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Duality and fractional integration in Lipschitz spaces
by
N.J.H. HEIDEMAN (8t. Louis, Mo.)

Abstract. The definition of the gpaces A(B, X) of A.P. Calderén are extended
to include the duals of tho spaces considered by him. The fractional integration
operators on thess spaces are constructed. The definitions and theorems are further
generalized by considering homogeneity with respect to a one-parameter group of
linear transformations. In particular, these results generalize the theory of classical
Lipschitz spaces of distributions on R™see [6]).

Introduction. This paper is concerned with the spaces A(B, X), intro-
duced by A.P. Calderén in [3]. Here B is a Banach space of tempered
digtributions on R"™ (n-dimensional Fuclidean space), X is a Banach
lattice of measurable functions on the interval (0,1] and » is a measure
satisfying certain conditions. (The precise definitions ave given in Sec-
tions 2 and 38.) Then %eB is said to be a member of A(B, X), if
[{(w% ;) (*)||pe X, where * denotes convolution and », is defined for a measur-

able subset & of R™ and for § > 0 by »(H) = (% E)

These spaces generalize and include certain Lipschitz space of smooth
functions ([6], [7], [9]). For example, on RY, if we let » be the Dirac mea-
sure at 0 minus the Dirac measure at —1, and let X be the class of mea-
surable functions f for which =% |f(t)|e L°(0, 1], 0 < a <1, then we ob-
tain the space A, of functions g for which [lg(-) —g(- 4+l < Ct°, Where
C is a constant independent of .

A.P. Calderén defined the spaces A (5, X), for Banach lattices X of
positive type (see Definitions 2.3 and 3.1). In this paper the definitions
are extended to include non-positive type. Those of negative type turn out
10, be the dual spaces of those considered by Calderén. One of the prineip-
al contributions of this paper is the construction of the fractional integ-
ration operstors on the spaces A. These are the analogues of the Riesz
and Bessel potential operators.

The definitions and theorems are further gencralized by considering
homogeneity with respect to a group of linear transformations {I},, on
R" ag studied by de Guzmén in [4]. This point of view allows us to include
mixed homogeneity and spaces of functions satistying different Lipschitz
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conditions in different directions. An example of such a family of linear
transformations is given by
a 52 a, ),
Ly(@) = (t '@y, 70y, ...y £ '0y)
where o = (2y,...,%,) ¢ R* and a,, ..., a, are positive constants. Then
the case considered by Calderén amounts to letting
(*) a4y = dg = ...

=, = 1.

An example of how spaces of functions satisfying different Lipschitz
conditions in different directions are included in this approach is obtained
by letting the Banach space B be L¥(R?), 1 < p < co. The measure » iy
taken to be equal to twice the Dirac measure at the origin minus the
Dirac measures at (—1,0) and (0, —1). For @ = (2, 2,)¢ B?, we lot

Ty(q, o) = (ty, 17 ,)

where >0 and > 0. Let X,, be the Banach lattice of measurable
functions g on (0, 1] for which

; a7
gl = [f(i‘“lg(‘t)l)q--;] y 1< g < oo,

0
Supt=“lg ()1,

is finite. If f ¢ L? satisfies the conditions

¢ = 00,

F s 485 @) —f (1, Bo)llp e Xo g

and
”f(ﬂﬁ'l, &y +t) '_f(wly w2)”17 EXﬁ,m
then
(@141 o) —f(my, )l € Xy g
and

IF 1y 200+ 8P) —f (a1, )] e X .
Thus  ||f*ll,eX,, since

(fev) () = 2f(601, o) =f (@21, w3) —f (@1, y 4-177).

The following is an outline of this paper. Section 1 containg the main
tool, which is a representation theorem enabling us to recover u tempered
distribution # from w#y,. (The exact statement is given by Theorem
1.1.) This theorem, for the case (+) above, was first proved by Calderén.
and the same proof carries over to the more general setting considered
in this paper.

Section. 2 contains the definition of a Banach lattice and preliminary
lemmas establishing the properties of Banach lattices that are needed
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in the sequel. In this section is also defined the “type” of a Banach lattice
(Definition 3.3). Severdl examples of Banach lattices are given. We assume
that the dual of a Banach. lattice is again a Banach lattice.

