

- [6] S. Hahn, und K.-F. Pötter, Eine Verallgemeinerung eines Satzes von Schaefer, Wiss. Z. Techn. Univ. Dresden 19 (1970), S. 1383-1385.
- [7] Über Fixpunkte kompakter Abbildungen in topologischen Vektorräumen Dissertation Techn. Univ. Dresden 1971.
- [8] und T. Riedrich, Der Abbildungsgrad kompakter Vektorfelder in nicht notwendig lokalkonvexen topologischen Vektorräumen, Wiss. Z. Techn. Univ. Dresden, 22 (1973), S. 37-42.
- [9] L. W. Kantorowitsch und G. P. Akilow, Funktionalanalysis in normierten Räumen, Berlin 1964.
- [10] J. L. Kelley, General topology, Princeton-Toronto-London-New York 1955.
- [11] V. Klee, Shrinkable neighbourhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), S. 281-285.
- [12] Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), S. 286-296.
- [13] M. A. Krasnoselskii, Positive Lösungen von Operatorengleichungen (russ.) 1962.
- [14] M. Landsberg, Über die Fixpunkte kompakter Abbildungen, Math. Ann. 154 (1964). S. 427-431.
- [15] und T. Riedrich, Über positive Eigenwerte kompakter Abbildungen in topologischen Vektorräumen, Math. Ann. 163 (1966), S. 50-61.
- [16] J. Reinermann, Über Fixpunkte kontrahierender Abbildungen in uniformen Räumen und deren Darstellung durch konvergente Iterationsverfahren, Ber. der Ges. für Math. u. Datenverarb.: Bonn 1968.
- [17] T. Riedrich, Das Birkhoff-Kellogg-Theorem für lokal radial beschränkte Räume, Math. Ann. 166 (1966), S. 264-276.
- [18] Der Raum S(0, 1) ist zulässig, Wiss. Z. Techn. Univ. Dresden 13 (1964), S. 1-6.
- [19] Die Räume $L^p(0, 1)$ (0 sind zulässig, Wiss. Z. Techn Univ. Dresden 12 (1963), S. 1149-1152,
- [20] Existenzsätze für positive Eigenwerte kompakter Abbildungen in topologischen Vektorräumen, Habilitationsschrift, Techn. Univ. Dresden 1966.
- [21] E. Rothe, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compositio Math. 5 (1937), S. 177-197.
- [22] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), S. 171-180.
- [23] S. Yamamuro, Some fixed point theorems in localconvex spaces, Yokohama Math. J. 11 (1963), S. 5-12.

Received August 15, 1972 (576)

An imbedding theorem for $H^{\circ}(G, \Omega)$ spaces

b

NEIL S. TRUDINGER (St. Lucia, Australia)

Abstract. A vector-valued Orlicz space $L(G,\Omega)$ is defined for a convex function, G, of m variables and a domain, Ω , in Euclidean n space. When m=n, a norm can be introduced into $C_0^1(\Omega)$ by the taking the $L(G,\Omega)$ norm of the gradient of functions in $C_0^1(\Omega)$. By completion we obtain the space $H^o(G,\Omega)$. We prove an imbedding theorem for the space $H^o(G,\Omega)$ which includes as a special case an imbedding theorem established by Donaldson and Trudinger for Orlicz — Sobolev spaces.

- § 1. Introduction. In the paper [1], imbedding theorems are established for Orlicz—Sobolev spaces. In the present paper, we consider a more general class of spaces which permit different integral behaviour of derivatives in different directions and we derive the appropriate imbeddings into extended Orlicz spaces. The results extend those in [1] and the techniques we employ are on the whole a refinement and extension of those introduced there. Theorem 1, and its special cases which we treat, can be viewed as interesting extensions of the well-known Sobolev imbedding theorem. The body of the paper is divided into three sections. In Section 2, we discuss the convex functions, called G-functions, and the spaces $L(G, \Omega)$, in terms of which the imbedding theorem is cast. In Section 3, we introduce the $H^{\circ}(G, \Omega)$ spaces and discuss the imbedding theorem, Theorem 1, together with some applications. The proof of the main theorem is finally supplied in Section 4, along with a brief treatment of possible extensions.
- § 2. G-functions and $L(G, \Omega)$ spaces. Let \mathbf{R}^m denote m-dimensional Euclidean space. A function $G: \mathbf{R}^m \rightarrow [0, \infty]$ will be called a G-function of m variables if it satisfies the following properties:
 - (i) G(0) = 0;
 - (ii) $G(\infty) = \infty$, that is, $\lim_{|x| \to \infty} G(x) = \infty$;
 - (iii) G is convex, that is,

$$G(\lambda x + (1-\lambda)y) \leq \lambda G(x) + (1-\lambda)G(y)$$

for all $0 \leq \lambda \leq 1$, $x, y \in \mathbb{R}^m$;

(iv) G is symmetric, that is, G(x) = G(-x) for all $x \in \mathbb{R}^m$;

2 - Studia Mathematica L.1

(v) $G^{-1}(\infty)$ is bounded away from 0;

(vi) G is lower semicontinuous.

