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Abstract. Let f(z, ;) bo a function of two variables, of period 1 in cach, and let
Cu = ¢, be the Fourier coefficients of f. Then, if 1<p<g and ¢ = %p’ = %p/(p —1),

we have

{ 2 1eut}0< dplifly  (4p = 5499
|pe] =

for all > 0. There is a corresponding regult for Fourier transforms of functions
JeLP(R?), 1< p< %, but the previous q=%_'p’ has to be replaced by q=-;-;p’.

Moreover, the result fails in the extreme case p =§ . The results ave strictly two-
dimensional.

1. Let & == (w4, @,) denote points on the two-dimensional torus
(@) 0y <1, 0Ke,<1,

and u = (my, m,) —lattice poinbs in R* (m; - integers). Given any inte-
grable function f(&) on @ consider its Fourier series

2704 (126
Zcﬂ,}n(ﬂ ),

6 = [F(&e g,
@

where

with p-§& = mymy - myny, dé = duw,dz,.

The origin of thiz Note is the following question -which Charles
Fetferman proposed. some time ago. Does there oxist a positive number
p strictly less than 2 such that

gl PAL IR 7
(3 10.2) < A1l
] .
where 4 iy independent of ». The following theorem gives an angwer
to the problem.
THEorREM 1. For any » >0, we have

(1) | ( X 16} < Alfluss

fir=r

where A = 514,
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Proof. Let us consider the set § = 8§, of lattice points 4 = (Mg, my)
with |u| =7 (we assume that § is not empty, since othevrwise there ig
nothing to prove). We then have, for a suitable sequence {v,} with

Dl =1,

wes

; ‘G;Llﬂ ¥ g CuYy = Vu (&) o= 8) 1£
Q

- ff(f) [2 Ve e—mm.e)] &,
Q u .
so that, by Holder’s incquality with exponents 4/3 and 4,
: 1 —2mi(p.
(1.2) (3 10P) < iflhall 3 ppe=2mivean,,

|]=7 ueS

the equation

and it is enough to show that the last factor is < 4.

Write .
(1.3) J =@ﬂ2 yﬂg—zm(n-f)’*‘df - ” 2 yuy";,,eﬁ""‘”“”)‘frdf.
‘We have e

Dy, eie=nd 31 gemten,
with :
(1.4) L= Yy

v—u=g

Here 4 and » are in § and ¢ takes all admissible values. Thus ¢ designates
lattice points that are differences of two lattice points on 8. By Parseval’s
formula,

J = Dr,E
a
It is immediate that

r() :Z]Vulz = 1.
e

If o % 0, the sum (1.4) consists of one or two terms (the former if 9 = — )
and in any case, in view of the inequality (a+b) < 20° +20°,

ILE<2 X Ilink (o #0).

Ve =g

D <2 N 1y

e#0 00 v—p=g

Hence
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A moment’s - eonsideration ghows that the part of the right-hand side
that contains o given |y,|* (p— fixed) is

22 h’;t lg 2 |7w12 =4 l'}/ulz 2 iyylz = 4‘?,#'2 (1- l’y,ulg) < '1']'}/”27

e#0 Ve p=lie » vkl
go that

SInr<a it =1,
“

00
This together with |I'yf* =1 gives J <5 and so also (L.1) with 4 = 5.
© 2. THROREM 2. S-z.mpose that
FeIfy  f o~ 30,60,

where L <<p < 4(3, so that p' = p[(p~1) >4. Then, for q = }p’ (thus
2 < q < o0) we have .