In Scetion 3 are defined the spaces A(B, X), for X of positive type.
Theorem 3.1 is & bagic result about a continuous mapping from the direct
gum of B and X (B) into a A gpace. This theorem allows us o prove (seo
Theorem 3.2 and corollary) that wunder certain conditions the spaces
A are independent of the measure ». In fact, the measure » can be re-
placed by @(o)de, where ¢ is a Schwartz test function having certain
properties (but otherwise arbitvary) and where de denotes Lebesgue
measuro.

In Section 4 use iy made of Theorem 3.1 to congtruct invertible frac-
tional intogration operators mapping o A space of positive type conti-
nuously onto another A gpace of positive type. The method of construction
ig similar to the proof of Theorem 1.1.

The spaces A (B, X), for X of non-positive type are defined in Section 5.
Thig definition is made in termsg of the operatiors constructed in Section 4.
The restriction of thego operators to spaces of positive type is removed
and it is shown (Theorem 5.1) that under certain conditions 4(B, X),
i independent of » and that » can be replaced by ¢(2)de, as was the case
for X of positive typoe in Secbion 3.

In the lagt seetion it is shown that under certain natural conditions
the dual of A(B, X), is the space A(B’, X'),, where B’ and X' are the
dualy of B and X rospectively.

The results of this paper form part of the author’s Ph. D. thesis [5],
which algo included a development of the Lipschitz spaces where the Ba-
nach lattice is defined on the non-negative integers.

The author wishes to express his gratitude to Professor R.R. Coifman
for his pationt guidanco and encouragement during the preparation of
this worl.

Notation. R" = {0 = (1, ..., 0,) With @, ...,, real} is n-dime-
3
ngional Buclidean space with fhe norm |@| = (¢2 @}, do is n-dimensional
o 1 :

Lebesguoe measure. X
& = &P RY will denote the colleetion of Schwartz test funetions,
0. all those 0% functions ¢ on R" for which S%)‘ |6 (D) (#)] < o0
e

for all n-tuples a == (0q..; @) and B = (Byy ...y fa) Of nbn-nega‘cive
intogers. ' will denote the collection of all continuous linear functionals
on & and is called the space of tempered distributions.

Let B be a Banach gpace of tempered distributions on B* and X a B-lait-
tico of functions on (0,1]. Then X (B) will denote the class of B-valued
functions f(¢) for which [|f(#)lzed. ‘
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1. A REPRESENTATION THEOREM OF A.P. CALDERON

The following situation was studied by M. de Guzman [4]: Let {I}
for >0 be a group of linear transformations on R™ for which 7',-T,
=Ty, Ty = I, the mapping ¢—T; is continuous, and for each we R?,
IT,5)|-0 as t—+0 and |T;u]>o0 as t->00 (x 5= 0). T} can be expressed in
the form 7T, = ¢"'°! where P is a matrix whose eigenvalues have pogitive
real parts. Furthermore, we assume P gatisfies the conditions of Theorem
3.1.6 of [4], in particular those at the top of page 117. The conditions
include the case where P i diagonal. For cach non-zero z ¢ R® there oxigts
a unique ¢, > 0 such that Iy, 2ll = 1. Define g(#) = 1/t,. Then o(w —y)
ig a metric on R", o(Tyo) =tp(2) and p(w) = leu| =1. TLet Y be
the adjoint of Z,. Then {77} has the same properties as {T,} above and
we can define a metric o* on R™ in the same way as o ‘above.

Let v be a vector-valued finite Borel measure on R* (with values
in R") and define v(B) = »(T,,E) for any »-measurable set J. If »

Is of the form dv(s) = g(x)dw, then ¢y (s) =1~"*Fp(T,x) since |det L)
— t—trP_

We first prove a theorem of A.P. Calderén developed in [3] and a semi-
nayr at the University of Chicago (for the case Ty = tx).

