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An imbedding theorem for H°(G, Q) spaces
' by

NEIL 8. TRUDINGER (St. Lueia, Australia)

Abstract. A vector-valued Orlicz space L(G, 2) is defined for a convex function,
@G, of m variables and a domain, @, in' Kuclidean n space. When m = z, a norm can be
introduced into O} () by the taking the L (¢, Q) norm of the gradient of functions in
0} (Q). By completion we obtain the space H°(G, 2). We prove an imbedding theorem
for the space H° (¢, 2) which includes as a special case an imbedding theorem estab-
lished by Donaldson and Trudinger for Orlicz — Sobolev spaces.

§ 1. Introduction. In the paper [1], imbedding theorems are established

-for Orlicz—Sobolev spaces. In the present paper, we consider a more general

class of spaces which permit different integral behaviour of derivatives
in different divections and we derive the appropriate imbeddings into
extended Orlicz spaces. The results extend those in [1] and the techniques
we employ are on the whole a refinement and extension of those introduced
there. Theorem 1, and ity special cases which we treat, can be viewed as
interesting extensions of the well-known Sobolev imbedding theorem.
The body of the paper is divided into three sections. In Section 2, we discuss
the convex functions, called G-functions, and the spaces L(#, 2), in
terms of which the imbedding theorem is cast. In Section 3, we introduce
the H°(G, £) spaces and discuss the imbedding theorem, Theorem 1,
together with some applications. The proof of the main theorem is finally
supplied in Section 4, along with a brief treatment of possible extensions.

§ 2. G-functions and L (@, £2) spaces. Let R™ denote m-dimensional
Buclidean space. A function (f: R™—[0, co] will be called a G-function
of m variables it it satisfies the following properties:

(i) G(0) == 03
(i) (o) == oo, thal is, imG (z) = oo;

|| ~»00

(iii) & ix comver, that is,

G (A + (L —D)y) < 26(x) + (1 —HE(Y)

for all 0 LA 1, @, ye R
(iv) @ is symmetric, that is, G(x) = G(—w) for all ze R™;

2 ~ Studia Mathematica L.l
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(v) G~*(co) is bounded away from 0;
(vi) G is lower semicontinuous.

A G-function of one variable will be called a Young function (see [9]).

Typical examples of Young functions are

i e
(1) o) =—

[
0 if o] <1,
oo 4f |w] > 1
(1) w,(w) = ™ —1.
G-functions of m, variables are readily constructed from Young fune-
tionk. For example we have the following:

(iv) Gy(x) = A(ja]), o] = (5’»?)”’

, 1€ a< oo,

(i) oo (@) ==

(v) Gale) = X Ai(xy),

(Vl) Gy(x) :'L;l wni(mi), Loy < o0

where 4, A;,1 =1,...,m are Young functions.
The class of G-functions essentially includes the class of even generalized
N functions treated in [6] (see also [3] and [8]). The latter class consists

G(x

of @-functions satisfying G7'(0) = 0, G7'(o) = oo, lim J,&l = 00
[

together with a uniformity condition which, for example, excludes the

function @ unless 1 < ay = gy = ... = a, < 00,

If for any two G-functions, @,, ¢, there exist non-negative numbers
¢, and k such that
(1) Gy (x) < Go(ke)  for all || = ¢

then we write G, 3 Gy. If Gy 3G, and Gy 3 ¢y, we write ¢, ~ @G, and
call ¢, and @, equivalent. By virtue of properties (ii) and (iii), there will
exist for any G-function, non-negative ¢, and k satisfying

(2) x| < Gkx)  for |x| = ey

so that y; 3 G where y, (&) = l#l. Any G-function also gives rise to m
Young functions, &, ¢ =1, ..., m, defined by

(3) Gile) =600,...,2,0,...,0), i=1,...,m,

and hence we obtain a further G-function, &, given by

(4) Ga) = 3 Gl

An imbedding theorem for H°(G, Q) spaces v 19
By the convexity of &, we have

(3) Gr) < @ (ma)

:l"‘

so that @ -3 &. For many G-functions, including the generalized N functions
of [6], @ and & are in fact equivalent. An example where this is not the
case would be ’

G (0, ) = (2 —22)* + 3.
The conjugate function ¢* of a G-function is defined by
(6) G* () = Jup {w. y—Gy)}.
From properties (i) to (vi) of &, it follows that @* is also a G-function and

G = ¢ (see [5], Section 12). From (6) we obtain immediately a general-
ized Young inequality

(7) x.y < Ga)+G(y), for all z,yeR™.
A further conjugate function, G}, may also be defined by
(8) G =wsup {z. y—G )}

vi=0

Clearly ¢* < G* and in the inequality (7) we may replace G* by G} provided
y satisfies 7; > 0.