/
(2.1) [ 3 10" < a1
|ty
with 4, = 547",

This is & corollary of Theorem 1 and M. Riesz’ theorem on the in-
terpolation of linear operations (see, e.g. [25], p. 95). For the inequality
(2.1) holds for p =3, ¢ =2, Ay = 5% and also . clearly if P =1,
q = o0, 4, = 1. Hence given p, 1 < p < 4/3, if firgt we determine ¢ from
the equation :

p = (L—t)-4+11
(thus ¢ = (4/p)—3, L~ = 4/p’) and “then. ¢ from the equation
/g = (1 —t) 3410
(8o that "¢ = 2/(L—1) = }p"), we obtain (2.1) with
A, < (Bt = i
3. Remarks. 5) In Theordins 1 and 2 Wé congider lattice points
situated on a circle. Bub the only property we used of the eircle was that

it has no more than two chords of identical length and direction, and it
ig clear that if § is any curve (or merely a point set in the plane) with
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the property that it has no more than & chords of identical length and
direction, then.

(3.1) (3 teul#)s < Ax s

neS

where 4, depends only on % (as the proof of Theorem 1 shows we may
take A4, = (2k-+1)%%). This is an extension of (1.1) and it leads to an
obvious extension of (2.1). In this form the theorvem is valid for amy
number of dimensions » =1,2,3,... However, already for » == 3 tho
sphere does not have the required property and the problem of analogues
of (1.1) and (2.1) in this case remains open.

b) Perhaps a simple example pertaining to the case n = L deserves
mention.

Let 8 be the set of non-negative integers whose ternary developments
contain only the digits 0 and 1. It is easy to see that any integer » =4 0
can be represented at most once as a difference of two numbers from S.
For such a difference is a number 3 'e;3’ where all the s; are 0, 41, and
it we had Ye3’ = Y3 ie. 373 =0, where 7; = ¢—sj, then all
the »; must be equal to 0. For otherwise, assuming #, 5 0 and 75 =0
for j>%, we would have the inequality

1-3%—2(1+384 ... +3* <0,

which is impossible. (The same property has the set of non-negative
integers 3'e;n;, &; = =1, provided n,.,/n; > 3.)

It follows by the argument that gave Theorem 1 that if f(2), 0 < w < 1,
is in I*® and ¢, are the Fourier coefficients of f, then

(D 16P)i < Alflusy

weS

A = 3. The same argument and conclugion hold if § is replaced by
the set §’ of non-negative integers whose ternary development contains
only digits 0 and 2. The set §' has some formal resemblance to Cantor’s

set of numbers # = Ye,37 (5 = 0, 2).
1

¢) Since the right-hand side of (1.1) can be made arbitrarily snall
by subtracting from f a polynomial, it follows that if feI*?, then

Theorem 2 admits of a similar eorollary.
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) The proof of Theorem 1 was based on the dual result: If
gy = 2 yﬂeﬁni(/uE)y
al=r
then ||gll, < B4 ylle. Since lgle < llvlli, interpolation. of operations shows
that if 1< p <2, then
llglly < B2 |yl (g = 29").

A similar conelusion holds for functions 3y, & of a single variable,

where » belongs to sets 8 or &' considered in b) above.

4. Wo shall now congider analogues of Theorems 1 and 2 fqr Fﬂ‘ouvri‘er
transforms. Though the arguments are modelled on those for)l{oprmr
gories they are somewhat less simple. It is also curious that guantitively
the results are somoewhat diffevent.

Let weR? and let

flo) = [fae=e=ray

R?

be the Fourier transform of f. We would like to estimate

( [ f@ao)™,

=0
do denoéing the element of length, in terms of
Wy = { [ 1@ as}™,
i
for suitable p and g. The main result here is as follows.
TonoreM 3. If feL?(R), where
1< p <43,

then, for each g > 0,.f () emists almost everywhere on |z = 0, and for

PR
1=359 =31
we have
(41) ( [ f@)ras) < Ame™ iflps

|| =2

where A, is a constant depending on P only.
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The result being obvious for p = 1, we may assume that 1 < p < 4/3.

This implies that
4/3 < g < oo.

ﬁlnce, in any case, 1< p <2, the existence of ﬂm) almost everywhere
L classical result; the novelty here is that if p < 4/3 the fransform
f exists almost everywhere on every circle jz| = o.

