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Boolean-valued selectors for families of sets *
by

B. Weglorz (Wroctaw and Nijmegen)

Abstract. Let X = (X ,<, be a family of sets. We say that I has a selector if
there is a set S such that |8~ X, =1 for every a < x. X has partial selectors if for
every f < x the family XL '8 = {Xy>acp has a selector. Let E(x, ») denotes the follow-
ing statement: For every family X = (X >,<, of sels of powers < 1, if L has partial
selectors then XL has a selector. In this paper we prove a theorem on the invarianee
of E{x, x) under some generic extensions, namely: Lei |B| = 4, B satisfy o-c6 and
1% < w. Moreover, suppose that for each ZF-formula @ with parameters from V we have
1D} {0, 1}. Then E(x, %) implies |E (%, )| = 1 in VB,

This paper is a continuation of [3]. For the readers’ convenience
we repeat the main notions and results of [3]. )

I X = (X, is a family of sets then X has a selector if there is
a set § such that |8 ~ X | = 1 for every a< ». We say that & has partial
selectors if for every f<Cx the family X[ §= <X, has a selector.
In [3] the following statement, denoted by E(x,A), has heen studied:
“For every family X = (X, ),., of sefs of powers <1 if X has partial
selectors then X has a selector”.

The main results of [3] can be presented as follows:

TEEOREM. (2) E(x, %) implies that » is regular.

(b) If x is weakly compact then E(sx, x) holds.

(e) E(zx, x) implies that » has the tree property.

(d) [GCH]. E(x, %) if and only if » is weakly compact.

In this paper we give a theorem about the invarianee of the property
E(x, %) under some generic extensions. We shall work in the Boolean
version of forcing; thus for the readers’ convenience we recall the main
notions and notations concerning the Boolean-valued universe 7@, For
more information see e.g. [2].

Let % be a complete Boolean algebra. We say that $ satisfies o-co
(o-chain condition) if every family of non-zero disjoint elements of & has

* The main part of this paper has been presented at the Eighth Dutch Mathe-
matical Congress, Groningen 1972.
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the cardinality smaller than ¢. The Boolean-valued universe V@& jg defineq
by induction as follows:

7 = {u e V: Function (u)Adom (u) C V¥ amg(u) C B},

where V denotes the standard universe, i.e. the class of all sets. The logical

values of |- ¢ -] and ||- = -|| in 7' are defined by induction:
(1) e e ] = dZ“v(fv)-lfu——— all, and
@ fu=1l= [] @@)=>lzed). [] (v@)=|zeco|.
zedom (u) zedom (v)

We define the Boolean value of any ZF-formula @ with parameters in 7®
by induction:
(I) For atomic formulas as in (1) and (2).
(D) If ¢ = 1%, then |@| = —[7.
(L) It @ = P A ¥y, then [[Of = [yl +|[F5l.
(IV) If & = Ha¥, then ||@f = Z(‘ )H‘If(m)t[.
zel! .
We also define the natural embedding of ¥V into V™ by induction:

&= {<F,1>: yem}.

Let us denote by ¥ the image of ¥ by this embedding.

Now, our problem can be formulated as follows: Suppose E(x, x)
holds and &% is a complete Boolean algebra. What should we assume
about the cardinality of B to have ||[E(x, »)| = 1 in V2

The assumptions on the algebra B presented in cur Theorem (in § 3)
are rather strong and only under the assumption of GCH seem to be
completely natural. (Then this Theorem gives the invariance of E(x, =)
under “mild” extensions). But in this case our Theorem is a consequence
of the well-known result about the invariance of weak compactness under
“mild” extensions, see e.g. [1]. Thus the difficulty of the proof that
E(x, =) is invariant under some extensions suggests that E (%, ») is different
from the weak compactness of .

The author is indebted to B. Balear, L. Bukovsky, and Tomas Jech
for many stimulating discussions during the preparation of this paper
and to Leszek Pacholski for his valuable criticism and help.

N § 1. A Boolean counterpart for E(x, #). In this section we define a con-
dition E(®, ») which, under some natural assumptions on B, implies

that |E(z, x| =1 in 7. For convenience we introduce the following
abbreviations: '

[A]l B satisfies x-cec.
[B] I} is a eardinalfj = 1.
[C] i is regular] = 1.

icm®
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[D] For each ZF-formula & with constants from ¥ we have either
@)= 0 or [|&] = 1. - :

Let us remark that [A] always implies [B], and for regular x also [A)]
implies [C]. Assumption [D] will be used to simplify calculations in 7,

DerrxinioN 1.1. A funetion F: %X x—3% is called a %-covering of $H
it T satisties the following two conditions:

(1) (Ve[ 3 F (s £) = 1)

(.2) (Vu<>¢)(ﬂﬁ<x> (Vy<u)(71 = ﬂ—’F(a; y)= 0)-

Lumra 1.2. Let F: % X x—B be a x-covering of $. Then there emists
an dlement Tp= (X duey of V™ such that:

(i) 1%y is a sequence of length % of elements of P ()| =1

(i) (Vo < #)(X, # 0)] =1, .

(iii) 3f [B] then [(Va < #)(|X,] < )| = L.