A G-function of one variable will be called a Young function (see [9]). Typical examples of Young functions are

(i)
$$\psi_a(x) = \frac{|x|^a}{a}$$
, $1 \leqslant a < \infty$,

(ii)
$$\psi_{\infty}(x) = \begin{cases} 0 & \text{if } |x| \leqslant 1, \\ \infty & \text{if } |x| > 1, \end{cases}$$

(iii)
$$\psi_e(x) = e^{|x|} - 1$$
.

G-functions of m variables are readily constructed from Young functions. For example we have the following:

(iv)
$$G_1(x) = A(|x|), |x| = (\sum_{i=1}^m x_i^2)^{1/2},$$

(v)
$$G_2(x) = \sum_{i=1}^m A_i(x_i)$$
,

(vi)
$$G_3(x) = \sum_{i=1}^m \psi_{a_i}(x_i), \quad 1 \leqslant a_i \leqslant \infty$$

where $A, A_i, i = 1, ..., m$ are Young functions.

The class of G-functions essentially includes the class of even generalized N functions treated in [6] (see also [3] and [8]). The latter class consists

of G-functions satisfying
$$G^{-1}(0) = 0$$
, $G^{-1}(\infty) = \infty$, $\lim_{|x| \to \infty} \frac{G(x)}{|x|} = \infty$

together with a uniformity condition which, for example, excludes the function G_3 unless $1 < a_1 = a_2 = \dots = a_m < \infty$.

If for any two G-functions, G_1 , G_2 , there exist non-negative numbers c_0 and k such that

(1)
$$G_1(x) \leqslant G_2(kx)$$
 for all $|x| \geqslant c_0$

then we write $G_1 \rightarrow G_2$. If $G_1 \rightarrow G_2$ and $G_2 \rightarrow G_1$, we write $G_1 \sim G_2$ and call G_1 and G_2 equivalent. By virtue of properties (ii) and (iii), there will exist for any G-function, non-negative e_0 and k satisfying

$$|x| \leqslant G(kx) \quad \text{for } |x| \geqslant c_0$$

so that $\psi_1 \to G$ where $\psi_1(x) = |x|$. Any G-function also gives rise to m Young functions, G_i , i = 1, ..., m, defined by

(3)
$$G_i(x_i) = G(0, ..., x_i, 0, ..., 0), \quad i = 1, ..., m,$$

and hence we obtain a further G-function, \tilde{G} , given by

$$\tilde{G}(x) = \sum_{i=1}^{m} G_i(x_i).$$

By the convexity of G, we have

(5)
$$G(x) \leqslant \frac{1}{m} \tilde{G}(mx)$$

so that $G \to \tilde{G}$. For many G-functions, including the generalized N functions of [6], G and \tilde{G} are in fact equivalent. An example where this is not the case would be

$$G(x_1, x_2) = (x_1 - x_2)^4 + x_2^2$$

The *conjugate* function G^* of a G-function is defined by

(6)
$$G^*(x) = \sup_{y \in \mathbf{R}^m} \{x, y - G(y)\}.$$

From properties (i) to (vi) of G, it follows that G^* is also a G-function and $G^{**} = G$ (see [5], Section 12). From (6) we obtain immediately a generalized Young inequality

(7)
$$x. y \leq G(x) + G^*(y)$$
, for all $x, y \in \mathbb{R}^m$.

A further conjugate function, G_{+}^{*} , may also be defined by

(8)
$$G_{+}^{*} = \sup_{y_{i} \geqslant 0} \{x. \ y - G(y)\}.$$

Clearly $G_+^* \leq G^*$ and in the inequality (7) we may replace G^* by G_+^* provided y satisfies $y_i \geq 0$.

Examples of conjugate functions. Referring to the previously given examples of G-functions, we have

$$\begin{cases} \varphi_a^* = \psi_\beta & \text{where} \quad \frac{1}{\alpha} + \frac{1}{\beta} = 1, \quad 1 \leqslant \alpha \leqslant \infty, \\ \psi_e^*(x) = |x| \log^+ |x|, \\ G_1^*(x) = G_{1+}^*(x) = A^*(|x|), \\ G_2^*(x) = G_{2+}^*(x) = \sum_{i=1}^m A_i^*(x_i), \\ G_3^*(x) = G_{3+}^*(x) = \sum_{i=1}^m \psi_{\beta_i}(x_i), \quad \frac{1}{\beta_i} + \frac{1}{a_i} = 1. \end{cases}$$

The $L(G, \Omega)$ spaces. Let Ω be a domain in \mathbb{R}^n , u_1, \ldots, u_m be measurable functions on Ω , $u = (u_1, \ldots, u_m)$ and G a G-function. The space $L(G, \Omega)$ is defined by

$$L(G, \Omega) = \left\{ u | \int_{\Omega} G(\alpha u) dx < \infty \text{ for some } a > 0 \right\}.$$

