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and note that W'(¢, 2) will be a Banach space under the norm (54).
We also define Wi(@, 2) to be the closure of (;(2) in W(&, 2). Then
Theorem 1 and Corollary 1 will hold for Wi(G, Q), instead of H° (G, 2),
provided in inequality (18) we replace the function G} (f) by & (0, f).
The imbedding theorem also extends to the spaces WY@, Q) for certain
domains 2 but this situation will be the subject of a further investigation.
The imbedding of Theorem 1 will also be compact if the Young function
A increases strictly less rapidly than a function which satisties the hypo-
theses of the Theorem (see [1]).
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Recognition and limit theorems
for L,~multipliers

by
MICHAEL J. FISHE R* (Missoula, Mont.)

Abstract. The main theorem gives a necessary and sufficient eondition for a fune-
tion in L®(I') to be the Fourier transform of an L, (&)-multiplier. Three applications
of this theorem are given: to an extension of Hahn’s theorem, to a limit theorem of
Lévy type for Ly-multipliers, and to the study of the maximal ideal space of an al-
gebra of Ly-multipliers.

1. Introduction. Let & denote a loecally compact abelian (LCA) group
with dual group I'. Let M, (G) denote the algebra of bounded, translation
invariant linear operators on IL,(G), 1 <p < oco. It is well known that
M, (@) = M, () when p’ is the conjugate index to p and that the inclu-
sion M, « M, iy continuous if p < 2. M,(G) is isometrically isomorphie
with L*(I") via the Fourier transform and M, (@) is isometrically isomor-
phic with M (@), the bounded Borel measures on G by T(f) = pxf; [10].
An element 7' of A, (G) has a Fourier transform i‘(&) which is assigned
by letting i‘(s) be the Fourier transform of 7' regarded as an operator
on Ly(G).

In this paper we shall consider the following pair of questions:

(1) When is pe L®(I") the Fourier transform of an operator T in M,(G)?

(2) If {T.} is a net of operators in M, (G), which converges in the weak
operator topology over L,(@), when does {I,} converge in the weak operator
topology over L,(G)?

To answer the first question we shall give a criterion on ¢ in L®(I")
which is similar to the criterion given in Schoenberg’s theorem [3], [11]
which characterizes the Fourier transforms of measures. The theorem
of Schoenberg says that ¢ in L®(I") is the Fourier transform of a bounded
Borel measure u on ¢ if and only if there is a real number M = 0 such
that for every H in L,(I'),

| [ o) B ay| < s

H denotes the Fourier transtorm of H and I fleo i8 the sup-norm. If ¢ = g,
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a simple interchange of integrals verifies the desired inequality with M
= ||ull- The Riesz representation theorem and the density of {H| He L,(I")}
in Cy(@) readily yield a proof of the converse. Our extension of Schoen-
berg’s theorem will be used to prove a generalization of Hahn’s Theorem
5 [7].

To angwer the second question posed above, we shall prove an exten-
sion of the Lévy continuity theorem for M, (@), 1 < p < co; see Section 4.
Lévy’s continuity theorem ([4], p. 481) says that if a sequence of Borel
probability measures {u,} on the reals R, have Fourier transforms {u}
which converge pointwise to a continuous function p on B with ¢(0) = 1,
then ¢ is Fourier transform of a Borel probability measure u and the {u,}
converge in the weak*-topology of M(R) to u. If we take Schoenberg’s
theorem into account, we see that we could state the Lévy theorem as
follows: Let {T,} be a sequence of operators in M,(R) for which each T, is
given by convolution with a Borel probability measure. Suppose that the
{T',} converge in the weak operator topology over Ly(R) to an operator T which
is also given by comvolution with & Borel probability measure. Then {T,}
converges in the weak operator topology over L,(R) to 7. It is this version of
the Lévy theorem which we shall extend.

The classical proofs of the Lévy continuity theorem over R rely heavily
on the fact that the unit ball in M (R)is a compact metric space in the weak™-
topology. This fact will not enter into our proof of a general theorem of
Lévy type. Instead, we shall use the methods of multiplier theory.