Proof. Let F: xX x—3 be a x-covering of B, For each a< x, we
define f,: %— B, putting f(£) = F(a, &) for &< x. Let Xy e 7™ be defined
by the conditions: dom(Xy)=x and Xy&) = f48), for §< x Then
Xy CH#l=1. Let ¥yeV® be such that |¥y= (z, X2)|= 1. Then we
define :BFEV(SS’ by the conditions: dom(Xz) = {¥y: a< x} and TLr(Y2)
=1 for all a < . Then of course X, satisties (i). (ii) follows from (1.1.1).
By (1.1.2), for each a < » there iy & f < « such that |XyC §| = 1. Thus
(iii) follows from assumption [B].

LrarmA 1.3. [A] & [CT. Bach element X e V'™ which fulfils conditions
(1), (ii) emd (iil) of 1.2, determines some x-covering Fy, of B. Moreover, if
Fop=Fy then |X = Y| = 1.

Proof. Since || e""P(Q)[] =1, & determines a function Fyp: #X x— 3
defined by Fig(e, f) = || « Xy|. Now, since for each a< x, | Xy # 0f = 1,
(1.1.1) holds. By [C] and (iii), for each a< %, we have {iSE{ﬁ< %) (X2
Cp)|l = 1. Hence, by [A], there is a < » such that | XyC gjj = 1. Con-
gequently (1.1.2) holds. .

Now, suppose that ||, ¥e”P(x)| =1 and Fy = Fy. Then

t]

[ = ¥ = (Vo< #)(X, = L) = [[1Xs= T4

a<x

But | Xy, ¥y C#f| =1 for each a< x; consequently we have
Xz = Yl = (VB < %) e X) > (B« T2
= [] (Px(a, p=Fyla, p))=1.

B
Thus [l = Y| = 1.
Cororrary. [A], [B] &[0] Fy,=F and [Lp,= X|=1.
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Proof. By Lemmas 1.2 and 1.3.

DerinimioN 1.4, Let L= <X >, be a family of subgets of 4.
A function 8: x—x 18 a selector of X of length 6 if the following two con-
ditions are satisfied:

(:16) (V&< 8)(S(8) e X).

(:20) (V&, n< 8)(S(&) e X,—8(&) = 8(7)).
A selector of length » will be called a simply selector of . )

LA 1.5. Let F and G be - coverings of B, and suppose that G satisfies
the following condition:

() (Va<z) (VB o< %) (s # fa—G(a, f1)G(a, B;) = 0).

If F and G satisfy the following two conditions:
- (18) (Va, < 8)(VE< )(F(a, £)G(B, &) = F(B, £)@(«, &),
(-28) (Va<< 8)(VE< #)(G{a, §) < F(e, &),
then G determines an element 8 ¢ V¥ such that
(-38) |I8 is a selector of Ly of length &) = 1.

Proof. Since & is a »-covering of $, by Lemma 1.2, @ determines
in 7 an element; Yy = (¥, such that [¥s is & sequence of length »
of non-void subsets of | = 1. Using (*) we can check that (Ve < %)
(¥, is a one-element set)|| = 1. Thus, we can define S ¢ V¥ in such a way
that |8: x—#| =1 and |(Va< %)(S, e ¥,)| = 1. Then Ga, &)= |8y =§|
for all a, & < . Consequently, by (1.5.28), we have [I(1.4.18)]| = 1.

To prove (.36), it suffices to show that [1(1.4.26)|| = 1. Let us remark
that by (1.5.18), for all a, f < & and for each £ < %, we have

(€la, &)-F(B, &)= G (B, &)-F(a, )= 1.
Sinee G{8, &) < F(B, &), we obtain
(F(a,£)-G(B, &)= G(a, &) = 1.

Thus in V'D: (& e Xy ¥ = Sy|= ¥ = Se|) = 1. Hence |f ¢ Xonk— Sy
= 8:l[=1 and consequently Sy X;—8y=8yl=1. But this gives
(1.4.28)] = 1 and finishes the proof of (.36).

LEMMA 1.6, [A]. Let F be o s-covering of B. Let 8eV® satisfy
@1.5.36). The.m the function Gg: %X x—s B defimed by Gya, B) =Sy = B
18 & %-covering of B and conditions (%), (1.5.18) and (1.5.28) are satisfied.
Moreover, if Gg = Gg, then |18, = Sy =1.

Proof. Let Ly V™ be a sequence in 7 determined by F and
let Gla, f)= I8 =Bl Then of course Gy nx %% satistios (L1.1).
Since I18: #=ul =1, for all & 1< x, we have |[f = Sl = 8l < =1l
and (=) is sat1sf1eq. Now, nsing () and [A], we see that (1.1.2) also holds.
Consequently @y is a %-covering of B satisfying condition ().

icm®
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Proof of (1.8.20). By (15.36) we have |(Va< 3)(8,eX,)|=1;
thms [] 1Sz < X;ll = 1 and therefore, for each a < 8, we have ||Sy e Xy|| = 1.

a<d
Consequently 3 F(a; §)-Gg(a; &) = 1. But, for & £ &, Gy(a, £)-Gg(a, &)

E<n

=0, since Gy satisties (). Thus F(a, £)-Gy(a, £) = G4(e, &) and conse-
quently Gg(e, &) < F(a, &) for each a< §, which proves (1.5.26).