TusoreEM 1.1. Let v be a vector-valued finite Borel measure with the
additional property that, for each vector m of unit length, »(TFx) is not iden-
tically zero as a function of t > 0. (v is the Fourier transform of v where
v(@) = [ e Vay(y).) Then there is a Sclhwarte test Sunction 3 such

o)

that, for each tempered distribution u,

; i
U =f Uk Pk —,
t
0
Also 7 has the following properties:

(i) 7 is zero in a neighbourhood of the origin and has compact
support;

(ii) for each mon-zero vector we R", #(Tiw) is not identically zero as
a fumction of ¢ > 0.

We can also write
; it
I =u*w+fuw,*n,—t—-
[}

where pe P (the class of Schwarts test Sfumctions),

icm
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N

. - . . dt

Proof. We fivst note that ,(x) == » (Tfz). Let gy(s) = f ]w(.’l‘fm)}z—i—
) N

where N > 0. Then it is possible to find numbers ¢ > 0 anc_l N >0 such
that |gx(®)] > ¢ for every vector @ of unit length. For let

1
Ty == {w: ] == 1L and gy (0)] < T\F}

o0 oo
Then Hy., € By Also (N By is empty, Dbecause if xe () Ey then
' Neal Neal
]

]' 1;,({11"*‘“,)]2%! = 0, from which it would follow that ¥ (Tfz) == 0, contrad-

ri’e‘(:ing* the assumption on ». Therefore, for every vector 2 of unit length,
1 . A

there exists N, > 0 such that gy (@) > ¥ ‘We now use the continuity

©
of each function gy and the compactness of {z: [#] =1} to deduce the
exigtence of the numbers ¢ and N above.
Consider now e OF with the following property:

0, near 0 and oo,

1
pl{w) = ! identically 1 for — < o™ (@) < N,

N
non-negative otherwise, and 7.

Next, for a # 0, we let

v a
[N (z)]" = f |{/(T}"m)\2¢(1‘;"w)—i—.
0

" Then N (#) is homogeneous of degree 0, that i3 N(z) = N(2') where »

is the unique wnit vector for which
m o= ,“:‘(ﬂc)m'»

Algo [N(@)]™* is 0 on {w: || =1} and greater than or equal to &
there.
Now let

~

(@) = (@) N (@) (@)

Then 7¢Cy, 50 that 7e .
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We also have ¢(z) = [ [2(t w’)(—{ is a C* function of o with

1

)Py (tw) N (
: di : R

compact support. Hence u = uw*p - f U *pk 77‘—'6—’ whare ye & and p == g.
0

2. BANACH LATTICES OF MEASURABLE FUNCTIONS °
Before we can define the classes of tempered distributions which form
the subject matter of this paper, we need to define the concept of Banach
lattice. The purpose of this section is to define thiz concept, to define
the “type” of a Banach lattice, to discuss some examples and to establish
those properties that will be needed in subsequent sections.
DeriNirioN 2.1. Let X be a Banach space of measurable and locally
integrable functions on the interval (0, 1] of the real line. Such a space
X will be called a Banach lattice if whenever feX and ¢ is a measurable
funetion on (0, 1] for which |g(#)| < |f(#)| almost everywhere then geX
and |lgllx < Ifllx-

DEFINITION 2.2, Let o be a real number.

(a) A Banach lattice X on (0, 1] will be said to satisty condition A,
if the mapping

at
g— f g(t) ( ) —is a bounded linear operator on X.

(b) A Banach lattice X on. (0, 1] will be said to satisfy condition B,
if the mapping

g— f g(t) ( ) — is a bounded lincar operator on X.

It is immediate that if X satisfies condition A, then X also sabistios
condition A, for each < a. Similarly, if X satisfies condition B, then
X also satisfies condition B, for each 8> a.

DEFINITION 2.3. We shall say that the Banach lattice X is of type a
if X satisfies A, for all # < a'and satisfies B, for all B >
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DEFINITION 2.4. Let X be a Banch lattice. By #* X we shall mean the
clags of measurable funetions g on (0, 1] for which t~#¢(t)< X. Bquipped
with the norm [[t~#g¢(t)||x, the space 1° X is a Banach lattice.

It follows 1mmedla,tely from the definitions above that if X satisfies
A, (or B,) then ¥’ X satisfies A,y (or B,yp).