In the fifth section of the paper we will use the recognition theorem to
study an algebra of L,-multipliers whose maximal ideal space is closed
under Arens multiplication. :

2. Preliminaries. We shall denote the algebra of translation invariant,
bounded, operators on L,(G) by M, (G) for 1 <p < oo M,(@) is referred
to as the algebra of L -multlphers From [5], M, (@) is 1\0111etrica.lly iso-
morphie with the dual space of A,(G); 4,(G) is the algebra of functions
in Cy(@) of the form

= D h*Giw)s  fikgi(¥)

k=1

where all fie L,(G), all gye Ly (G

frk @+ ) gilw) de,
), L/p+1/p’ =1, and where

ZMfknpngkup < oo.

A function h in A, has the norm

|hl, = inf {2 Uidloligellpr | By

Zflr*gk }

k=
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An operatior T'in M, (&) corresponds to 7 in A, by

T(h) = 2 (Tfi)g4(0).

See [6] for & proof that A;(F) = 0,(6¢). Furthermore, it is shown in [5]
that the weak operator topology on M, (&), and the weak*topology on
M, (G) = A,(@)* coincide on bounded sets. Regarding the algebras M,

one should recall that M, is isometrically isomorphic with M, When
1/p-+1[p’ =1 and 1< p < oo, that the inclusions M; « M, = M c M,
are continuous when 1< p <r <2, and that M,(G) is 1son1e1;rlca,lly iso-
morphic with L®(I") via the Fourier transform (I" denotes the character
group of @). For T' in M, (@) we let f’(y) denote the function in I™®(I)
which corresponds to T as an operator in M,(G). 4,() is isometrically
1somorphle with the algebra A(@) of Fourier transforms of functions

in Ly(I); f in A(G) has the norm [f[A = [ |f(y)|dy when fe L,(I'). It fol-
r
lows that 4, = 4, and that 4,(@) is dense 4,(@) for 1 < p < 2. See [5].
Herz [8] has shown that 4,(6G) is a Banach algebra under pointwise multi-
plication.
3. A characterization of Fourier transforms. In this section we fix
pinl<p <2 andlet I' denote the dual group of the LCA group G- L (I")

denotes the convolution algebra of integrable, complex valued functions
on. I By the duality theorem, G is the character group of I'; see [10].

Let (w) denote the Fourier transform of H in L, (I'). i
THEOREM 1. ¢ in L*(I") is the Fourier transform of an L, -multiplier
T if and only if there is a non-negative real number M for which

|[o B ay|< ¥1H),
r

for every H in L,(I"). [ﬁ | denotes the norm of the Fourier transform of
H in Ay(@). If ¢ =1, ||T]|, is the least constant M for which the inequality
holds.

Proof. Let T be an L, multiplier and let He L (I'). Then H is in
A, (&) so that there are sequences {f,} and {g,} in L,(@) such that

while 3 fullsllgalla < oo
Then. )

Y)Yy,

I(H) = an 4a(0) = Y [ 1

n=1 n=11I

V) fn )

3 — Studia Mathematica L.l
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by Plancherel’s theorem. Since T'¢ M,,, |T(H)| < | T, |Hlp; set M = ],
Since H(y) = 3 fo(0)u(y) (a.e.),

n=1

T(H) = [T()H(y)dy

by the dominated convergence theorem.
On the other hand, suppose that ¢ in L, (I") satisfies

| [ e E() D] < M1,
r
for every H in Ly(I). Define
O(H) = f () E )iy ;

then @ admits & unique continuous, linear extension to all of 4,(@) since
A, (@) is dense in 4,(@). From [5], there is a unique ' in M, (G} such that
® =T on A,(G). By the first part of the proof, 7(y) = p(y) almost every-
where. This completes the proof.

CorOLLARY 1.1. If {If‘a} is @ net of Fourier tramsforms of‘Lp(G)-multi-
pliers {T,} for which |T,)l, < M < oo for all o and for which {f’a} conwerges
i the wealk*-topology of L*(I") to a function @, then ¢ is the Fourier trans-
form of an Ly,multiplier T with | T}, < M.