Proof of (L.5.18). Sinee ||S: x—x|=1, for each a < % we have
(@< #)(Sy = n)ll = 1. By (1.5.36) we have

1Sy € Xy—8y = Syll= 1.
Thus for each << d: |ISy « Xy < |8y = Sy|. Hence
(8 < %) (85 = nAn e X3)| < |[(En < %) (Sy = nASy = 4)|

and consequently '

D) Gs(B, ) Flayn) < D Gs(f, n)-Gsla, 7).

n<x% N<x%

Thus
Gs(B,m)Fla,n) < ) Gs(B,n)-Gsla,n)

n<x

for each 7 <C ». But using (x), we obtain

Gs(B, )T la,n) < Gs(f, m)-Gsla, n) .
Finally, Gs(8, ) < F(B, n) by (1.5.26) and consequently

Gs(B, n)-Fla,n) <F(B,n) Gsla,n).

By symmetry we get (1.5.16).
Finally suppose that 8§, S, satisfy all the assumptions of Lemma 1.6
and let Gs, = Gs,. Then

18 = 84l = (Vo< ) (81 = Soa)ll = [ [ I1810= Sl -

a<n
Because of ||S;, Sy #—%|| = 1, we have
1810 = Sadl = (V1 < %) (8hg = 0> 8y = )l
= [j (@s,(a, n)e>Gg(a, m) =1.
A<
Thus |8, = 8y = 1.
DerrNiTioNn 1.7. A x-covering @ of B fulfilling (x) is said to be

o d-refinement of a given »-covering F of B if F and @ satisfy conditions.
(1.5.18) and (1.5.28).
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DerNition 1.8, E($, %) denotes the following statement: “Hacy
x-covering of $ which has a d-refinement for all § < %, has a x-refine.
ment”.

Trrore 1.9. (1) [AL If [E(e, %) = 1, then E(B, =) holds.

(:2) [A] & [D1. If E(B,x) holds, then ||[E(x,zx)|]|= 1.

Proof of (.1). Since |[E(%, #)| =1, by the Theorem (clause (a)) in
the introduction assumption [C] holds and consequently [B] also holds,

Suppose that F is a »-covering of & having for each §< » some
§-tefinement. Then, by Lemma 1.2, ¥ determines X, eV satistying
conditions (i), (ii), and (iii) from Lemma 1.2. Moreover, by Lemma la,
for each 6 < %, Xy has a selector of length 8 = 1. Thus, since |[E(x, x)j
=1, we conclude that [T has a selector of length || = 1. Thus, by
Lemms 1.6, we see that E(%, ») holds.

Proof of (.2). Since E(x, ) is a ZF-formula with constants from 7,
by [D], [E(*, %)] = 0 or 1. We shall exclude the case [[E(x, #)| = 0.

Suppose, on the contrary, that |[E(%, %) = 0. Then there exists an
L eV® such that:

(a) X PG =1,

(b) [(Va< #)(1X,| < )| = 1,

(e) (Vo< %) (L has a selector of length d)|| = 1,

(d) % has a selector of length | = 0.

Thus, by Lemmas 1.3, and 1.6, we get a x-covering of $ which has for
each 0 < % a §-refinement. By E($, ») this »-covering has a x-refinement.
Thus, by Lemma 1.5, we get

(e) |X has a selector of length | = 1, which contradicts (d). Con-

sequently {[E(¢, )| =1. Q.E.D.

§ 2. Main Lemma. In this section we shall show that under some
assumptions concerning the cardinality of B, E(x, x) implies E(B, x).

For this purpose let us introduce some notations: Let F be a given
%-covering of B, For a,f, y<< x let

pla, f)=min{{ < u: (VE<#)(E > (>F(a, §+F(B, &) = 0)},
and .

a, B, y)= ma‘X(‘P(a: B p(a, 7)) .

Let us remark that, by (1.1.2), ¢(a, ) < x is well defined for all a, < .
Let R be the set of all partitions of the unity in B, ie., 7 e R if and
g:nly it (1) rC®, (i) Oer, (ili) @,y er and & # y implies z-y = 0, and (iv)
t=1 .
Let 7« R."We call r acoeptable for « if for each @ < r there is a &< #
such that # < F(a, £). Let R, be the set of all partitions acceptable for q,
let R* = {a}x R, and RY¥ = Rex K.
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For ap, ary §<% Tos 11 e Ry 3, 3y € 3B, the symbol (q,, Tos
@, £) denotes the following 5-tuple:

Toy 014 114

Hagy @i}y {agy o>y <01, 110}, {Lag, @, oy, )}, m,-F( (g, &), .
For ay # o1, 71 € Ry 4= 0,1 we define the following sets:

Reeenns — Re0% {<<a07 7o, <a“ 7-1>>} ,

Ag“""‘rm: {(00y 7o, Yo» %1y 11y Y1, &): Ysers and v, < Flag, &) for i = 0,13,

apaiforl . fRocairerL Oagay?o?1 «
g =R wAg

PrOPOSITION 2.1. For 'ay# oy and y < x, lot A = R
w {Agenn: ppe Ry, for i = 0,1 and £< y}. Then SC U.&“""‘“ s a seleclor
of kﬂﬂoﬂl if and only if there are v; € R, and funmctions §s, 9= 0,1, with the
followmg properties:

(2.1.1) dom(gs) = v,

(2.1.2) tng(g:) Cree Ry,

(2.1.8) for each & <<y, gué) <F(w, &),

such that § = {<<0‘o; Toyry <01y ""1>>} v {(ao, oy Go(&)y a1y 71, Gu(E), 5): &< 7}-
(we shall denote such a set 8 by 8(ay, ay, 7y, 71, Go, 6)).