More generally, we could replace Ω by any σ finite measure space. A norm, analogous to the Luxemburg norm for Orlicz spaces [3], is introduced into $L(G, \Omega)$ by defining

(10)
$$||u||_{G} = \inf \left\{ k > 0 \mid \int\limits_{O} G\left(\frac{u}{k}\right) dx \leqslant 1 \right\}.$$

By property (vi) of G, we have for ||u|| > 0

(11)
$$\int\limits_{\Omega}G\left(\frac{u}{\|u\|}\right)dx\leqslant 1.$$

That $\| \|_{\mathcal{G}}$ does in fact satisfy the required conditions for a norm follows from properties (i) to (vi) of G. The verification which is similar to the Orlicz space case [3] is left to the reader to supply. Furthermore, from inequality (2) we obtain for $u \in L(G, \Omega)$ and $|\Omega| < \infty$

(12)
$$\int\limits_{\mathcal{O}}|u|\,dx\leqslant k\,(1+c_0\,|\Omega|)||u||_{G}$$

so that $L(G, \Omega) \to L_1(\Omega)$ if $|\Omega| < \infty$. We use here and in the sequel arrows to indicate continuous imbeddings. One can then conclude that $L(G, \Omega)$ is a Banach space for arbitrary Ω .

If G is a Young function, we call $L(G,\Omega)$ an extended Orlicz space, while if in addition $G^{-1}(0)=0$, $G^{-1}(\infty)=\infty$, $\lim_{|x|\to\infty}\frac{G(x)}{|x|}=\infty$, $\lim_{|x|\to\infty}\frac{G(x)}{|x|}=0$, then $L(G,\Omega)$ is an Orlicz space. Referring to the previous examples of G-functions, we obtain

$$egin{aligned} L(\psi_a,\,\Omega) &= L_a(\Omega), \ L(G_1,\,\Omega) &= [L(A\,,\,\Omega)]^m, \ L(G_2,\,\Omega) &= \prod_{i=1}^m L(A_i,\,\Omega), \ L(G_3,\,\Omega) &= \prod_{i=1}^m L_{a_i}(\Omega). \end{aligned}$$

Equivalent G-functions yield the same $L(G,\Omega)$ space when $|\Omega|$ is finite and for arbitrary Ω if $c_0=0$ in the condition (1). The above examples all reduce to products of extended Orlicz spaces and this will be true for any G-function satisfying $G \sim \tilde{G}$ and $|\Omega| < \infty$ or $G \sim \tilde{G}$ with $c_0=0$ in (1). By (5), we always have

$$L(\tilde{G}, \Omega) \rightarrow L(G, \Omega)$$
 with $||u||_G \leqslant m||u||_{\tilde{G}}, u \in L(\tilde{G}, \Omega).$

From the inequality (7) follows a generalized Hölder inequality

(13)
$$\int\limits_{\Omega} u \cdot v \, dx \leqslant 2 \, ||u||_G \, ||v||_{G^*}$$

for all $u \in L(G, \Omega)$, $v \in L(G^*, \Omega)$. If the components of v are non-negative, we can replace G^* by G_+^* . Although G_+^* is not necessarily a G-function, formulae (10) and (11) still make sense for $u_i \ge 0$.

Now let A be a Young function and suppose that $A(t) < \infty$ for |t| < N, $A(t) = \infty$ for $|t| \ge N$ where $0 < N \le \infty$. By the continuity of A in (0, N), we have for any $u \in L(A, \Omega)$ with $||u||_A \ne 0$,

$$\int\limits_{\Omega} A\left(\frac{u}{\|u\|}\right) dx = 1$$

provided either $N=\infty$ or $|u|=\sup_{\varOmega}|u|$ on a set of positive measure. Furthermore if $N<\infty$, $L(A\,,\,\varOmega)\subset L_\infty(\varOmega)$ and if also $|\varOmega|<\infty$, then $L(A\,,\,\varOmega)=L_\infty(\varOmega)$ with

(15)
$$A^{-1}(|\Omega|^{-1})\|u\|_{A} \leqslant \sup_{\Omega} |u| \leqslant N\|u\|_{A}.$$

When $A(N) = \infty$ as above, the inverse function A^{-1} is well defined on $(0, \infty)$. On the other hand if $A(t) < \infty$ for $|t| \le N$, $A(t) = \infty$ for |t| > N, we take $A^{-1}(t) = N$ for $t \ge A(N)$. In general, we will have by virtue of the definition of the conjugate A^* ,

(16)
$$t \leq A^{-1}(t) A^{*-1}(t) \leq 2t \quad \text{for } t > 0.$$

Further properties of the $L(G, \Omega)$ spaces such as duality may be developed following the lines of [3] or [6]. The above treatment, however, is sufficient for the purposes of this paper.