Proof. By Theorem 1, for every H in L,([),

|[[ TN E ()| < 21,

for every a. The convergence assumption on the {fi’a} says that
f T,( y)H ()dy converges to f () H (y)dyfor every H in L, (I"). Therefore

| f e H(Y)dy| < M IH lps and Theorem 1 implies that there is a 1'e M,(G)

wn;h u.THp < M such that T(f) = p(£) almost everywhere.

This corollary will be useful; we shall use it first to extend Hahn’s
Theorem 5; see [T]. Let B, (I') denote the Banach algebra of continuous
functions f on I' for which fhed,(I') when hed,(I'). B,(I") is the algebra
of multipliers of 4,(I"). By(I") consists of the Fourier transforms of meas-
ures in M (@) (see [10]) and B,(I") consists of the bounded continuous
functions on & We shall equip B, (I") with the operator norm:

Nf Ny = sup {If%l, | A, < 1}.

Note that if 1<p<r<2, a simple approximate identity argument
shows that the inclusions B, = B, = B, < By are continuous.
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1 1 1
THEOREM 2. If 1<r<co and if Py < ;}———1, then B,(I")
consisis of Fourier transforms of operators in M,.(G). If Ty in M (@) denotes
the operator which corresponds to fe B, (I'), then T4l < 1lIflllp.
Proof. In Theorem 5 of [7], Hahn showed that if 1 <7 < oo and
fil<p<2 then I = fxg is the Fourier transform of an operator in

@ it |-

for every pair of functions f in L,(I') and

<|——1

1
g in L, (I') when })—-!—5,— = 1. Furthermore, he showed that if 7 deno-
tes the operator in M,.(@) which has Fourier transform h then [T,

< |flplgllyr- By Theorem 1, if ———\ i——-—l

| [ B H) @] < Wl VL,

for every He L (). If h(y) = ka*gk(y) is any element of A4,(I), it fol-
k=1

lows from Theorem 1 that

| [ E(nay] < iy 1),

1 1 1 :
for every H in L, (I"). Fix v in ‘7—‘27' < :—1-;——1 . A,(I') is dense in A,(I")

and the inclusion is continuous. This implies that if {e,} is a bounded
approximate identity on L,(&), then {¢,} is a bounded approximate iden-
tity in A4,(I"). By Theorem 31E of [9], 4,(I") contains an approximate
identity of norm 1, {¢,}, which consists of positive definite functions.
Thus if f is in B,(I"), the net {¢.f} converges to f uniformly over each
compact subset of I. Fix H in L,(I') and let ¢ > 0. Choose a compact
set K in I' for which f |H (y){dy < e Then

Uf VE (y) dy — ff H(y) &
! f F) —F ) ea()) H(y) dy| +28]fllo-

There is an o, such that o > a, implies that first integral on the right
is dominated by e. Therefore {fe,} converges in the weak*-topology of
I>(I') to f. By Corollary 1.1, f is the Fourier transform of an operator
in M,(G). Sinee |Tp |l < Ifeuy < |IfIll, for every |IT4, < IlIflll,. This
completes the proof.
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Remark. The argument used to prove the previous theorem indicates
a general approach that can be used to identify functions in L™ (I") which
are Fourier transforms of operators in M, (@). Let A be a Banach algebra
of bounded functions on I" which contains a bounded approximate iden-
tity, whose elements can be idenfified as Fourier transforms of operators
in M,(G) with [T, < |fl4, and for which |[hlle < [hly4 for hed. Then if
B denotes the subalgebra of L™ (I") which acts as multipliers on 4, each
function f in B is the Fourier transform of an operator T in M,.(G) with
174l < 1f15-

Remark. Theorem 1 and Corollary 1.1 extend immediately to the

. 1 1
range 1 < p < oo. But since M, = M, when 5—-{—?: 1, this is obvious.

4. Limit theorems. In this section we shall study nets of L,-multipliers
which converge in the weak operator topology over L,(G). Assume that
1<p < oo

TaeoreM 3. Let {T,} be o bounded net of L, (G)-multipliers, ||T,/l, < M
< oo for every a, which converges in the weak operator topology over Ly(G).
If T denotes the limit in M, (G), then T'e M,(G) and {T,} converges in the
weak operator topology over Ly,(G) to T.

