet B be a normed linear space. An embedding h: X—Y is said to
be B-deficient if  is a closed map and there is & homeomorphism

I 7% ¥« B such that fh(X)C ¥ x {0}. Obviously, the space X admity
an B-deficient embedding into B iff B o~ HX B and X is homeomorphic
to a closed subset of E.

6.1. Lmva. Let B be a locally convex linear metric space such that
E =~ Bx[0,1). If X is a space satisfying OX X B =~ H, then. every B-de-
ficient embedding h: X—EB admits a trivial tubular neighbourhood U (with
fibre H) such that (B, B\U, h(X)) = (OX X B, {0} x B, XX {1} X {0}).
If the assumption 0.X X B. oz I is replaced by X X B o¢ H, then B itself
is @ tubular neighbourhood with fibre B of every X -deficient embedding of X
into E.
" Proof. Let B,= CXx B, 4,=2Xx{1}x{0} and 4 = h(X). The

embedding b induces in a natural way the homeomorphism g: AlﬂA.

Then, ¥, is homeomorphic to F and the sets 4, and A are F-deficient
in E, and B respectively (observe that B ~ HX H); thus by a lemma

of V. L. Klee ([19], p. 36) there is a homeomorphism §: Elg—l-lgE such
that §ld, = g. We set U = g(X X (0, 1]1x B); it is clear that U is a trivial
tubular neighbourhood of % with fibre Hx (0, 1] = B. The proof of the
seecond assertion is left to the reader.

Let I denote the unit interval [0,1]. A subset X of a topological
space H is said to be a Z-set in B iff X is closed in B and, for qvery #,
the set {f ¢ C(I", B): f(I") ~n X = @} is dense in C(I*, X) (). An embedding
h: X-F will be called a Z-embedding iff h(X) is a Z-get in E.

We shall use the following lemmas:

6.2. LEMva. Let B be a locally conver linear melric space such thal
B =FE or B} E. Then

(a) B == Ex[0,1).

(b) An embedding into a paracompact H-manifold is E- deficient if
and only if it is a Z-embedding.

For the proof see respectively [5], p. 184 (observe that & has either B™
or Y R as factor) and [27], § 6.

Combining 6.2, 3.2 and 6.1 we get (cf. the footnote (%)):

6.3._ THEOREM. Let B be a space of the form Hy(A), where ¢ e[1,4]
and A is an infinite set, and let L be a Z-embedding into H of a space

(%) This deﬁx?it‘%on differs from R. D. Anderson’s [1] original one; however, if X
. has a base consisting of homotopy trivial sets, then the Z-sets as defined above

coinfsi(_ie wit".h the “sets with Property Z” of [1] and also with the sets which are homotopy
negligible (in sense of [9]).in"every open subset of X.
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X « ANR(IR). Then there is a irivial tubular neighbourhood U of h such
that (B, B\U, h(X)) =2 (0X X B, {0} x B, X x {1} x {0}). If, in addition,
X is contractible (i.e. X e AR (M), then E iiself is a tubular neighbourkood
of every Z-embedding h: X—H.

Let us also note that, conversely, if a closed embedding h: X—Y
¢ ANR (M) admits a tubular neighbourhood with infinite-dimensional
fibre, then X must be an ANR(9) and % must be a Z-embedding.
(A proof easily follows from the results of Hells and Kuiper [9]).

6.4. COROLLARY. Let H be as in Theorem 6.3, let M be a paracompact
manifold modelled on B and let h: X—M be a Z -embedding. If X ¢ ANR(IR),
then h admits o trivial tubular neighbourhood with fibre H.

Proof. Without loss of generality one can assume that M is a con-
nected open subset of E (see 4.4). By Lemma 6.2(b) there is a homeo-

onto

morphism ¢: M — M X EX B such that gh(X)C M x {0} x {0}. Set
gl(""’;t’Z'):(m)t?l‘["l/a(m)); (m,8,2) e UXEXE,

where a: H-»[0,1] is a continuous funetion with «™*(0) = E\M. Then
¢:g is a homeomorphism of M onto M X B x E and g,gh is an H-deficient
embedding of X into B X B X B = K. By 6.3 there is a tubular neighbour-
hood U, (with fibre H) of g, gh in B X E X R, and the standard arguments
show that we can assume U, to be contained in. the open neighbourhood
MXxExXE of g197(X). g~*(U,) is the required tubular neighbourhood
of hin M. i

We note also

6.5. CoroLLARY. Let B be a linear metric space which has 1, as factor
(e.q. let B be any infinite-dimensional Fréchet space). Then, every compact
ANR-subset of B admits a trivial tubular neighbourhood U with fibre B
such that (B, BNU, X) = (CX x B, {0} x B, X x {1} x {0}); moreover, B is
& trivial tubular neighbourhood with fibre B of each-of its compact AR-
subsets.

The proof is the same as that of Lemma 6.1, by using an easy generali-

" zation of Klee's homogeneity theorem (cf. [32], p. 262).

Finally we have

6.6. TarorEM, Let X be an ANR(IN). Then there is a normed linear
space B such that: (1) dens(H) ~ dens(X), (2) X admits B-deficient em-
beddings into H, and (3) if h: X—F ig such an embedding, it has a trivial
tubular neighbourhood (B, K, U) with (8, E\U, h(X)) = (0X X B, {0} x
x B, X x {1} x {0}). ‘

Proof. By Theorem 3.1 there is a normed linear space F such that
dens(F) = dens(X) and OX xF = F (cf. the proof of Theorem 4.2). We
let I = > F. Then H =~ B X ‘B and 0X admits a closed embedding into F;
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thus OX admits also an B-deficient embedding into B. Now apply
Lemma 6.1. . o ' .
Tet us note that if (E,3, U) is a trivial tubular neighbourhood of
a set X C ¥, then there is & (straight deformation) retraction. of U onto X
~which is topologically conjugated to the projection py: X X H— X. From this
point of view, Theorem 6.6 can be read as a strengthening of an earlier
result of D. W. Henderson ([13], p. 748).

Addendum. The constructions of 2.1 admit easy geometric interpre-
tation, i.e. the proof of 2.1 leads to an F-pormed linear space (H, ||| |||)
and to a closed embedding h: X—H such that the metric

0 (@1, @) = ||h(m)— h(@)]]]

satisfies the assertion of 2.1; moreover, the space H can be built in such
a way that H o B*. This implies that if X is a retract of a locally convex
linear metric space F, then XX 3F =~ }'F, and if additionally X is
complete-metrizable, then X x B =~ H*. As a corollary one gets that
for any Fréchet space F, F* is homeomorphic to a Hilbert space. Details
will appear in [29].
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