§ 3. The imbedding theorem. Let \varOmega be a domain in \mathbf{R}^n and G a G-function of n variables. Then

$$||u||_{H^{\circ}(G,\Omega)} = ||Du||_{G}$$

is a norm on $C_0^1(\Omega)$ where we have used Du for the gradient of u. The space $H^\circ(G,\Omega)$ is defined to be the completion of $C_0^1(\Omega)$ under (17). By the estimate (12), the elements of $H^\circ(G,\Omega)$ can be identified as weakly differentiable functions and when $|\Omega|<\infty$ we will have $H^\circ(G,\Omega)\to W_0^{1,1}(\Omega)$ where $W_0^{1,1}(\Omega)$ is the Sobolev space $H^\circ(\psi,\Omega)$, $\psi(x)=|x|$. In fact, for $G(x)=|x|^p$, $1\leqslant p\leqslant \infty$, $H^\circ(G,\Omega)$ coincides with the Sobolev space $W_0^{1,p}(\Omega)$ and more generally when G(x)=B(|x|) where B is an N function, $H^\circ(G,\Omega)$ is the Orlicz–Sobolev space $W_0^1L_B(\Omega)$ (see [1]). The object of our present work is to determine the extended Orlicz spaces into which $H^\circ(G,\Omega)$ is continuously imbedded. Towards this goal we have the following general theorem.

N. S. Trudinger

THEOREM 1. Let $f = (f_1, \ldots, f_n)$ where f_i are continuous, non-negative, non-decreasing functions on $[0, \infty)$ satisfying

$$(18) G_+^*(f(s)) \leqslant s,$$

$$\int_{s}^{1} \frac{ds}{m(s)} < \infty$$

where

(20)
$$m(s) = \left(s \prod_{i=1}^{n} f_i(s)\right)^{1/n}.$$

Then $H^{\circ}(G, \Omega) \rightarrow L(A, \Omega)$ for any Young function A satisfying

(21)
$$\int_{s}^{|t|} \frac{ds}{m(s)} \leqslant kA^{-1}(|t|)$$

for some constant k. Furthermore there exists a constant c depending only on n such that

$$||u||_{\mathcal{A}} \leqslant ck ||Du||_{G}$$

for all $u \in H^{\circ}(G, \Omega)$.

An immediate consequence of Theorem 1 is the following COROLLARY 1. If in addition to the hypotheses of Theorem 1 we also have

$$\int_{s}^{\infty} \frac{ds}{m(s)} < \infty$$

then $H^{\circ}(G, \Omega) \rightarrow C^{\circ}(\overline{\Omega})$. Furthermore, for any $u \in H^{\circ}(G, \Omega)$,

(24)
$$\sup_{\Omega} |u| \leqslant c \|Du\|_{G} \int_{0}^{\infty} \frac{ds}{m(s)}.$$

Corollary 1 follows by virtue of the estimate (15) and the completeness of $L_{\infty}(\Omega)$.

There is an optimal way of choosing the function f in Theorem 1. Namely we require that equality hold in (18) and that

(25)
$$f_{\sharp} \frac{\partial G_{+}^{*}}{\partial x_{\sharp}}(f) = \text{constant.}$$

Frequently, as will be evidenced in the examples below, a Young function equivalent to any obtained through this procedure, may be found by simpler means.

For $|\Omega| < \infty$, the condition (19) is not required to establish the imbedding $H^{\circ}(\mathcal{G}, \Omega) \rightarrow L(A, \Omega)$ as this condition can be effected by the replace-

ment of G by an equivalent G function. Of course then the form of inequality (22) would change. For $|\Omega| = \infty$, the restriction (19) will be necessary. Applications

(i) Let G(x) = B(|x|) where B is a Young function. We have then $G_+^*(x) = B_+^*(|x|)$ so that we may choose

$$f_i(s) = \frac{1}{\sqrt{n}} B^{*-1}(s).$$

Consequently

$$m(s) = \frac{1}{\sqrt{n}} s^{\frac{1}{n}} B^{*-1}(s).$$

Defining

(26)
$$\overline{m}(s) = \frac{s^{1+\frac{1}{n}}}{B^{-1}(s)}$$

we have, by inequality (16),

$$\frac{1}{\sqrt{n}}\,\overline{m}(s)\leqslant m(s)\leqslant \frac{2}{\sqrt{n}}\,\overline{m}(s),\quad s>0,$$

so that provided

$$\int\limits_0^1 rac{ds}{\overline{m}(s)} < \infty,$$

 $H^{\circ}(G, \Omega) \rightarrow L(A, \Omega)$ for

$$A^{-1}(|t|) = \int_{0}^{|t|} \frac{ds}{\overline{m}(s)}.$$

Also by the estimate (22), we will have

$$||u||_A \leqslant C\sqrt{n} ||Du||_G$$

for any $u \in H^{\circ}(G, \Omega)$. This result agrees with Theorem 2.4 in [1].