Also observe that Theorem 3 is an dnaloguc of Theorem 2, The latter
was obtained from the limiting case p = 2 (Theoreny 1) by interpolating
operations. 'We cannot follow this path here since Theorem 3 is false
in the limiting case p = 4/3 and we must prove the general case div cetly
whieh eomplicates the proof (see Section 7 below). 7

We shall initially argue purely formally, and also assume for the
sake of simplicity that ¢ = 1.

5. The left-hand side oi (4.1) is then [ f Yo (z)do for o smtwble

¢ with aj=1
J p@ s =1,
and =t
(5.1) { f [f |ado-]1/q f(P(m){fj'o(%)e_zni(m)du}da
|| =1 [@i=1 B2
= qu(u){ f ‘P(m)g_w(“'”)dd}du
B4 |wJ=1
SUL{[] [ sloreetanl? a
R? |z{=1

Thus the problem reduces to estimating the last integral. We ghall denote
it by I**, and it iy enough.to show that I <A4,.

We can then write (the dot ¢’ denoting, ag before, scalar mmltipli-
cation of vectors)

11;‘ i 2 X | o . 1,
I = f du ’ f p(6™) g2l ) g f I;E(e“‘)gﬁwc’"vu)dulzﬂ

2 2m

f ‘“‘lf f p(e")p(e™) e *““ﬂ”"ﬂ“‘) “Ad (”
or, with v = &+,

(5.2) = f f agay| f f

1
w —2m[(cosl—-cos.ul£-i (sind—sing)n] i d,u
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Tet us introduce new variables
CosA—ceosp = v, sini—siny =w,

and consider the Jacobian of the transformation. We have
0(v, w)
(A, )
Sinee the complex numbers ¢ —e™ can take admissible values digtinet
from 0 at mosb twice, we ean split the domuin of integration 0 = 4 < 2n
0 < p < 2 into two digjoint sets Dy and D, in whose interiors the 1n¢n1)pmg
i ope-one (take, e.g. for Dy the set 0{A<2m 0 p—A<m (mod 27)
and for Dy the set 0 < 4 < 27y —w S p— l < 0 (mod2x)). Correspondingly,
the inner integral in (5.2) i gplit into two integrals, and, by the triangle
inequality (observe that the hypothesis p <2 implies $p’ = 1)
(8.4) IS I +1,,
where, for j =1, 2,

1
= UR [ agan | Jj e N

= |in (41— u)].

(8.3) A =

Let D, be the image of D in the plane of the variables v, w. Then
1 1
“pt " S0
I; = {ff dedn l[_f (v, w)e Y ’)clfvclw‘2 },
n? Dj
where (see (5.2))
1 a—
(v, w) =7tp(6”)fp(e“‘)'

The inner integral being the Fourier transform of the function equal
to (v, w) in D; and to 0 elsewhere, we may apply the Hausdorfi-Young
inequality, pmvxdod }p' =2, ie., p'=4, or

(5.5) l<p< o

and sinee the exponent conjugate to $p' is p/(2—p), we have

{ff (1, )P0 Gy d,v}(" -~
n2

am 2m

{ff 197 ﬁ. i/x ‘13/(2—33)1]‘7107”}2 ~)p

2 o m Ip/(z ~) (2—p)Ip
={f f '*’““*‘"”m:—mm‘ "
[ U
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The exponent in the last denominator is positive. It is also strictly less
than 1 provided p <7 (see (5.5)).

Let us seb

2 i) v (i)
PPN = p@), 1) = [ e
0

Then

2m
(5.6) L<[[ wax@ar* ",
0
By hypothesis,
(5.7) Iy e-mm = 1,

and since y is, effectively, a fractional (Riemann-Liouville) infegral of
v of order

2(p—~1 4—
(5.8) A el 2
. ’ 2—p 2—p

% belongs to I where r is defined by the equation

(5.9)

More precisely,

(6.10) e < Apg ¥l @-nip = Apa-

The exponent g has so far been indetermined. If we select it in such
a way that r is conjugate to ¢'(2—p)/p (see (5.6), (5.7), and (B.10)),
Holder’s inequality applied to the imtegral in (5.6) will show that

(5.11)

Thus we must have

I;<4, (j=1,2).