Proof. Tt is easy to see that each set of the form §(ay, ay, 74,74, go, 1),
where as, ¢, gs, for 4= 0, 1, satisfy (2.1.1), (2.1.2) and (2.1.3), is a selector
of A,

Gonversely, suppose tham S8C [JA» is a selector of Ao, Then
8~ &%) = 1; thus S consists exactly of one pair {{a, r0> {ag, 113D,
where 7; € R,,, f01 i=0,1.If 7, # s, 0r 1, % &, where s; e R,  for i=0,1,
then {<aq, 7o), <oy, 1"1>\ € Romé and  consequently <<ao, 7o) {ay, f1>>
e Apu®% for each £<< y. Since § is a selector, for r, # s, or r, # 8 we
have 8 APsnt = [{Lay, #o), <oy, 1y>p): Moreover {(a, ro¥, (o, 1,3
¢ Bt and thus 8~ APa™ = § A Al Since for eaeh &<y
we have [§ n A" ™| =1, for each &< y the set § consists of exactly
one 5-tuple of the form. (ay,r, 8, a;, 7,95, €), where yéier, and i
<F(a, &), for =0, 1.

Oonsequently, we can define functions gy, g1, by gi(&) = ¥4, for £ <y,
i=0,1, in such a way that (2.1.1), (2.1.2) and (2.1.83) are satisfied and
8= 8(ay, &y, 7y, 71, gy, g:). This finishes the proof of Proposition 2.1.

Now, we shall define a new family of sets to ensure that g, from
Proposition 2.1 is one-to-one. For this purpose let Z, = {& < x: F(a, &)
# 0}. Let us remark that, by (1.1.2), we have |Z,| < « for each o< x.

Let us define the following sets:

Goarrery . Pagairer: . .
Vs — RUrors o {(ay, 1y, Wy Oy, Ty, 1y )t £ € By a0d @ €17}
2~ Fundamenta Mathematicae T. LXXXVI
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and the family
e — {V(;ooalrnﬁ: 7€ ‘{R‘ﬂﬂ O<myerye .'R.au} .

PROPOSITION 2.2. A set § = 8(ap, a1, T, 71, gy, g1) 18 & selector Ao,
w A for v = @(ag, o) if and only if !

(2.2.1) mmg(ge) O'7— {0},

(2.2.2) go is a one-to-one mapping from the set {£ << y: g,(&) # 0} onio
re—{0}.

Proof. Suppose that S = 8(ay, a5, %, 71, gs, 91), Where g Satisfies
(2.2.1) and (2.2.2). Obviously, by Proposition 2.1, S is a selector of A%,
Let X = 8~ Vo, and consider the following two cases: !

Case L 7, # 3 or 7, # §;. Then X = {{<oy, 7>, <oy, 7YYk

Case II. #,= 8 and 7, = s. Then, for each @, €y, if @, # 0, then
there is exactly one £eZ, such that g,(£) = 2,. But then X = {(agy 14,
Toy 01,7y, @y, §)} Thus S is a selector of X0 o slawe,

Conversely, let us suppose that § = 8 (ay, oy, 7o, 71, go, §1) is & selector
of £ We shall prove that (2.2.1) and (2.2.2) hold. For this purpose,
let X = 8 n Vs gnd consider the following two cases:

Case L 7o # s, or 7, # 5. Then, as before, X = {(<ay, 7o), {ay, 1))},

Case IL. 7, =, and 7 = ¢;,. Then if 2, ¢ 7, and #, # 0, then there
exists a £e¢Z, and some a 7, such that-

Xo= {(ag, 1e, @, az, 1y, @y, &} -

00nsequgntly 9o(é) = @, which proves (2.2.1). To prove (2.2.2) let us
assume that for some £, &<y we have gy(&) = go(&) = @, # 0. Then

, X = {(ao; Toy 9o(61) 5 @y 71, g1(&1), 51); (ao; 7oy §ol€a) 5 04, 71, 91(52.)7 52)}

and 8 is not a selector of 4%, contrary to our assumption.
In & similar way, we shall define a family of sets which will play the
same role with respect to the function g, as the family A= does for g,.
Let us define the following sets: .

GpaIfery . PeoaTos
Ui = Roannf(gy, 1, Ty 04y 11, @y, €): E€ Z, and @y ety

and the family

A — (UG py e R, and 0< @y 7y € L
COROLLARY 2.3. A set § = S (agy ay, 7g, 1, i o
) 0y %1y o5 Tyy Goy G1) ©S @ selector of the
Jomily A3 o gl graws fop o) = @(ay, 03), if and only if, for i=0,1,
(2.3.1) mg(g4) O r;—{0}, : '
(232)

o gi 8 @ one-to-one mapping from the set {&<y: gi(§) # 0} omto
ri— .

icm®
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Now, take the family A4 U 4% Then, by Proposition 21, 8 is
of the form:

(%) 8= 8(a, a1y os 715 Gor 1) v S(ay, ap, s Tos i go) -

The converse is not mnecessarily true, but it is true if, e.g., r;=r} and
g, = gifori =0, 1, and for each & < y we have g,(£) F(ay, &) = (&) F(ay, £).
To obtain this case we shall construet some additional families.