Examples of conjugate functions. Referring to the previously
given examples of G-functions, we have

1
dem=1, 1<ax oo,

#

v =z where —
a
ve (@) = |wllog™ |zl
G (x) = Gy, () = A" (Jz)),
(9) ) m
G(2) = G5, (@) = 3 AT (@),
=1
S 1

6 (0) = G, (@) -‘%wﬁi(mn, E*T 1.

The L(&#, ) spaces. Let 2 be a domain in R*, 4y, ..., 4, be measur-
able functions on 2, w = (U, ..., %,) and ¢ a G-function. The space
LG, 2) is defined by

LG, 2) z{'u.l fG(a'zL)dm < oo for some a > 0}.
Q
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More generally, we could replace 2 by any ¢ finite measure space. A norm,
analogous to the Luxemburg norm for Orliez spaces [3], is introduced
into L(G, Q) by defining

10) ullg = intk 0|f(;(?'3 ds 1}
( [lu]lg == in: {\/> J ]C)wﬁ .

By property (vi) of @, we have for |u]| > 0

%
(11) f ¢ () dr < 1.
J
That || |l does in fact satisty the required conditions for a norm follows
from properties (i) to (vi) of G The verification which is similar to the Orlicz
space case [3] is left to the reader to supply. Furthermore, from inequality
(2) we obtain for we L{G, Q) and Q] < oo

(12) [ lulde < %1+ ¢ |2l
o

so that L(G, 2)—L,(2) if || < co. We use here and in the sequel arrows
to indicate continuous imbeddings. One can then conclude that L(G, 2)
is a Banach space for arbitrary Q.

If @ is a Young function, we call L(@, 2) an extended Orlicz space,
-while if in addition G7(0) =0, G o) = oo, lim Té?)_ = o0,
(1 = || »>00
H@) =0, then L(&,R2) is an Orlicz space. Referring to the

Tl 7]

previous examples of G-functions, we obtain
L(%y Q) =La(‘Q)a
LG, Q) = [L(4, 9T,

[T, 2),

i=1

L(G,, Q) =

m
u%m=ﬂ%w.
Equivalent G-functions yield the same L(¢, 2) space when |Q| is finite
and for arbitrary 2 if ¢y = 0 in the condition (1). The above examples
all reduce to products of extended Orlicz spaces and this will be true
for any G-function satisfying ¢ ~ @ and [Q] < o or G ~& with ¢, = 0
in (1). By (5), we always have

L(é, Q)=L(G, 2) with |ulle< m|ullz, we L(é, Q).

icm
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From the inequality (7) follows a generalized Holder inequality

(13) [ vde < 2 jullgljvllge

for all ue L(&, ), ve L(G*, 2). If the components of v are non-negative,
we can replace G* by GF. Although G} is not necessarily a G-function,
formulae (10) and (11) still make sense for u; > 0.

Now let A be 2 Young function and suppose that 4 (1) < co for |f| < N,
A(t) = cofor |t| = N where 0 < N < co. By the econtinuity of 4 in (0, ¥),
we have for any we L(4, 2) with |jul4 # 0,

w
(14) JAHWVM:I

provided either N = oo or |u| = sup|u] on a set of positive measure.
Q

Furthermore if N < oo, L(4, ) « L,(2) and if also |£2]| < co, then
L{4, 9) = L () with .

(15) AT el < Sl}}plul < Nl

When A (N) = co as above, the inverse function A~ is well defined on
(0, 00). On the other hand if 4 (f) < oo for [t < N, A(t) = oo for [t > N,
we take A~'(f) = N for t> A(N). In general, we will have by virtue
of the definition of the conjugate 4%, )

(16) 1< AT AT <2t for 1> 0.

Further properties of the L(G, Q) spaces such as duality may be
developed following the lines of [3] or [6]. The above treatment, however,
is sufficient for the purposes of this paper.