Proof. Assume at first that 1< p<2. Regard M,(&) as A"
ag we may by [5]and recall that 4,(G) is densely and continuously includ-
ed in 4,(@). X f,ge Lz(G)’af (T.f) () g (x)dz converges togf (Tf) (@) g (@) das
singe {T,} converges to T' in the weak operator topology over L,(¢). Thus
FfTa(?)f(V).Z](V)dV converges to J T f(»g(y)dy. Bvery H in Iy(I)

can be expressed as the product of a pair of functions in Ly (I"). Thus
{T} converges to T in the weak*-topology of L*(I). By Corollary 1.1,
T is the Fourier transform of an operator in M, (¢). For every h in 4,(&),

T,(h) converges to T (k). Since 4,(¢) is dense in 4,(@) and since {f’,}u{i’}
is a bounded set in A, (&), an e/3-argument shows that {I,} converges
to T in the weak operator topology over L,(G).

It 2 < p < oo, the net of adjoints {Th in M, (G), 1 <p’ <2, con-
verges in the weak operator topology over L, (&) to T Thus {Z,} con-
verges to T in the weak operator topology over L,(@). But {T.}u{1}
iz a bounded set and the weak* and weak operator topologies agree on
bounded subsets of M,(G) = 4,(G)*. This completes the proof.

It is proved in [6] that Co(@) = 4,(@), and it is not hard to prove
that the weak*-topology on M (@) = M, (G) agrees with the weak operator
topology on bounded subsets of M, (@).

CorOLLARY 8.1. If {u,} 18 o bounded sequence of Borel measures on

G whose. Fourier transforms converge almost everywhere to o function ¢, .
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then ¢ is equal almost everywhere to the Fourier transform of a measure p with
[l < sup [yl Furthermore, {u,} converges in the weak*-topology of M (G)
to u. ™

Proof. Since M (@) is isometrically isomorphic to M,(@) and since
the weak *-topology and weak operator topology agree on bounded subsebs
of M, (&), the conclusion follows from Theorem 3. For since {tin} converges
pointwise to ¢ while |ju,l| < M < oo, the dominated convergence theorem
and Plancherel’s theorem imply that the operations on L.(@) of convo-
lution by the u, converge in the weak operator topology to the operator
T with T = P.

COROLLARY 3.2. Let {u,} be a sequence of Borel probabilily measures
on G whose Fourier transforms converge almost everywhere on I' to & func-
tion @ which, after correction on a set of Haar measure zero, is continuous
on a neighborhood of 0 in I' and satisfies ¢(0) = 1. Then g is equal almost
everywhere to the Fourier transform of a Borel probability measure p on G.
The sequence {u,} converges in the weak*-topology of M(G) to p.

Proof. Except for the fact that u is a probability measure, the conelu-
sion of the corollary follows from Corollary 3.1. & is a positive definite
function since it is the pointwise limit of positive definite functions.
Since x(0) = 1, Bochner’s representation theorem ([10], p. 19) together
with the uniqueness theorem for Fourier transforms of measures implies
that u is a Borel probability measure on &. ’

Corollary 3.2 is the classical Lévy continuity theorem.

COROLLARY 3.3. Lei {T,} be a bounded net of L,(G)-multipliers and
suppose that {T,} converges in the weak operator topology over L,(Q) for some
gin 1< q< oco. If T denotes the limit of the Ty in M, (), then T is in M,(&)
and {T.} converges to T in the weak operator topology over Ly (@)

Proof. Since 4,(G) is dense in A,(¢), the functionals {T,} satisty
lim i‘u(h) =T (k) for every h in A,(@). Thus {7} converges to T in the

weak operator topology over L,(®). Theorem 3 now implies that {T.}
converges to T in the weak operator topology over Ly (@)-

5. An algebra of I,-multipliers. For any operator T in M,(@) and for
any ye I, let T, denote the operator in M,(G) defined by T',(f)(2)
= y(2)"*T(yf)(x). Then ||T,l, = |T|, and T, has Fourier transform
Ty(f) =i’(y§). Thus I' defines a group of isometries on M, (G). Let
COM,(G) denote the subalgebra of M,(G) which consists of operators
T for which y—T, is strongly continuous; ie. |T,—T|,~>0 as y—1.
T'is regarded as a multiplicative group in this section. O M, (@) is a Banach
algebra in the operator norm. Since ll’f’llw = ||T)ls < |Tllp, it follows that
every element of CM,(G) has a uniformly continuous Fourier transform.
Tt is ‘worth noting that OM,(G) consists of precisely those operators in
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M,(G) whose Fourier transforms are uniformly continuous. It is almost
as immediate that CM,(G) = M,(G).