Some examples of the type of Banach lattice discussed above are:

ExAMPLE 2.1. The Orlicz space Ly, see [8], where @ is a Young’s func-
tion, and a measurable function ¢ on (0, 1] is in Ly, if and only if there

1
1 at
is @ A > 0 such that f b (7 Jg(t)l) 7 is finite. The norm is defined by
[

lglla ==in'f.{/1>0:f1 ( o)) 5 <o )}

By first establishing a generalization of Hardy’s inequality, it can be
shown that Lg is of type 0. (See [5] for details.) Hence 1*Ly is of type a.

Exampin 2.2. The space X,, (for —oo <a< oo and 1< g), of all
measurable funetions g on (0, 1] for which, if 1< g < oo,

1 1
atye . .
irlaa ={ [ -stgne Y7 s ginie,
0
and for which

l9lls,0 = Bss. Supt|g(¢)] iy finite if ¢ = oo.
[E4ES]
By noting that if 1< ¢ < oo, then the function @(s) = s? is a Young’s
function, and using the observation in the last sentence before this example
we have that X, , is of type a. The fact that X, ,, is of type « follows imme-
diately from the definitions. ,
LeMMA 2.1. If X 4s a Banach lattice of type a, then the function e X
for every &> 0. Thus if o is negative, the constant functions are in X.
Proof. Let y be the characteristic function of the interval [}, 1].
Then for any non-negative function geX we have

12 s

1 g at 4 ame g

x(s’)f.(/(t)(—t—-) " \af g9(t) (.g.) -
o 0

where ¢ == max{l, 2°°}. Thus yeX and therefore go iy the function f(¢)
= 1My (8), since f(5) < ex().
Next, for 0 < s <, we notice thatb
1

ahr gy L fg\ete g
s [ W)(T) T<[ow (7) R

1/2
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Thus the funection %(t) which is equal to t*** for 0 < ¢ < } and zero elsewhere
is in X.

The result of the lemma now follows from the fact that #*** = f(i)+
+ k().

LEMMA 2.2. Suppose X is of type o and. that g is such that a8 > 0.
Then for each function geX we have

; d
| [t <ol
0

where the constant ¢ is independent of g.

Proof. Without loss of generality we may assume that g > 0. After
noting that the function s**'e X (see previous lemma) and that X satisties
the conditions A_; and B,,,; the result is a consequence of the following
inequality :

1

°+1fg(t)v’—<fgt)( )ﬂdt f ( )«+1 a

0 8

‘We next discuss the duals of Banach lattices.
‘We assume that the dual, X', of a Banach lattice X is again a Banach
lattice of measurable and locally integrable functions on (0,1]. We also

1
dt
assume that the action of fe X’ on geX is given by f F®g) F and write
0
this <{f, g>.
Let get*X and fet™*X". Then L, defined on t*X by Ly(g) ] (@)

is a bounded linear functional on #*X whose norm is equal to the norm
of f in the space #°X. Conversely, every bounded linear functional on
t°X is of the above form. Thus we have

LevwmA 2.3, The dual of the Banach lattice t*X 4s 17 X",

It is known, see [8], that if the Young’s function @ is such that ¥,
= {g: fl @(a [g(t)])f:1 < oo for all ¢ > O} cbincides with Ly, then the dual
of Ly ios Ly where ¥ is the complementary Young’s function and the action
of fe Ly on ge Ly is given by ff

t)w Thus the dual of X, is X_, .,

1
where 1< ¢ < co and where —q— —{—i,- =1.

Finally, we need the following

icm®
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Levya 2.4. If the Banach lattice X satisfies the condition A, (or B,)
then X' satisfies the condition B_, (or A_)). Thus if X is of type a, then
X' is of type —a.

The proof is a straightforward application of the definitions.

3. THE SPACES A(B,X) FOR X OF POSITIVE TYPE

DrrinrioN 3.1 Let v be a vector-valued finite Borel measure on R™
having one of the following properties: (i) » has eompact support, or (ii)
v is of the form dy = g(x)ds where ¢ does not necessarily have compact
support, but for each non-negative integer I there exists a constant D,
such that, for all z¢ R",

D,

)| < s .
) < e

Let B be a Banach space of tempered distribution in which & is con-
tinnously embedded and for which ||v,ullp < Cllu|lp for every ue B. (If ye &,
we define 7,4 by {z,%, v> = {u, p(. —a)>.)