Let us define the sets

Fﬁ:ﬁi = Rueniro {<<ao; 7o), {oy, 7'1>>} 5
and the family
Ganul — {Faua:. i€ ‘rK‘“, 4 = 0, 1} .

rorst

PROPOSITION 2.4. A sel of the form (x) is a selector of C* if and only
if g=1, and 1, = 7].

Proof. Tndeed, if 7, # 7, or » s 7, then

8 I = {{Cag, 7o) 5 oy 1YY 5 LKy, 11>, <oy, T} -

Thus S is not a selector of Clam,

Conversely, suppose that § is of the form (x) with 7y = 7; and r, = ],
We wish to prove that § is a selector of the family €. Let X = § ~ Faum
for some s; e R, ¢ = 0, 1. We consider the following two ecases.

‘Case L. s,=r, and 8 = 7. Then X = {{{ay, 7o), <, 1>}

Case IT. s, % 7, or 8 # 7. Then X = {{{ay, 1), <ay, 7o)}

Thus in both cases [X} =1, i.e., § is a selector of Co=,

Now, we shall define a family of sets such that every selector of it
which is of the form (x) with »,= #; for ¢ = 0,1 will have the-additional
property that g, = g,. .

Let us define the following sets:

Wegroarors = Roorors  {(aq, gy By, 01, 715 %1y €)1 Breti} v
‘ ,
 {{ayy Pyy By, Gy, Ty By, £): @y €7y 2D Ty F Ty €T}
and the family
Gt = {Wipeer: <y, myerye R, and 1 ek},

PROPOSITION 2.5. Suppose that 8 is of the form (x) with r,= r; for
i=0,1. Then § is a seleclor of CL™ if and only if gy =g

Proof. Suppose that § is of the form (x) with r;=r; for i=0,1,
and g, = g;. Let us put X = § ~ Wawuss; and consider the following
three cases: .

Case L. s, # 1, o & # 7. Then X = {{{ay, 7o), <a, 7))}
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Case IL. sy= 17y, s = 7 and gy(&) = @,. Then
X = {(aoa o3 Jo(£) s a1y 11, gu(£), E)} .
Case IIL. s, =17,, 8 = 7, and go(€) # #,. Then

X = {(ar; 715 9:(8), @0y 7o, 90(8), .

Thus 8 is a selector of €)==,

Conversely, suppose that § is of the form (x), 7, =7} for i = 0,1,
but g,= g;. Then for some &<y, wo have gy(£) 5 go(£). Put @, = )
and consider X = § ~ W™, Then we have:

X= {(aoy Tos oy 1y 11y 1(£), 5)7 (a17 "1y g{(f): Aoy %oy g(;(f)y 5)} .

Thus § is-not a selector of G,

Similarly, we shall construct a family of sets which will play the
same role for g; and g;-as €, does for g, and ¢,.

Let us define the sets

Whesern = B o {(ay, 71, @y, doy 7oy Boy &)1 @ € o} v
 {(agy 7oy Ty 0y, 7y, @, £): @y €7y and @y @ e 1y}
and the family
G = (Wameoros: £< @y ery ¢ K, and 1y e Ry}

Then, as before, we get:

PROPOSITION 2.6. 4 set § of the form (x) is o selector of €% L Loy
w G if and only if r, =} and g,= g, for i=0, L.

‘Proof. By Propositions 2.4, 2.5 and the definition of G,

Thus let ns consider the following set:

(%) 8= 8(a, o, 1, T35 90y G1) v S0, 0o, 71, Tos Giy o) -
Let us define the sets
lﬂgnﬂlf‘uh = R,
“ {({au: a}, {{a, o>y ey, 1>}, {<ayy @) oy, @)}, b,y £
Zierie Ry, i=0,1,b 655}
and the family
Dt = {Fgmmms: pe R, for 4=0,1, and £< y}.

]::’ROPOSITION 2.7. A set 8 of the form (wx) is a selector of DX if and
only if the following condition is satisfied:
(2.7.1) For each &< y: gy(8)-Flay, £) = gy(£) F(ay, &)
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Proof. Indeed, let S be of the form (x+) and suppose that (2.7.1)
nolds. Let X = 8 ~nFp=%s, Then we have the following two cases:

Case L. 7y # 8 OF 71 # 8. Then X = {({ay, 7>, <a, vk

Case IL 7= s, and 7, = s,. Let bs = go(&) Flay, &) = ()P ay, &).
Then

X= K{ao: ar}y {<a0y o>y <oy 710}, {0g,y g8, <oy, GENY, by, 5\} .

. Thus § is a selector of D™=,

Oonversely, suppose that (2.7.1) does not hold. Then for some £< y
we have go(8)-F(ar, €) # 6u(é)-Fla, §). Leb us take X = § ~ Fgaren,
Then X has two elements, namely

X = {(ao, oy 0olE), cyy 71,y G1(6), E): (ah 71, (), gy Ty Gol€), f)} .