§ 3. The imbedding theorem. Let 2 bea domain in R"”and G a G-func-
tion of n variables. Then

(17) ””’”H"(G,Q) = |[Dulle

is a norm on C}(£) where we have used Du for the gradient of u. The
space H°(@, Q) is defined to be the completion of C3(R) under (17). By the
estimate (12), the elements of H°(G, 2) can be identified as weakly dif-
ferentiable functions and when |2] < oo we will have H*(G, 2)—Wp'(Q)
where W51(2) is the Sobolev space H°(y, 2), ¢(#) = |z|. In fact, for
G(z) = lol?, 1< p < o0, H°(G, Q) coincides with the Sobolev space Wy?(Q)
and more generally when G(z) = B(|z|) where B isan N function, H°(G, 2)
ig the Orlicz—Sobolev space WiLy(Q) (see [1]). The object of our present
work is to determine the extended Orlicz spaces into which H°(@, 2)
is continuously imbedded. Towards this goal we have the following general
theorem.
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THEOREM 1. Let [ = (fy, ..., fu) where f; ave continuous, non-neyative,
non-decreasing functions on [0, o) satisfying

(18) GL(f(s) <8,
19 f »C—Ii < &
(19 . w(s)
where .
n

(20) m(s) = (sl'[fm-(s))l/".

d=1
Then H(G, 2)~L(4, Q) for any Young function A satisfying

‘ e
ds
e L AT

(21) [ ey < A0

for some constant k. Furthermore there ewists & constani ¢ depending only
on n such that

(22) lulle < o[ Dulg

for all we H*(G, Q).
An immediate consequence of Theorem 1 is the following
COROLLARY 1."If in addition to the hypotheses of Theorem L we also have

(23) f ds
—_— < o0
{ m(s) =
then H°(G, .Q)—>O°(§). TFurthermore, for any we H°(G, ),
(24) suplul < olDuly [
2 supluf < U/ —
Qp Gu m(s)

Corollary 1 follows by virtue of the estimate (15) and the completeness
of L,(2). ‘

There is an optimal way of choosing the function f in Theorem 1.
Namely we require that equality hold in (18) and that
e
Ou;

(25) - I (f) = constant.
Frequently, as will be evidenced in the examples below, a Young function
equivalent to any obtained through this procedure, may be found by simp-
ler means.

For | Q] < oo, the condition (19) is not required to establish the imbed-
ding H°(@#, )—>L(4, Q) as this condition can be effected by the replace-

An imbedding theorem for H°(G, 2) spaces 23

ment of & by an equivalent @ function. Of course then the form of inequality
(22) would change. For [Q2| = oo, the restriction (19) will be necessary.
Applications
(i) Let G(x) = B(|#l) where B is a Young function. We have then
@%(x) = B (|z]) so that we may choose

fils) = =B (0.

Va
Consequently
1
m(s) = —l/%—szB*_l(s).
Defining
B R
(26) m(s) = B
we have, by inequality (16),
1 _ 2 _
ViM(S)<m(8)<7ﬁ—7n(8), §>0,

"so that provided

H°(G, 2)—=L(4, Q) for

Also by the estimate (22), we will have
el < OV |Dul
for any we H°(G, 2). This result agrees Wiﬂ-l Theorem 2?4 in [1].
(ii) Let G(2) = ﬁ;lﬁi(mf) where By, i =1, ..., n ave Young functions.
i=

Then
G (z) = ) Bi(z)
i=1

so that we may choose
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Consequently

(@7) m(s) = s”'%“[ ]? B;l(%)]ﬁ

we have, by inequality (16),

-—:’Tm(s) < m(s) ii«;—ﬁ(s), §>0
Hence, provided
, ds
0 m = ’

we have H°(G, Q)L (4, Q) for
4=y =
Furthermore, for any we H°(G, ),

(28)
Utilizing Corollary 1, we see that if 2] < oo and

Fods
If w7
then H°(G@, 2)—C°(2).
(iii) In the previous example, let us take B; == P,y 1< a;< oo, where

llulls < on | Dullg.

P, (@) = |of%, 1< o< oo,
P (2) = pu (),

that is, the ith partial derivative of w, Dyue L, (Q).
In fact, we clearly have

(29)

(30) IDulle< D IDsulls, < 1| Dully.

i=1

Let us define a, satisfying 1 <a< oo, by

(31) n_yi

An imbedding theorem for H° (@, 2) spaces 25

Then

11 1

m(s) = n?.s'IT o,
Consequently if a <n, H°(G, 2)—>L,(£2) where
1 1 1

and the estimate

=L 1-L
lull, < eqn “ [Dulg<eqn  * 3 I1Dgull,

holds by (22) and (30) for any uwe H°(@, Q).
If a =mn, we have

fl ds s

T = 0, —

d m(s) . m(8)

so that for |Q] < oo, H*(G, Q)—L(y,, 2) where v,(z) = ¢ —1.
Finally, if a > n, we have