Let X be a Banach lattice of type o, where « is positive, as defined
in the previous section. Then A.P. Calderén defined the space A(B, X)
(for the case Tyw = t@) to be

{ue B: |lusv|peX}.

(v was defined in Section 1.) Equipped with the norm [ju| 4 = llulip+
+llwkvlxm, A(B,X), is a Banach space, whose embedding in B is
continnous. (See A. P. Calderén [3], page 126.)

‘We shall often write 4, instead of A(B, X), and denote the norm of,
wed, by |lul, when it is clear which Banach space B, which Banach lat-
tice X of type aand which measure » are involved.

The case where X = X, B = L,(R"), where 1< p < oo, and Tyx
= 1z was studied by M.EL Taibleson in [6] and [7].

The following two theorems are due to A.P. Calderén for the case
T =t

TumorEeM 3.1. Let the measure v, and the spaces X and B be as above.
Suppose also that all the moments of v up to and including % are zero, where
0<a<k+1, ie fn 2P dy(w) = 0 for all multiindices of non-negaiive in-

p 1

tegers B = (byy by, ..., by) for which (B] =by+ ... +b, <k
. Let we B and FeX (B), Then the mapping

1
it
(3.1) (1, F)—0 =u*«,;+f Fansr
0
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where y and 7 are test functions, is defined when 0 < a+p < k-+1 and maps
B@® X(B) continuously into A(B,#X), = A,p-

Remark. For some different mapping theorems, see [2].

Levma 3.1. Let » be the same as in Theorem 3.1. Let 1 be a C% function
for which | Dy (2)] < Tﬁ%ﬁ—)m
ative imtegers for which (Bl <k+1, and where Dy is a constant. Then

for all ze R™ and all n-tuples f of non-neg-

m
[lnex vl < € min(l, (%) ) for amy me (0, k1] and where 0 < s, ¢t 1,

Proof. Clearly |n#vlly < [milly- [7alls = lrlly: Il = 0. Now let m be one
of the integers 1,2,...,%k+1, and let 0 <s<?t<<1. We want to show
that :

5.2 Il 03

By Taylor’s theorem we have

(—9)°

al

nw—y) = D*n(a) +R(w,y)

la|<m—1

where |R(z,y)| <0(@):[y™ and C(x)e L’ (R"). Therefore
(mrvg) (@) = [ R(Tyuw, Topy) v~ dv(Typy)

R

because the moments of » of orders less than m are zero.

(3.3) k) (@) | S EUPO(Ty0) [ | Tyy ™ dv (Tuey)-
B"

We want to show that the integral in this last expression. is less than or
. s\™
. equal to a constant times (}-) . (3.2) would then follow immediately.

To prove the statement about the integral in (3.3) we need the following
facts from M. de Guzman’s work [4]:

(3.4) There ewist numbers 1L << p < q such that, for all we R,
le@P< <o)l 4 lol<1
and
le@P <ol < Lo@)]* o |el=1.
(3.5) o (w) always lies between 1 and |z|. Thus

ol <ole) <1 if lo| <1 and 1< o@) <o iflo|=1,

icm
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(3.6) o(Tym) = to(w)

‘We consider separately the two possible forms of ». Firstly, suppose
» has compact support. By a change of variable we have that the integral
in (3.3) is equal to

(3.7) [ 1Tz ™dn(2).

R

forallt >0 and all zeR"

By integrating separately over the sets {z: [Tyl < 1} and {z: |Ty2| > 1}
and applying (3.4) and (3.6), we obtain that the integral (3.7) is less than

or equal to
g \Fm™
(7

which is less than or equal to

(5 7{ [ vemes emae +

o<1 ad>1

o \ QM
oteiman(s)+ () oo™ ()

|LgjyrI <1 1Tgjg21>1

[ v+ ammael = of3),

by using (3.5).
Secondly, suppose » is of the form dv = @(w)dw with ¢ satisfying con-
dition (ii) of Definition 3.1. We first notice that