‘We need some technical information in order to prove the theorem
of this section which will show that the maximal ideal space 4, of C.M, (&)
is closed under the Arens product on €M, (@Y. Let B(,(I') denote the
algebra of bounded linear operators on OM »(G) which commute with the
action of I" on CM,(@); i.e. @ e BC,(I") if and only if @ is a bounded linear
operator on. CM,(G) Whichn satisfies @(71), = &(T,) for every y in I

Lemma 5.1. BC,(I') is isometrically isomorphic with OM,(@Q)* by the
map P->p where ¢(T,) = D(T)" (y).

Proof. If Pe BC,(I"), then the map T-®(T)" (1) is a bounded linear
functional ¢ on CM,(G) since

e (D) = 19(1)" ()] < NPT [loo < NS (Dp < 9] |1T1]-
Thus il < 1]l
On the other hand let pe CM,(3)*. Let He L;(I") and consider the in-
tegral
f P(T)H(y)dy = o [ 1,H(y)dy).
. r
If Ted,( f.’l’ H(y)dy = (kH) since T (k) = i’(yk) ‘where . (yk)(x)

= y(w)k(w) Thus fT H(y)dy = %ed, ()" where (k) T(kH ) for every

Bedy(T). Since [y <IZ1, | lys 16 ()] <ol 71, L], S0 B(T), (1)’ ()
= (p(Ty), is in M, (@) by Theorem 1. Furthermore, it follows that ] < < (o]l
For yye I, @(T),, has Fourier transform (T (yy,) = (T ) =P (T, ) ()
thus @< BO,(I") and y—+®(T), = &(T,) is continuous when Te OM (@.
This completes the proof.

LmmMA 5.2, The algebraic homomorphisms of OM,(G) in BC,(I") cor-
respond to the complex homomorphisms of CM,(G) in CM,(G)* under the
map P—e, o(T,) = D(T)" (y).

Proof. Leb A, denoté the space of complex homomorphisms of .M, (&)
Then if ded,, let A(T) (y) =6(T,). Then A(T8) (y) = 3([T87,)
= 6(T,8,) = d(T,)8(8,) = AT () 4(8)" (), so that 4 is an algebraic
homomorphism of CM,(G). If AeBC,(I") is multiplicative, then §(7T)
= A( )" (1) is multiplicative since

8(T8) = A(T8)" (1) = A(T)" (1) A(8)" (1) = 6(T)8().

Devinivron. IE 8y, 8pe 4, and if 8,(T,) = 4,(T)" (y) for 4 =1,2,
define the product 6,4, of 4, and 6, to be that complex homomorphism
of M, (G) which corresponds to the composition of 4, and 4, in BO,(I).

Now we need more succinet notation for the correspondence between
elements of BO,(I') and elements of CM,(&)*. CM,(G) is a closed sub-
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space of A, ()" so that OM,(@)* is isometrically isomorphic with
A (GO, (Y where OM,(G)*- denotes the annihilator of ¢, (&) in
M (@) = 4,(G)". Thus we may regard CM,(G)* as a space of equiv-
alence classes of functionals in 4, (G)*™* where ¢ and v in 4, (@)™ define the
same member of OM,(G)* if and only if (p —y) vanishes on C M, (G).