Thus § is not a selector of D .
CoROLLARY 2.8. Let § be a set of the form (x). Then § is a selector of
ﬁganm v Ag“l"" w Gl C:,a"”‘ ] 872,""“‘ w Dy if and only if ri= 1’%, gi=g;
for i=0,1, am? (2.7.1) holds.
Now for y = @(ay, ;) let us define the family

E;ocu — _,zggantu N J»(,guma w Al Ag2ear , R0ar ejllaoax w e;—um ) ﬂ)‘;oﬂl .
It is easy to see that if y is a limib ordinal then we have §r= = | j &z,
&<y
Leb a0a1 U 8?!11.

&<
We can “swunmarize the preceding considerations as
CoROLLARY 2.9. (\1) 4 set 8 C U & (where y > ¢(ay, 1)) is a selector
of & if and only if S has the following form:

(+) 8= {<<a07 Toyy Lay, 11>y <oy, 71, (&, 7'o>>} “
U{<{ao, ar}, {agy Toyry oy 10} {0y Go(8)), <ony GlEN}, h(g), £): £< y}

where, for 4= 0,1:
(8) 71 € Ryyy
(b) gz y—7ry and rng(gs) D ri— {0},
(c) for each &<y, gué) < F(ou, &),
(d) gs is a one-to-ome mapping from {&-<y: gi(é) # 0} onto ri— {0},
() for cach &<y, B(£)= gul£)-Flas, &) = gu(8) P ey, £)
(we shall denote such a selector by S*(ag, iy 7oy 71y Jos 91))-
(.2) Bach selector S of & has a unique exiension 8§’ to a selestor of &2,
for 5> .
(.3) Bach selector 8 of &= is completely determined by a selector of

a0
e
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Proof. (1) has already been justified by 2.1-2.8.

(.2) Let 8 = 8%(ay, oy, 7y, 71, Goy 91) De a selector of &0, Let us defing
4;2 i) by gi{&) = 0, for y < E< n. Then 8 = 8%ay, a;, ro, 7, Bos 1) 1s
by (.1), a selector of & The uniqueness of this extension follows fro
the fact that 9 >y > ¢(a, ¢;) and by (c).

(.3) This follows immediately from (.2).

Let a; # ap, ¥ == @(ag, 0, a3). Then B

(U~ (U g =o.
Thus, by 2.9.1, each selector § of the family & o &9 jg of the form

3
m

(8.1) 8= 8%ag, 0y, 75, 715 G5, 1) v 8%(agy ag, Toy ¥as Gos 0s) s

where i, 73, g1, g5, 4 = 1, 2, satisfy the corresponding relations from 2.9.1.
We shall construct & family $°®%* with the property that each
selector of &™ . &2y Pleves hag the form (S.1) with the additional
property that 7j = #2.
To do this, let us define for o # @ # oy # a, and s, ¢ R, the set

Bgoar = {{{agy 8>y oy 81Dt S € Ry} o
- {<<ao, ‘9(;>; ag, 32>>: 'éz € J{'ag’ S # s(lx € “K‘ao} )
and the family

Blewmes — (Plmowoa; g e R Y

PrOPOSITION 2.10. A set 8 of the form (S.1) is a selector of the family
B if and only if 7t = 12,

Proof. Suppose that § is a set of the form (S8.1), where r, = 7t — 72,
Tet us consider the set X — § ~ B2, Then either s,  r, and then

X = {{ay, 7o}, {ay, 757}, or else s,=r, and then X = {Kag, 7o,
{ay, 1))} Thus 8 is a selector of $Hooowas,

Conversely, suppose that § is of the form (8.1) and 7} s ;. Then

8 '%g?am: {<<ao7 o>y ag, 1Y, {Lay, ey {ag, 7'2>>} .
Thus § is not a selector of GyPavaraz,
COROLLARY 2.11. A set 8 s a selector of the family &% w 84 L Howmes
if and only if

(8.2) 8= S*(aoa Qs Tos Tay Gy 0y) S*(aoy Uy Tos oy Gor G2 5

where 1y, 1y, ¢y and g¢i, i = 1, 2, satisfy the corresponding relations
from 2.9.1.
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Now we shall construct a family &;auﬂmg with the property that oach
sdlector of & B o BN L Bt is of the form (3.2) with the
additional property that g;= g;.

For this purpose let us define the following sets:

; . b
Bgee = {(agy Soy Tos 0ay S1y @y, E): Wyes e R},
gz — f
I satod T l(

! . '
D2, = {(ay, Soy Loy Ooy Soy Xy £): My e sy e R, and s, 5 spe R, },

sola

’ - ’
gy Sgs Tos Uas Sey %oy §)7 Bp € 8y € Ry, and 1) 5 fe 5},

[

’ . ' , 4 ’
jrots, = {(dyy 895 Loy oy Sg9 Tpy E)7 Wy € 8,6 Ryyy 8y # 59 € Ry, a0d 4 # fesg},

o2 081 aguz a0es ( , Tjod
Biﬁﬂf? * = sotol OSotnE v D sotos &' Psglel 3

and the family:
Pleoesss — (Ben §y e 5y e R, and E< ).