(ii) Let $G(x) = \sum_{i=1}^{n} B_i(x_i)$ where $B_i, i = 1, ..., n$ are Young functions. Then

$$G_+^*(x) = \sum_{i=1}^n B_i^*(x_i)$$

so that we may choose

$$f_i(s) = B_i^{*-1} \left(\frac{s}{n} \right).$$

Consequently

$$m(s) = \left[s \prod_{i=1}^{n} B_i^{*-1} \left(\frac{s}{n} \right) \right]^{\frac{1}{n}}$$

and hence defining this time

(27)
$$\overline{m}(s) = s^{1+\frac{1}{n}} \left[\prod_{i=1}^{n} B_i^{-1} \left(\frac{s}{n} \right) \right]^{-\frac{1}{n}}$$

we have, by inequality (16),

$$\frac{1}{n}\overline{m}(s)\leqslant m(s)\leqslant \frac{2}{n}\overline{m}(s), \quad s>0.$$

Hence, provided

$$\int_{0}^{1} \frac{ds}{\overline{m}(s)} < \infty,$$

we have $H^{\circ}(G, \Omega) \rightarrow L(A, \Omega)$ for

$$A^{-1}(|t|) = \int_0^{|t|} \frac{ds}{\overline{m}(s)}.$$

Furthermore, for any $u \in H^{\circ}(G, \Omega)$,

$$||u||_{\mathcal{A}} \leqslant cn \,||Du||_{\mathcal{G}}.$$

Utilizing Corollary 1, we see that if $|\Omega| < \infty$ and

$$\int\limits_{s}^{\infty} rac{ds}{\overline{m}(s)} < \infty,$$

then $H^{\circ}(G, \Omega) \rightarrow C^{\circ}(\overline{\Omega})$.

(iii) In the previous example, let us take $B_i = P_{a_i}$, $1 \leqslant a_i \leqslant \infty$, where

(29)
$$\begin{aligned} P_{a_i}(x) &= |x|^{a_i}, \ 1 \leqslant a_i < \infty, \\ P_{\infty}(x) &= \psi_{\infty}(x), \end{aligned}$$

that is, the *i*th partial derivative of u, $D_{i}u \in L_{a}$ (Ω).

In fact, we clearly have

(30)
$$||Du||_{G} \leq \sum_{i=1}^{n} ||D_{i}u||_{a_{i}} \leq n ||Du||_{G}.$$

Let us define α , satisfying $1 \leqslant \alpha \leqslant \infty$, by

$$\frac{n}{a} = \sum_{i=1}^{n} \frac{1}{a_i}.$$

Then

$$\overline{m}(s) = n^{\frac{1}{a}} s^{1 + \frac{1}{n} - \frac{1}{a}}.$$

Consequently if $\alpha < n$, $H^{\circ}(G, \Omega) \rightarrow L_{q}(\Omega)$ where

$$\frac{1}{q} = \frac{1}{a} - \frac{1}{n}$$

and the estimate

(32)
$$||u||_{q} \leqslant cqn^{1-\frac{1}{a}} ||Du||_{G} \leqslant cqn^{1-\frac{1}{a}} \sum ||D_{i}u||_{a_{i}}$$

holds by (22) and (30) for any $u \in H^{\circ}(G, \Omega)$.

If a = n, we have

$$\int_{0}^{1} \frac{ds}{\overline{m}(s)} = \infty, \qquad \int_{1}^{s} \frac{ds}{\overline{m}(s)} = n^{-\frac{1}{a}} \log s$$

so that for $|\Omega| < \infty$, $H^{\circ}(G, \Omega) \rightarrow L(\psi_e, \Omega)$ where $\psi_e(x) = e^{|x|} - 1$. Finally, if a > n, we have

$$\int_{-\infty}^{1} \frac{ds}{\overline{m}(s)} = \infty, \qquad \int_{-\infty}^{\infty} \frac{ds}{\overline{m}(s)} < \infty$$

so that for $|\Omega| < \infty$, $H^{\circ}(G, \Omega) \to C^{\circ}(\overline{\Omega})$. In the last two cases the bounds on the imbedding operators depend on the choice of an equivalent G-function agreeing with G for values of $|x_i|$ bounded away from zero. Consequently these bounds will depend on $|\Omega|$ as well as n and α . To determine the explicit dependence on $|\Omega|$, we consider a transformation of coordinates $T: \mathbb{R}^n \to \mathbb{R}^n$ given by

(33)
$$x_{i} = |\Omega|^{\frac{1}{n} + \frac{1}{a_{i}} - \frac{1}{a}} y_{i}.$$

Then if $T\tilde{\Omega} = \Omega$ we have $|\tilde{\Omega}| = 1$. Furthermore

(34)
$$||Dy_i u||_{L_{\alpha_i}(\widetilde{\Omega})} = |\Omega|^{\frac{1}{n} - \frac{1}{n}} ||Dy_i u||_{L_{\alpha_i}(\Omega)}.$$

Hence we obtain for a > n, $u \in H^{\circ}(G, \Omega)$

(35)
$$\sup_{\alpha} |u| \leqslant c_1(\alpha, n) |\Omega|^{\frac{1}{n} - \frac{1}{a}} \sum_{i=1}^{n} ||D_i u||_{a_i}$$

while for $\alpha = n$ we have

(36)
$$\int_{\Omega} \exp\left(\frac{u}{c_2(n)\sum \|D_i u\|_{a_i}}\right) dx \leqslant c_3(n) |\Omega|$$

26

where $c_1(\alpha, n)$, $c_2(n)$, $c_3(n)$ are positive constants depending on their indicated arguments. The imbeddings for the cases $\alpha < n$, $\alpha > n$ were derived by Nikolskii [4] by completely different means.