Define’ the Arens product on M,(G)* in the following way: (1) if
Ry ke d, (@), (BE)(®) = h{z)h(2); if Ted,(@)" = M,(G), set Toh(k) = T(hk
it pe M, () and Te M, (), set poT (k) = ¢(Toh); it @, we M,(G), set
goy(T) = @(pol). See [1] where the Arens product is studied and applied
t0 the analysis of I®(G)* = L, (G)**. To define the product goy in 0, (@)%,
we have to show that when T'e« CM,(F) and @e Mp(G)*, then ol is in
OM,(§). Note that (poT),(h) = goT(yh) = (T o(yh)) and that To(yh)(k)
= T'(yhk) = T,(kk), thus (poT), = poT,. Since y—T, is continuous for
T in OM, (&) and sinee |po T, < @l IT1,, (9o T), is continuous in y. Thus
it Te OM,(G) and if pe M,(G)", then poTe CM,(G). Therefore, we may
define the product of ¢ and y in CM,(G)* by regarding them as elements
of M,,(G)*, forming the funetional oy and then restricting this func-
tional to O.M,(@). Thus CM,(@)* is & Banach algebra with multiplication
o which contains a right identity since 4, (@) has a bounded approximate
identity. CM,(@)* need not be commutative. See [1] for the basie prop-
erties of the Arens product.

Lmvma 5.3. Suppose that pe CM,(Q), that $e BO,(I'), and that these
mappings satisfy D(T)" (v) = ¢(T,). Then D(T) =goT.

Proof. For hedy(@), let He L (I satisty H(x) = h(z). Then U =
JT,H(y)dy exists and for any function k in A, (G,
Ir

U (k) = T(kh) = fT(yk (y)dy.

Thus @(T)(h) = (poT)(h) for a dense subset of 4,(¢). Thus &(T) = poT

TueoREM. 4. If 8, and &, are comples homomorphisms of OMy(G), then
their product 6,0, satisfies 0,05 = 8,008, A, 48 closed under the Arens
product.

Proof. By definition, 8,4, is that complex homomorphlsm of OM,(G)
which corresponds to the composition 4,4, of the homomorphisms 4,
and 4, of OM,(G). Here 8,(T,) = 4,(T)" (y) for i =1, 2. By Lemma 5.3,
4,(4,(T)) = A {820T) = 6,0(8,0T) for every Te CM,(@). Bub 4,0 o (6,07
= (6,085)07. Since 4,{dy(T)) = 8;8,0T, we have the 1dent;1ty,6 d,0T

= (8,08,)0T for every TeCOM,(G). Since 4,4 (1) (1) = 8,6,(T)
= §,00,(T), it follows that 60, = 8,08,. This completes the proof.

‘We hope to study the maximal ideal spaces of (M,(G) and. of M, (G)
in detail later.


GUEST


40 M. J. Fisher

6. A systems approach to M, (6. As the material in the preceding
sections indicates, M, (G) can be studied from the viewpoint that 4,(@),
Mp(@) = A, (@), M,(@)* = 4,(G)** is an interrelated system of algeb-
ras. It can be shown that the algebra B, (@) of multipliers of 4,(@) can
be regarded as a distinguished subalgebra of AP(G)"’*. 4,(@) is rich in
structure since it contains the same approximate identities and local
units as the Fourier algebra 4,(&). For example, this implies that the Wie-
ner-Lévy theorem, Ditkin’s condition, and general forms of Wiener's
(Tauberian) theorem all hold in A, (&5 see [8]. We hope to pursue the study
of this systems approach to M,(G) in detail later. We ghall cloge this paper
with one result which originates with this viewpoint.

Recall that if 4 is a finite Borel measure on I’y then for every 7' in

M, (&), [T(@+y)du(y) is the Fourier transform of an operator T in M, (&)
r

which can be defined as follows: If ¢ is a continuous function with compact
support, then

T(g) (@) = Tfg(@+9)js(y))

when 7 is regarded as a functional on 4,(¢) which satisties l’f’ (R)| < MR,
for some non-negative real number M. Direct computation shows that
12 < 1T flell 5 Yl s the variation of 4. We ghall prove

THEOREM 5. Let Te My (G) and let fe B,(@), the multipliers on A, (@).
If g is a continuous function with compact support in G and if 17 is defined

by T'(g) (w) =i’y(g(w+y)f(y)): then T'e My(@) and [T, < [Tl 111f]]],.

Proof. Notice that the functional 7* on A, (6) satisties T/(h) = T(fh)
for every h in 4,(G). Thus T-1" is just the adjoint of the map h->fh.

This implies that IITf||p< 1Z0, H1f 11}, where If1llp is the norm of f as a mul-
tiplier on A4,(@). :
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