Ty = -Ts/i(Tllsy) y

so0 that by using (3.4) and (3.6) we have

s
Tyl < n [Tysyl”s
where

r =% it |Tyyl<1l and 7 =1if [Tyl >1

Thus, after a change of variable, the integral in (3.8) will be seen to be
less than. :

(":‘ )’” { f (|21 |gp (20) | oo +- f |ap|e® lqv(w)ldm} = 0(—:-)”1

|| =51 ||>1
by the condition on ¢.
Proof of Theorem 3.1. We need to show that ve B, vkvye (s® X)(B)
and
[llass < ¢ {lullz+ 1Flx@) -
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We first show that the integral in (3.1) is defined and that its norm
in the space B is bounded by the norm of F in the space X (B).
Using Lemma 2.2, we have

1 1
at dt
[frenil e e <
0 0
Next, uspe B and |wkplls < [ully-lhpll = ¢ .
Finally, using Lemma 3.1, we have

1
" dt
870 gllp < 577l vyl + S—ﬁj 015+ llo7e% 4l AT
?

4 - ; s\FH-8 gy
Soullpstt P o [Pls(=) = e [1E(S) 2.
J 1 1 s t ]

It follows that [[s~"fjo*»,ls.x < e{lullp -+ [ Flxgy}.
COROLLARY 3.1. Let the measure v of Theorem 3.1 have the additional
property that, for each non-zero vecior w, v (T} «) is mot identically zero as

a function of t> 0. Then the p and y of Theorem 3.1 can be so chosen thait,
Jfor .B =0,

; it
Su, ) = u*y;—{—fl«’*mT
[

is a projection of B ® X (B) onto A(B,X), = A,.

Proof. If we choose the y and % the same ag in Theorem 1.1, then, for
%ed;, we have u = S(u,u,). ‘

TumoREM 3.2. Let v and u be two measures satisfying the conditions
of Theorem 3.1. Suppose in addition that, for each non-zero vector z, v (T}w)
and u(Tia) are not identically zero as functions of t> 0. Let the Banach
space B and the Banach laitice X be as above. Then A(B, X), and A(B, X),
are equal algebraically amd topologically.

Proof. Consider the mapping § of the above corollary and let ued,.
Then 8(u, u;) = u, and, by Theorem 3.1, wed, and |, = ¢|lu),. Thus
we have shown that 4, is continuously embedded in Ay Bimilaxly, 4,
is continuously embedded in A,.

COROLLARY 3.2. Let ¢ be a test fumetion such that, for each non-zero
vector x, ¢(L5x) is not tdentically zero as a function of t >0 and for which
@ s zero in a neighbourhood of the origin. (Such  test function was con-
structed in Theorem 1.1.) Let the measure v satisfy the conditions of Theorem

3.2. Then A(B,X), = A(B, X),, algebraically and topologically.
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Remark 3.1. Thus, from now on we may assume that the measure
v is of the form dv(z) = ¢(»)dz with ¢ as in Corollary 3.2.

Proof. The fact that ¢ is zero in a neighbourhood of the origin implies
that all the moments of ¢ are zero. The result now follows from Theorem
3.2.

4. FRACTIONAL INTEGRATION OPERATORS
For wued, = A(B, X), let us write

: dt
(4.1) Lo == wkyp -+ f’”ft*’?t“f:ﬂ“
0
where v and 7e¢ . We showed in Theorem 3.1. that T'; maps 4 conti-
nuously into A,.; = A(B,#X), provided o+ > 0.

THEOREM 4.1. The test funciions vy and u in (4.1) can be so chosen that the
fractional integration operator Ty maps A, continuously onto A, s Further-
more we can construct o fractional integration operator T_g mapping A.ip
continuously onto A, such that Ty and T_, are inverse maps.