An obvious question to ask in relation to Theorem 1, is for what G-functions is the result optimal, that is, $L_A(\Omega)$ is the smallest extended Orlicz space into which $H^o(G,\Omega)$ is imbedded. We know from the Sobolev space case that the result is optimal for $G(x) = |x|^a$, $a \neq n$ but not for $G(x) = |x|^a$. In the latter case, $H^o(G,\Omega) \to L(A,\Omega)$ where

(37)
$$A(t) = e^{|t|^{\frac{n}{n-1}}} - 1$$

and this imbedding is sharp [2], [7].

Spaces of higher order derivatives may be defined analogously to the $H^{\circ}(G, \Omega)$ spaces. Let k be a non-negative integer and G a G-function of n^k variables. Writing p_a , where α is a multi-index of length k, for a generic point in \mathbb{R}^{n^k} , we can define a norm on $C_0^{\circ}(\Omega)$ by

(38)
$$||u||_{H_k^0(G,\Omega)} = ||D^a u||_G$$

and complete $C_0^k(\Omega)$ under (38) to get a Banach space $H_k^{\circ}(G,\Omega)$. An imbedding theorem for $H_k^{\circ}(G,\Omega)$ would then follow by iteration of the case k=1. A general formula would be exceedingly complicated to write down but special cases can be readily derived. For example, if

(39)
$$G(D^a u) = \sum_{|a|=k} P_{\beta_a}(|D^a u|), \quad 1 \leqslant \beta_a \leqslant \infty,$$

where P is defined by (29), then setting

$$\frac{1}{p} = \frac{1}{n^k} \sum_{|\alpha|=k} \frac{1}{\beta_\alpha}$$

we have $H_k^{\circ}(G, \Omega) \to L_q(\Omega)$ if kp < n and $\frac{1}{q} = \frac{1}{p} - \frac{k}{n}$, $H_k^{\circ}(G, \Omega) \to L(\psi_e, \Omega)$ if kp = n and $|\Omega| < \infty$, and $H_k^{\circ}(G, \Omega) \to C^{\circ}(\overline{\Omega})$ if kp > n and $|\Omega| < \infty$.

§ 4. Proof of Theorem 1. The key calculus lemma in the proof is the following extension of the Sobolev imbedding theorem for the case G(x) = |x|.

LEMMA 1. For $0 < N \leqslant \infty$, let $B = (B_1, \ldots, B_n)$ where $B_i \in C^1[0, N)$, $B_i(0) = 0$, $\lim_{t \to N} B_i(t) = \infty$, $B_i' \geqslant 0$, $1 \leqslant i \leqslant n$. Writing

$$\bar{B} = \left(\prod_{i=1}^n B_i\right)^{\frac{1}{n}}$$

we have, for any $u \in C_0^1(\mathbf{R}^n)$ with $\sup |u| < N$,

(41)
$$\|\overline{B}(|u|)\|_{\frac{n}{n-1}} \leq \frac{1}{2n} \int \sum_{i=1}^{n} B'_i(|u|) |D_i u| dx.$$

Proof. Since

$$B_i(|u|) \leqslant \int_{-\infty}^{x_i} B_i'(|u|) |D_i u| \, dx_i$$

and

$$B_i(|u|) \leqslant \int\limits_{x_i}^{\infty} B_i'(|u|) |D_i u| dx_i,$$

we have

$$B_i(|u|) \leqslant \frac{1}{2} \int\limits_{-\infty}^{\infty} B_i'(|u|) |D_i u| dx_i$$

for every i. Hence

$$\left(2\overline{B}\left(|u|\right)\right)^{\frac{n}{n-1}}\leqslant \left(\prod_{i=1}^{n}\int\limits_{-\infty}^{\infty}B_{i}'(|u|)\left|D_{i}u\right|dx_{i}\right)^{\frac{n}{n-1}}.$$

We now integrate the estimate (42) successively over each variable x_i , applying at each stage the following extension of the Schwarz inequality

Consequently, we obtain

$$\int \left(2\overline{B}(|u|)\right)^{\frac{n}{n-1}} dx \leqslant \left(\prod_{i=1}^{n} \int B_i'(|u|) |D_i u| dx\right)^{\frac{1}{n-1}}$$

so that

$$\begin{split} \|\overline{B}(|u|)\|_{\frac{n}{n-1}} & \leq \frac{1}{2} \left(\prod_{i=1}^{n} \int B_{i}'(|u|) |D_{i}u| \, dx \right)^{\frac{1}{n}} \\ & \leq \frac{1}{2n} \int \sum_{i=1}^{n} B_{i}(|u|) |D_{i}u| \, dx. \quad \blacksquare \end{split}$$