- ds
e,
A 0)
50 that for |Q] < co, H(G, 2)—C°(2). In the last two cases the bounds
on the imbedding operators depend on the choice of an equivalent G-func-
tion agreeing with G for values of |#;| bounded away from zero. Consequently
these bounds will depend on |2| as well as n and a. To determine the explicit

dependence on 2], we consider a transformation of coordinates T': R"
—~R" given by

(32)

1
=n “logs

F o ds
m(8)

< o0
1

1,1 1

__+V_......
(33) z = Q2" %y,

Then if TQ = O we have ]f?| = 1. Furthermore

11
(34) 1Dy;ull iy = 121" 1Dyl -

Hence we obtain for a>mn, ue H (G, 2)

1 1 n

sup u| < ¢ (a, W) 121" 3|1 Dsul,

i=1

(35)

while for a = n we have

U
(36) f exp (m) < o(n) | 2]

2
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where ¢;(a, 1), ca(n), ¢;(n) ave positive constants depending on their
indicated arguments. The imbeddings for the cases a <n,a>n were
derived by Nikolskii [4] by completely different means.

An obvious question to ask in relation to Theorem 1, is for what G-fune-
tions is the result optimal, that is, L4 (L) is the smallest extended Orlicz
space into which H°(G, £) is imbedded. We know from the Sobolev space
case that the result is optimal for @ (z) = |2|*, a % n but not for ¢(z)
= |o In the latter case, H°(G, Q)—L(4, ) where

(37) Aty =" -1

and this imbedding is sharp [2], [7]-

Spaces of higher order derivatives may be defined analogously to the
H°(G, Q) spaces. Let & be a non-negative integer and & a G-function of
n* variables, Writing p,, where ais & multi-index of length %, for a generie
point in R*, we can define a norm on CE(Q) by
(38) 19, = 10" s
and complete C%(Q) under (38) to get a Banach space Hy(¢, ). An
imbedding theorem for Hy(G, 2) would then follow by iteration of the
case k= 1. A general formula would be exceedingly complicated to write
down but special cases can be readily derived. For example, if
(39) G(D ) = _S_j Py (1Dul), 1< f,< oo,

lal=k

where P is defined by (29), then sctting

=)

n
fal=k

=

40 1
(1) , p B

k

11
we have Hy (G, 2)—>L,(2) if kp <n and — = P , Hy(6, 2Y—L(y,, 2)

it kp =mn and [£]< oo, and (G, .Q)—>0°(?2) if kp>n and |2 < oo.

§ 4. Proof of Theorem 1. The key calculus lemma in the proof is the
following extension of the Sobolev imbedding theorem for the case G(z)
= |2].

LeMMA 1. For 0 < N < o, let B == (By,...
B,;(0) =0, hmB() = o0, By

>N

y B,) where Bye €10, N),
0, 1<<i<<n Writing

icm®
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we have, for any we C5(R") with sup |u| < N,

(41) IB (] u < - 2 Bi(jul) Dyl da.

Proof. Since

(1)) fB (1)) |D;uida;

—00

By(lu) < f

and

B;(ju]) | Dyl dry,

we have

By(lul) < % [ Billul) IDyul dx
for every 4. Hence
n n o« n
(42) (2B (Jul)) ™" /(n | Bi(jui)1D; 'u]da:) £
=1 —o0

We now integrate the estimate (42) successively over each variable x;,
applying at each stage the following extension of the Schwarz inequality

n—1 n—1 1
(43) j” Hs (n f |Zi|n‘1)7:i‘
i=1 i=1

Consequently, we obtain

f(21§(lu| )™= ldx (HIB (Ja]) ID uld.)u)"“
so that

n 1

(]_[fB (1) 1Dl da)

=1

IB(lul)l n <

=1
1 n

<~§Ir—b—fZ.Bi(|u|)\l)1-’uld;v. .
=1

The proof of Theorem 1 will now be aeeolnplished by making a specifie
choice of the functions B; in Lemma 1. It suffices to choose A to satisfy

ds
m(s)’

2
(44) EA=() .:f 1> 0.