(5.12)

together with «(5.9). Adding (5.9) and (5.12) we obtain successively

2. 2 _6-4p ,__ D 7
¢ 2-p  a-p’ Ty ftT

’

Y

3(p—1)

Hence we have (5.11) and so also I<Il+12<Ap.

w|
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This completes the proof of Theorem 3, though we still have to
dispose of the assumption ¢ = 1 and justily the formal character of the
proof. . ' o

Begin with. the latitér. The proof is rigorous if ¢ =1 and it f is, say,
pounded and has bounded support, in which ease f is continuous. If {fur
iy o sequenge of such funcetions wiﬂ} N~ fullpy=>0, then. || f;,— f,,“z,—-‘»OA:’m,d
so also [ |fy—Jul?do->0. Henco {f,} converges to o limit, eall it f, on
| == j.,lwill,‘: the metrie L7, and f satisfies the required inequality.

Tt mow ¢ be any positive number. I wo set g(x) = f(w]o) then

§(w) = Qﬂf(gm), 50 that
([ 1furao’ =( [ lieoreds ={ [ (e7*1 (@) edo) ™

[} =g || a1 |z =1
.1,42 n g
= o [ lito)edo)
: Jip]=1
Ly 1p o2 o \[? dz\"?
ra » e __ q 7 Pl | et
< 4, " ('{zw(w)vaw) = Ayd* ¢ (ff(e) 92)

12

= -A_p Qa ” ”.f”f)’

which for q = }p’ gives (4.1). o
6. Lot @ denote points and » lattice points in R Let @ = {a,}<l*, Le.,

lall, = (3 1a,7)” < oo

We shall now prove the following ’
TumoreM 4. If {a}el, 1< p < 4/3 and

f(w) ~ Zavet(u-m)’
then for q = 4p' and any 0 < o< ™ WO have

( [ @)rde)" < 4,0 jol-

|®] =g

(6.1)

This is an analogue of Theorem 3 though neither is deducible frmp
the other in a simple way. The proof in both cases follows the same pat-
tern but the fact that now, for obvious reasons, we cannot yeduee the
general case 1o that of ¢ = 1 makes the argument gomewhat more cumbjer%
some. It is again enough to argue purely formally and, as a mabter o
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'fz.met, it would be enough to consider only the case of {a,} finite. The restric-
tion p < = could be relaxed but the point iy without muech importance.
Of course the circle o] = ¢ in (6.1) can be replaced by |w—a,| = o for
any .

Let O, dgnote the circle |#] = p and let us systematically denote
the left-hand side of (6.1) by ||fll,,- Then for a suitable ¢ (2) with lplly,e =1
we have ' '

[fllge = C{ fpdo = 0[ D 0,680 = 'a,y,,

where

7 = [pl@)e* s,
e

and it is enough to show- that
ALjp? ,
(6.2) (D) < a,0w

. Y 2'5 ’
We shall write 2 7l =3 |yl * and represent |y,[* as the Fourier
f:oef_flclent of a function to which we can apply the Hausdorfi-Young
) mequ‘a.lity (since 4p’ > 2). We have

2n 2 .
Iy, 2 = sz f qp(ge“)?p(gew)eXp{@V'(eﬂ——ei”)}dld,u — QQJ”
[
say. Thus

63) (S0 = o S = of S PR.
We set
oleosd—cosu) =, o(sind—ging) = w,

0(v, w)

5,y |~ @Rl = 4,

anq split the domain of integration in the last integral into two subdo-
maing, D, and D,, in the interior of which the mapping (4, u)->(v 'w)
is 1 —1; thus 2 = A(v, w), g = u(v, w). The image of D; will be duno’tod
by D;. Cotrespondingly, J, =J,,+J,, and, by (6.3)

’