The proof of Theorem 1 will now be accomplished by making a specific choice of the functions B_i in Lemma 1. It suffices to choose A to satisfy

(44)
$$kA^{-1}(t) = \int_{0}^{t} \frac{ds}{m(s)}, \quad t > 0.$$

Then differentiating (44), we obtain

$$A' = km(A) = kA^{\frac{1}{n}} \left(\prod_{i=1}^{n} f_i(A) \right)^{\frac{1}{n}}$$

so that

$$(A^{1-\frac{1}{n}})' = k \left(1 - \frac{1}{n}\right) \left(\prod_{i=1}^{n} f_i(A)\right)^{\frac{1}{n}}.$$

Hence

(45)
$$A^{1-\frac{1}{n}}(t) = k\left(1 - \frac{1}{n}\right) \int_{0}^{t} \left(\prod_{i=1}^{n} f_{i}(A)\right)^{\frac{1}{n}} ds$$

$$\leq k\left(1 - \frac{1}{n}\right) \left(\prod_{i=1}^{n} \int_{0}^{t} f_{i}(A(s)) ds\right)^{\frac{1}{n}}.$$

Now let us define

(46)
$$B_i(t) = \int_0^t f_i(A(s)) ds.$$

Then by inequality (45)

$$A^{1-\frac{1}{n}} \leqslant k \left(1 - \frac{1}{n}\right) \bar{B}$$

and by inequality (18)

$$(48) G_+^*(B') \leqslant A.$$

The functions B_i will clearly satisfy the hypotheses of Lemma 1 for

$$(49) N = \frac{1}{k} \int_{0}^{\infty} \frac{ds}{m(s)}.$$

Hence if $u \in C_0^1(\Omega)$ and $\sup |u| < N$, we have

(50)
$$\|\bar{B}(|u|)\|_{\frac{n}{n-1}} \leqslant \frac{1}{2n} \int_{\mathcal{S}} \sum_{i=1}^{n} B'_{i}(|u|) |D_{i}u| dx$$

$$\leqslant \frac{1}{n} \|B'(|u|)\|_{G_{+}^{*}} \|Du\|_{\mathcal{S}} by H\"{o}lder's inequality (13).$$

Let us now replace u by $\frac{u}{\lambda}$ where $\lambda = \|u\|_{\!\scriptscriptstyle A}$ and suppose that

$$\sup_{\Omega} |u| < N ||u||_{\mathcal{A}}.$$

Using inequalities (48) and (11), we obtain

$$\int\limits_{\Omega}G_{+}^{*}\left(B'\left(\frac{|u|}{\lambda}\right)\right)\,dx\leqslant\int\limits_{\Omega}A\left(\frac{u}{\lambda}\right)dx\leqslant1$$

so that

$$\left\|B'\left(\frac{|u|}{\lambda}\right)\right\|_{G_{+}^{*}}\leqslant 1$$
.

Also by (47)

$$\left\| \overline{B}\left(\frac{|u|}{\lambda}\right) \right\|_{\frac{n}{n-1}} \ge \frac{n}{(n-1)k} \left\| A^{1-\frac{1}{n}} \left(\frac{u}{\lambda}\right) \right\|_{\frac{n}{n-1}}$$

$$= \frac{n}{(n-1)k} \left(\int_{D} A \left(\frac{u}{\lambda}\right) dx \right)^{1-\frac{1}{n}} = \frac{n}{(n-1)k}$$

by (14) if either $N = \infty$ or $|u| = \sup_{\Omega} |u|$ on a set of positive measure. We then have by (50)

$$\frac{n}{(n-1) k} \leqslant \frac{||Du||_G}{n\lambda}$$

so that

(52)
$$||u||_{\mathcal{A}} = \lambda \leqslant \frac{(n-1)k}{n^2} ||Du||_{\mathcal{G}}.$$

The condition on u when $N < \infty$ is removed by replacing u by the function

(53)
$$u_{l} = \begin{cases} l & \text{if } u \geqslant l, \\ u & \text{if } |u| \leqslant l, \\ -l & \text{if } u \leqslant -l \end{cases}$$

for $0 < l < \sup |u|$. Inequality (51) will then hold for u_l and clearly $|u_l| = \sup |u_l|$ on a set of positive measure. Thus the estimate (52) holds for u_l and by letting l tend to $\sup |u|$, we obtain (52) for arbitrary $u \in C_0^1(\Omega)$. Theorem 1 now follows from the density of $C_0^1(\Omega)$ in $H^{\circ}(G, \Omega)$ and the completeness of $L(A, \Omega)$. The constant C in estimate (22) clearly satisfies $C \leqslant \frac{n-1}{n^2}$.