Wae also note that if 7, and T, are constructed as in Theorem 4.1 such
that a+f> 0, a+y >0 and a--p+y > 0, then TpoT, = T,0l; = T"t‘.’;'

Proof. We first show how to construct test functions & and ¥ such
that the mapping

=)

. oAt
u%ﬂﬁu ==j Uk yﬁF;
0

maps 4, continuously into 4., and such that the mapping

~ a
m—éﬂ_ﬁw = f gk @t—t—ﬂ:‘{;
0
maps A, continuously into A, and such that S, and S_g are inverses of
each other. ‘
Let the positive numbers N and ¢ and the test function v be the same
ag in the proof of Theorem 1.1.
Now define Ng(w) for o = 0 by
o0
g dt
(@] = [ i)y (L) 2
0
Ny(#) is homogeneous of degree f in the sense that, for @ # 0,

Ny(0) = [ @)F V)

where 2 = Tpge' and |o| = 1.
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Also for every unit véctor ¢ R” we have

[Ne(2)]™ =

and N* is C™ on the unit sphere.
Similarly, let
f “’t

Then N_p(#) is homogeneous of degree —f and has otherwise the samo
two properties as Ny above.
- Also let

emin(N-#, NF)

dt

[N—-ﬂ<-'l?)] ll* ) tm‘

and
D(@) = (@) p(@) N_,(@),

where z = T:,(m)a;' and |#z’| = 1. Then ¥ and & are O functions and
have compact support. Therefore ¥ and & arc test functions. We also
notice that ¥ and @ are zero in a neighbourhood of the origin.

Now for wed, let Spu
z at

=‘—f gk @t—tm
0

Firstly we show that these integrals are defined.
‘We have shown in Theorem 3.1 that

v i
=0fut*'if,~tm and for wed,, let S_po

1

at
f u,*}[ftﬁ

[}

are defined. Also

This last expression is % and hag compa,d suppmt

oo

a
Loy o= f vy ![’,—ﬁ is a test function, so that f Thy* 1jf t 7 oxists

1
and

1
) dt
Spth = '”'*"/’""f"’bt*y/t'trﬁ
[
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dt
Similarty f wy* Dy F exists and

., : dt
S_pu = w*(p—{—fcut*(ﬁt?—_ﬁ where gpe&.
L]
In Theorem 3.1 we showed that S, maps A, continuously into A, B
and that §_, maps 4, continuously into 4,. It remains to show that
8p and §_; are inverses of each other. We have, for ne,,

©0 ©o

) . PN AN
[8_p(8pu)]" = b (f AORACE- ﬂ) (f Byl tw)ﬁu.

[ 0

Similarly 808 ;0 = o for wed, ;.

5. THE SPACES 4(B, X) OF NON-POSITIVE TYPE

DeriNrrion 5.1. Let B be a Banach space of tempered distributions
on R" satisfying |7,z < ¢ljullz for each we B, and in which & is conti-
nuously embedded. Let X be a Banach lattice of type a. Let » be a finite
vector-valued Borel measure on R" of the form dv(z) = p(»)dr where
@ hag the following properties:

(i) ¢ is a C* function;

(ii) ¢ has moments of all orders up to and including % equal to zero,
where la| <k-+1; .

A -

(i) (D%l )[%'(1W+1
integers for which |8 < k-1 and where D, is a constant. We also assume

for all  and all n-tuples 8 of non-negative

lp(2)] < for all non-negative integers m;

D,,
1+ |=)™

(iv) for each unit vector , »(s) is not identically zero as a function
of 1> 0.

Lot § == Ja]—a if a 5% 0, and 6 =} if o == 0. Then we define

A(B, X), = {ue ' TyueB and wkv,eX(B)},

where the fractional integration operator T, is defined as in Theorem 4.1.
Bquipped with the norm

sl + [0 93| ey s

A(B, X), becomes a Banach space.
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For a > 0 this is the same definition as was given in Section 3.
LeMmA 5.1, Let X be a Banach lattice of type a and let A, = A(B, X
where B and v are the same as in Definition 5.1. Then for pe 5” and ue/l

ukye B and [uylz < clull,.

Proof. Let 4 be as above, let Tyu = w and let 7'_, be given by
4 m - e i
(5.1) T s0 ——-—-m*@—}-fw,*fjt—t;_—g,
[}
where @ and ¥e & and the moments of all orders of ¥ are zero. Then,

1
. dt
s ylln < ok @rpliz+ [ [lwxor Bl
. 0

; a
< ollwllpil+ | [[Fy* wlllt—‘s—i1 < ¢lollz < ellull,,
i i)

after an applcation of Lemma 3.1.
LmymA 5.2. Let B, v and X be the same as in Definition 5.1. Let A,

= A(B, X), and let ﬂ be chosen so that a+p] <k+1. Then the mapping
Upg defimed for wed, and GeX(B) by

1
at
Up(u, @) = 'M*w-l—fG*m‘tr_zr,
0

where y and 7 are test functions, maps A, ® X (B) continuously into A,

at-ff
= A(B, #X),.