(6.4) (2 l%‘p’)uplg 0 {( 2 lJl,vl%p‘)ZIp, . (2 [Jz’ﬁﬂ’)zlp'}é_

Fix j. The projections of D; onto the coordinate axes have length
=]
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20 < 2w and so there is a square @ with sides parallel to the coordinate
axes and length 27 which comprises D;. We can. write, with v = (m, n),

62‘ (mo--nw)

gy, = f f MG ( pe) e dv div
2 : p(ee”)7(0e™) Py Y
.)j
= »112 ’ ' f " (v, w) @) Gy d,
dnt ),

@

where o(v, w) equals

0% |sin (A — w)|

in D; and is 0 in @ —D;. The numbers Jy, are then the Fourier coeffi-
sients of (v, w), and since the exponent conjugate to 4’ is p/(2 —p),
the Hausdorff-Young inequality gives

(6:5) ( Z ‘Jf,v\épl)zm’ < { Z%Ei f Qf | (v, w)|P/2=2) d«;dw}‘z“”)”’

2m 2T
1 lp (06™)  (06™)] )p/@_m }(H’)w
< : FRE AL MRA AL AR Adad
{wufbf(“ *sin (A )] "
am

(2—2)/p
),

<o~ ( f WAz () dA

0
where

2y mi(am { (p)
p(2) = Ipleo P, 1(3) = [ ey e
0

The eondition [pllye-pp = 1 imposed on ¢ can be written.

(6-0) “7/)111’(2 - = Q-11/f1'(2-ﬁ) .

On the other hand, as in the proof of Theorem 3, y is in I with » defined.
by (5.9). Morcover, by the fivst inequality. (5.10),

llaly < Ap.a“"/’”a’(a—mlp = 'A;p,a Q»-p/q’('.’.my) .

T¢ we chooge ¢ in such a way that » is conjugate to ¢'(2—p) /n, which,
as wo know, leads to ¢ = }p’, the right-hand side of (6.5) is majorized by
A E’Mﬂp’(u'/’”q’(z—mm“%”r)(z”mm < A 9—4/10’( Q~.’o/a'(2—1’) . _Ayemﬂ/u'(2—)l))(ﬂ~ﬁ)lp

= Ao~ ap'= 2|

7 - Studia Mathematica I.2
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In view of (6.4)
(2 m[ﬂ’)lm’ S Agrg WU = fotla-tie’ . gour',
since ¢ = %p’. This gives (6.2) and so also (6.1).
7. The following example (which I owe to Charles Fefferman) shows
that Theorem 3 is false in the extreme case p =
- Let f(#) be a radial function- flz) =f (]wl) Then. the Fourier transtorm
f f o2y
R

(assuming it exists) is also radial. We shall show that there is a radial
fl@)eL*® (R?) such that

21 oo

(1) fa) = f f Flo)e™*™ % gdody = 27 [ f(0)J,(2m0) o de

is ~+co. Thig, of course, precludes the possibility of (4.1) for o = 1. We
sha.ll show that

sin 2w lxl Sl
e Tog (2 + |af)

flo) =

has the required properties.
First of all, T

FT singn » 1 4/3
8 _ g f[m_n_@_ __~w_]
715 7"-0 o log (2 + o) odo < oo,

since the integrand is O(1) for 0 < o <
e >1.
Next, (see (7.1))

<1 and is O(p7*log™**(2 4 o)) for

sm27rg JO(ZTCQ) s
= 2 ==
(1) f " Toz(2+ o) @+o) e = of+1f 44B,
say. Sinee Jo(g) = 0(1), the integrand of A is bounded, and the elassical
formula
g 1 2
Tole) = @/ e s o= 4 7]+ 0(e™)  (gor-too

shows that

sin2 2 qinge
B=0(1)+2" f — [sinang + cosmelde = O(1 RE i
0 @

0

8o that B = +co and the assertion is established-

+ oo, Hence f(l) =
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8. Rematrks. Problems analogous to those discussed here are also

considered in Fefferman [1]. . . -
Theorem 3 was generalized by P. Sjolin (unpublished) to more

general curves.
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