The above proof is extendable to other spaces of weakly differentiable functions. Let G now be a G-function of n+1 variables u, p_1, \ldots, p_n and denote by $W^1(G, \Omega)$ the set of weakly differentiable functions u on Ω for which the vector function u, D_1u, \ldots, D_nu belongs to $L(G, \Omega)$. For u belonging to $W^1(G, \Omega)$ we define

(54)
$$||u||_{W^1(G,\Omega)} = ||(u,Du)||_G$$

and note that $W^1(G, \Omega)$ will be a Banach space under the norm (54). We also define $W^1_0(G, \Omega)$ to be the closure of $C^1_0(\Omega)$ in $W^1(G, \Omega)$. Then Theorem 1 and Corollary 1 will hold for $W^1_0(G, \Omega)$, instead of $H^\circ(G, \Omega)$, provided in inequality (18) we replace the function $G^*_+(f)$ by $G^*_+(0, f)$. The imbedding theorem also extends to the spaces $W^1(G, \Omega)$ for certain domains Ω but this situation will be the subject of a further investigation. The imbedding of Theorem 1 will also be compact if the Young function A increases strictly less rapidly than a function which satisfies the hypotheses of the Theorem (see [1]).

References

- [1] T. K. Donaldson and N.S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis 8 (1971), pp. 52-75.
- [2] J. A. Hompel, G. R. Morris, and N. S. Trudinger, On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Austral. Math. Soc. 3 (1970), pp. 369-373.
- [3] M. A. Krasnoselskii and Y. Rutickii, Convex function and Orlicz spaces, Groningen 1961.
- [4] S. M. Nikolskii, Imbedding theorems for functions with partial derivatives considered in various metrics, Izd. Akad. Nauk. SSSR, 22 (1958), pp. 321-336. English translation, Amer. Math. Soc. Trans. 90 (1970), pp. 27-44.
- [5] R. T. Rockafellar, Convex analysis, Princeton 1970.
- [6] M. S. Skaff, Vector-valued Orlicz spaces, Generalized N-functions. I, Pacific J. Math. 28 (1969), pp. 193-206, II, ibid., 28 (1969), pp. 413-430.
- [7] N. S. Trudinger, On imbeddings into Orlics spaces and applications, J. Math. Mech. 17 (1967), pp. 473-484.
- [8] S. Wang, Convex functions of several variables and vector valued Orlicz spaces, Bull. Acad. Polon. Sci. 11 (1963), pp. 279-284.
- [9] A.C. Zaanen, Linear analysis, Amsterdam-New York 1953.

UNIVERSITY OF QUEENSLAND

Received October 13, 1972

(608)

Recognition and limit theorems for L_n -multipliers

by

MICHAEL J. FISHER* (Missoula, Mont.)

Abstract. The main theorem gives a necessary and sufficient condition for a function in $L^{\infty}(\varGamma)$ to be the Fourier transform of an $L_p(G)$ -multiplier. Three applications of this theorem are given: to an extension of Hahn's theorem, to a limit theorem of Lévy type for L_p -multipliers, and to the study of the maximal ideal space of an algebra of L_p -multipliers.

1. Introduction. Let G denote a locally compact abelian (LCA) group with dual group Γ . Let $M_p(G)$ denote the algebra of bounded, translation invariant linear operators on $L_p(G)$, $1 \leq p < \infty$. It is well known that $M_p(G) = M_{p'}(G)$ when p' is the conjugate index to p and that the inclusion $M_p \subset M_2$ is continuous if $p \leq 2$. $M_2(G)$ is isometrically isomorphic with $L^\infty(\Gamma)$ via the Fourier transform and $M_1(G)$ is isometrically isomorphic with M(G), the bounded Borel measures on G by $T(f) = \mu * f$; [10]. An element T of $M_p(G)$ has a Fourier transform $\hat{T}(\xi)$ which is assigned by letting $\hat{T}(\xi)$ be the Fourier transform of T regarded as an operator on $L_2(G)$.

In this paper we shall consider the following pair of questions:

- (1) When is $\varphi \in L^{\infty}(\Gamma)$ the Fourier transform of an operator T in $M_p(G)$?
- (2) If $\{T_a\}$ is a net of operators in $M_p(G)$, which converges in the weak operator topology over $L_2(G)$, when does $\{T_a\}$ converge in the weak operator topology over $L_p(G)$?

To answer the first question we shall give a criterion on φ in $L^{\infty}(\Gamma)$ which is similar to the criterion given in Schoenberg's theorem [3], [11] which characterizes the Fourier transforms of measures. The theorem of Schoenberg says that φ in $L^{\infty}(\Gamma)$ is the Fourier transform of a bounded Borel measure μ on G if and only if there is a real number $M \geqslant 0$ such that for every H in $L_1(\Gamma)$,

$$\Big|\int\limits_{\Omega} arphi(\gamma)\,H(\gamma)\,d\gamma\Big|\leqslant M\,\|\hat{H}\|_{\infty};$$

 \hat{H} denotes the Fourier transform of H and $\|\cdot\|_{\infty}$ is the sup-norm. If $\varphi = \hat{\mu}_{1}$

^{*} Research supported by the National Science Foundation grant NSF-GP-24574.