ProrosIrioN 2.12. A set of the form (8.2) is a selector of the family
e if and only if 5= g3

Proof. Let 8= 8%(ay, a1, o5 T1s fos §1) © S (s Gy 7oy oy Goy o). We
shall show that for any s, e R,,, % € 8, and §<< y, we have |§ ~ Bl™™%| = 1,
TFor this purpose let us consider the following four ecases:

Oase I. ss=17, and gé) =1, Then S~ (= SnDie=Sn
n B = 0. Thus .

8 B;:?Ean =8n B = {(“m oy §o(E) 5 0y T3y 0a(E)s 5)} .

Case II. sy=17, and go&) #f. Then 8§~ BEk=8n D= 28n
~ e — 0, Thus

Solo .
8~ Blamer == 8~ 0552 = {{do, 70, Jo(€); s T2y galE), g}

Case IIL s, # 7, and go(&)=1f,. Then § A BYL=8n (us=8n~
N BEe = 0. Thus :

8~ By = 8 n D, = (05 705 Gol£), ctas T2y 9€), E)} .

Case IV. s, # 7, and go(&) # . Then S nBIL= 8~ Oppa=8n
n Dt = 0. Thus

8 A B =8 n By = {{(@0; 70, Go(€) o2y 725 G(€), &t -

Consequently S is a selector of B,
Conversely, suppose that & is of the form (S.2) and for some &<y
we have gi(£) # gi(&). Take s,= 7, and f; = gy(£). Then

8 nggnlf = (am Toy gé(f), Qyy Ty 91(5)5)}
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and
8n 038?,,2? (ao: 7oy Go(£) s gy Ty G2 (&) f)} .

Consequently § is not o selector of Bjowue,
Lot Fomo = Soome o o for 'y > (o, o, o). Then for e
limit y we also have Fu™ = | J Fga%, Let Foume = | ) gome,
f<y E<n
COROLLARY 2.13. Let v = @ (ag, a5, as). Then a set S C || o1 | | pams
Y= pldy, 4, ~ y I &)
is o selector of & v 80 U Fiue if gnd only if 8 is of the form

L3 i3
8 = 8%(ag, @y 7o, 715 Go, §1) v 8 (agy a2y 0y 73y Goy g)

wherers, g3, ¢ = 0,1, 2, satisfy the relations from 2.9.1.
Let us define &= {J {8 oy, ¢, << 6 and a, # o} and

Fy= |J {Fo™: a5, ay, 0,< 6 and Gy # 0y # ay 5 ap} .

Levwa A. If B has a 8-refinement then &, U Ty has a selector.

Proof. Let G be a 6-refinement of . Let us define for each B< 4,
rp={G(B,§): £<<x}u {0} and the function 95(6) =G (B8, &) for £<u
Then, by 1.7, and 1.5, we have 75 € Ry and gy satisfies conditions (b)-(e)
of 2.9.1.

For ay, a3 < 6, 0y # ay, let S, = 8%(ay, o, Tays Yays Gags Jor)+ Then, by
2.9.1 (e), we have §,, =8, ,. Let §= [ {80 0y 03 << 8 8D o # o).

First we shall show that § is a selector of 8, Indeed, by 2.9.1, §,,
is & selector of 8. Moreover, it is easy to see that if {ag, o} # {ag, a}}
then 8, o = 0, and also for each X « §%% we have Sy 0 X = 0.
Thus take any X e §,. Then for some agy 0y << 0, ty # o we have X e 8%,
Consequently X ~ 8§ = X ~ Supey and therefore |X ~ 8= 1. Thus § is
@ selector of §,.

Now we claim that § is a selector of & 5. Let us put 8%

=8 v
apag agay
* S40e- Then, by 213, 8%, is a selector of F%u%, We shall consider all
other possibilities:

Case L {a, a;, a5} ~ {gf, al, al} = 0. Then 8.,
any X e %% we have §% ~ X = 0.

aiay

Oa.stla I Kag, a1y a0} ~ {0f, af, a}] = 1. Then, as before, we have
8., r\SEZa; = 0 and for any X e F%% we have X ~ §% = (.

ajag
Case IIT. ,{ao, a} = {0y, 0y, ap} A {a, af, as} and {og, oy} = {gg , a;}.
a
Then 82 ~ Bob = ,Sml and for any X eF%4% we have X &%,
= xmsmngsjza,.
2
Case IV. {a, o)} = {a, a1, a3} ~ {a), of, o} and {ay, oy} # {a, a3}

Then 832, ~ 88 = 0 and for any X ¢ 549 we have X ~ 8% — 0.

1€ oz

/
~ 8y =0 and for
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’
Case V. {a, & @} = {ag, 0}, a3} and gy = ;. Then S, = &3,
Sl

. . ’ ’ r
Case VL {m,a, a} = {a5, 0{,a;} and o # o). Then 8o N8,
. gra’a’al ag _ T
— S"o“f’i and for any X e F%n% we have 8, X = Sﬂﬁ,, NnXCXn S:;x"i‘

From this consideration it easily follows that if X e Foome: then
XnS=Xn8g, Thus, sinece 82, is a selector of Fema we have
|X ~ 8] = 1. Consequently, § is a selector of ,, which finishes the proof
of Lemma A.