0
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Then differentiating (44), we obtain

50 that -
ATy = (1 _'7]7) (!in(m) "
Hence .
1 ¢ n -1
(45) ATy = k(l——%)of (gff(,i)) " ds
<k(1 M%l?)(iljoflfi(A(sWs)T

Now let us define

(46) By(t) = [ fulA(s)
[}
Then by inequality (45)
1

(47) 47 k(l——l-)l?

n
and by inequality (18)
(48) Gr(BY< 4

The functions B; will clearly satisfy the hypotheses of Lemma 1 for

£

1 ds
(49) N =70 e

Henee if we C3(£) and sup ju| < N, we have

3
1 ,
— § B (|u]) | D;u| dx
2n &
Q2 . i=1

- 1 ’
< IB (W!)IIG: Dl

(30)  IB(lub_s <

Let us now replace u by ;i where 1 = |lu|, and suppose that

(51) sup ju] < N ulls-

by Hoélder’s inequality (13).

icm
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Using inequalities (48) and (11), we obtain

fG ( ([ul))dmgng(%)dmgl
”B(l;ﬂ) .o’;

| -
1 ~ﬂ_/ (’n~—1)lc1 4 (7) |n

n—1 n—1

(IA() dw) " =(nf1)k

by (14) if either ¥V = oo or [u| = sup lu|] on a set of positive measure.
‘We then have by (50)

so that

1.

/A

Also by (47)

ot

n__ b
(n—1%k > ni
s0 that
—1)%
(52) e = 2 <" YD

The condition on % when N < oo is removed by replacing « by the function
Uit w>l,
w it jul <<,

-1 it w< -1

(63) Uy =

for 0 <1 < sup |u|. Inequality (51) will then hold for wu; and clearly |u,|
= sup |w,| on a set of positive measure. Thus the estimate (52) holds
for u, and by letting I tend to sup |ul, we obtain (52) for arbitrary we C(£2).
Theorem 1 now follows from the density of C3(2) in H'(G, 2) and the
completeness of (4, Q). The constant C in estimate (22) clearly satisfies

('<% 1

The above proof is extendable to othier spaces of weakly differentiable
functions. Let G now be a G-function of -+ 1 variables u, p,, ..., 9, and
denote by Wi(@, 2) the set of weakly differentiable functions u on @
for which the vector function #%, D%, ..., D,% belongs to L(&, Q). For
% belonging to Wi(G, Q) we define

(54) H“”Wl((;,m = l|(u, Du)lls
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and note that W'(¢, 2) will be a Banach space under the norm (54).
We also define Wi(@, 2) to be the closure of (;(2) in W(&, 2). Then
Theorem 1 and Corollary 1 will hold for Wi(G, Q), instead of H° (G, 2),
provided in inequality (18) we replace the function G} (f) by & (0, f).
The imbedding theorem also extends to the spaces WY@, Q) for certain
domains 2 but this situation will be the subject of a further investigation.
The imbedding of Theorem 1 will also be compact if the Young function
A increases strictly less rapidly than a function which satisties the hypo-
theses of the Theorem (see [1]).
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Recognition and limit theorems
for L,~multipliers

by
MICHAEL J. FISHE R* (Missoula, Mont.)

Abstract. The main theorem gives a necessary and sufficient eondition for a fune-
tion in L®(I') to be the Fourier transform of an L, (&)-multiplier. Three applications
of this theorem are given: to an extension of Hahn’s theorem, to a limit theorem of
Lévy type for Ly-multipliers, and to the study of the maximal ideal space of an al-
gebra of Ly-multipliers.

1. Introduction. Let & denote a loecally compact abelian (LCA) group
with dual group I'. Let M, (G) denote the algebra of bounded, translation
invariant linear operators on IL,(G), 1 <p < oco. It is well known that
M, (@) = M, () when p’ is the conjugate index to p and that the inclu-
sion M, « M, iy continuous if p < 2. M,(G) is isometrically isomorphie
with L*(I") via the Fourier transform and M, (@) is isometrically isomor-
phic with M (@), the bounded Borel measures on G by T(f) = pxf; [10].
An element 7' of A, (G) has a Fourier transform i‘(&) which is assigned
by letting i‘(s) be the Fourier transform of 7' regarded as an operator
on Ly(G).

In this paper we shall consider the following pair of questions:

(1) When is pe L®(I") the Fourier transform of an operator T in M,(G)?

(2) If {T.} is a net of operators in M, (G), which converges in the weak
operator topology over L,(@), when does {I,} converge in the weak operator
topology over L,(G)?

To answer the first question we shall give a criterion on ¢ in L®(I")
which is similar to the criterion given in Schoenberg’s theorem [3], [11]
which characterizes the Fourier transforms of measures. The theorem
of Schoenberg says that ¢ in L®(I") is the Fourier transform of a bounded
Borel measure u on ¢ if and only if there is a real number M = 0 such
that for every H in L,(I'),

| [ o) B ay| < s

H denotes the Fourier transtorm of H and I fleo i8 the sup-norm. If ¢ = g,
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