LemMA B. If §, v F, has a selector then F has a %-refinement.

Proof. Let §C | (8, v F,) be a selector of §, o &, Then, for every
ay, 0y < % With ay # i, § is a selector of §w=, et By = 8 { o,
Then 8, i8 & selector of & and, by 2.9.1, § is of the form:

8,

agar ~

where 789, 79, g, g0) satisty the relations (a)-(e) of Corollary 2.9.1.
Moreover, 8 is a selector of F== for each ¢, # o,  a, 0. Thus, by

*
8¥ag, a5, Tz(x?)l)’ rﬁ‘i"’, ‘(Iaul), ggul")) 3

- 2.13, 7% does not depend on a; and similarly #& Goes not depend on’ .

Thus for some 7, eR,, ¢= 0,1, we have rg‘:l)= Ta 10T each o # g
and r® = r, for each @, # . For the same reason 9 does not depend
on o and g% does not depend on a,. Thus we can define a function
G uxX x>, by putting G(og, &) = g,,(£) for all o, &< ». But then,
by 2.9.1, @ is a x-refinement of F.

MAIN LEMMA. Let |B| = 4 and B satisfy o-ce, and suppose that 15 < .
Then E(x, =) implies E(B, x).

Proof. To prove that E(3B, ») holds, take any x-convering F of %
which for each 6 < % has some §-refinement. Let us construct the families
8 and ;. By Lemma A the family & o &, has a selector.

To apply E(x, ) to the family &, v ¥, we must estimate the cardin-
ality of this family and also the cardinalities of its members.

First let ws remark that |R|<15< x and consequently [Rl < 2
and [Eommn) < x for each ag, o < % and #i € Ry, 4= 0,1. Thus for each
Xeb, v F, we have |X|< ». Moreover, it is easy to see that &3]
<max (13, |y|) and similaaly |F20%%] < max (A2, |y|). Therefore [§, L F,| = .

Finally, from E(x, ») it follows that » is regular. Let L= § U §,.
Since % is regular, we can ennumerate L in such a way that for each § < =
there is an a<<x such that X } BC §,u F,. Consequently, since for
each § < » the family & o F,; has a selector, X has partial selectors.
Thus, by E(x, »), £ has a selector. Now, by using Lemma B, this means
that ' hag a refinement, which proves E(B, x).

§ 3. Preservation Theorem. In this part we prove that E(x,#) is
Preserved under some generic extensions.
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TaEOREM. Let [B] = 4, B satisfy o-co, and A% < % Moreover, suppose
that for each ZF-formula @ with parameters frgm V we have ||| <{0,1}
(i.e. [D] from § 1). Then E(x, x) implies |E(x, x)| = 1 in 7,

Proof. Since |%| = 1, B satisfies o-ce, A < » and E(x, ») are agsumed,
by the Main Lemma we have E(3, ). Next, obviously ¢ < %; thus &
satisfies also »-ce. Consequently all the assumptions of Theorem 1.9.2
are fulfilled. Thus, by 1.9.2, we have |[E(%, )| = 1. Q.E.D.

bl
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Examples of disks in EG whijch cannot
be approximated by P-liftable disks *

by

Edythe P. Woodruff (Trenton, N, 1)

Abstract. In Conditions under which dishs are P-liftable the author defined a set
X CE°|G to be P-liftable if there exists a set X’ C B such that X and X’ are homeo-
morphic and X is the image of X’ under the natural Projection mapping P. It was proved
that in certain decomposition spaces, each disk D CEPG can be approximated by
P-liftable disks, i.e., for any &> 0 there exists a P-liftable disk D, that is e-homeo-
morphie to D. In this paper we give examples of decomposition sp.
a disk D that cannot be approximated by P-liftable disks.

Analogous to the problem of the existence of an approximating P-liftable disk
is a question posed by Armentrout for 2-spheres when & is & pointlike decomposition.
This question is answered in the negative. )

An example is given of a pair of decomposition spaces that are “equivalent” in
the terminology of Armentrout, Lininger, and Meyer, but differ in the property of
containing P-liftable approximating disks.

A construction called a knit Oantor set of nondegenerate elements is defined. A newly
defined property entitled equi-locally connected is not possessed by every point of a knit
Cantor set of nondegenerate elements. Hypothesizing this property for the points in
the nondegenerate elements, questions are formulated concerning the existence of
P.liftable approximating disks.

aces each containing

Key words and phrases. Lift of a space, P-lift, topology of E?, de-
composition space, monotone decomposition, Cantor set of nondegenerate
elements, equi-LC", equi-locally connected.

1. Introduction. In Conditions under which disks are P-lifiable [16]
the author defined a set X C H%@ to be P-liftable if there exists a seb
X' C E® such that X and X’ are homeomorphic and X is the image of X’
under the natural projection mapping P. The set X’ is said to be the
P-lift of X. Note that this generalizes the lifting concept (MeAuley [97)
in which the projection mapping is & homeomorphism on the set that is
called the lift. For spaces which (1) are definable by 3 -cells, or (2) in which
@ has a countable number of nondegenerate elements and E*/@ is homeo-

* A portion of this paper represents a portion of the author’s Ph. D. dissertation
written under the direction of Louis F. McAuley and presented to the faculty of the
State University of New York at Binghamton.
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