Proof. Let
0, if a4-p>0,
&= %, it a-+p =
—2(a4-8), if at+p <0,

and let T,, defined as in Theorem 4.1, be given by

T = (u*E—]—J w*”t*Cz =

IR

where & and £ are test functions and £ is zero in a nelghbourhood of the
origin.

Then, choosing y such that —(a-- B) <y <e and using Lemmas
5.1, 3.1 and 2.2, we have :
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1 1
g g d
2. Tty @l < e el [l iz + [ w1, s

1 1
g . 4
+f J 160l e ol i~

< elufl +e f ([l 82+ 14 +of 1G5 1ﬁ+&_~__ +

wof o

< offlully + gl x, @) |z} < 0{“““4“1" “G'HX(B)}

Next let 6 be as in Definition 5 5.1, let Tyu = w and suppose T_sw
is given as in (5.1). Then for 0 < s << 1, we have using Lemma 3.1,
1
s lwllg* lpx Povgly+57 ollp | livg* vell- | ol
[}

1
s\~F dt
+ 1 e ()5

: —k-1-8 g
<olult 4o [ais(5) S
0

1 Bt1-p
s dt
voflon(3)
8

Thus, using Lemma 2.1 and the fact that X satisfies conditions A _p1p
and By, 5, we have

s~ 1075 (w, @3y 15 xc < olte]l 1G] sy -

This completes the proot of Lemma 5.2.

By constructing the test functions defining 7, and T_, as in Theorem
4.1, i.e. such that 7, and I_, are inverses, and using Lemma 5.2 and
Theorem 4.1 and 3.2 and it¢ eorollary, we have the following

Tuxorum 5.1. Let the Banach lattice X be of type a, where la| < k1
and let the Banach space B of tempered distributions be as desceribed in defi-
nition 5.1. Let v and p be two measures satisfying the conditions (i)-(iv)
of that definition, and let @ be a test function whose Fourier transform satisfies
condition (iv) of Definition 5.1 and is identically zero in & neighbourhood of

vep Ot
~ st

- &
57011 U5 (u,6) %05l < st

6 — Studia Mathematica L.1
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the origin. Then
A(B, X), = A(B, X),
algebraically and topologically.

Remark 5.1. If X is of any type ae(—oo0, c0) we may from now
on assume that the measure » is of the form dy(x) = ¢(z)dz, where ¢ is
a test function whose Fourier transform is identically zero in & neighbour-
hood of the origin and such that for each non-zero vector @, g,(2) is not
identically zero as a function of £ > 0.

Finally, by constructing the fractional integration operators 2', and
T_s as in Theorem 4.1 and again using Lemma 5.2, we have

TurorEM 5.2. Let B be a Banach space of tempered disiributions as
in Definition 5.1, let X be a Banach lattice of type o and let 4, = A(B, X).
Then Ty maps A, continuously onto A, = A(B, #X), T_p maps A,.p
continuously onto A,, and Ty and T _, are inverses.

= A(B, X),

6. DUALITY

Let X be a Banach lattice of measurable functions as described in
Section 2. Let B be 2 Banach space of tempered distributions on R” for which
72l < ¢|lullp for each ue B and in which & is continuously embedded.
This latter condition ensures that B’, the dual of B, is again a Banach space
of tempered distributions. We assume that the dual of the space X (B) is the

“space X’(B') and that the action of FeX’ (B') on G'e X(B) is of the form

@, 6 =f<F(-,t>,G(-,t>>~‘i—t.

An example of this situation is obtained by taking X to be X, g (1<q
< oo} of Section 2 and B o be L,(R"™) for 1 < p < oco. Then usmg Lemma
2.3 and the results of A. Benedek a,nd R. Panzone [1] on L? spaces, we have
that X (B)’ = X'(B').

The main result of this section is

THEOREM 6.1. Let B be a Banach space of tempered distributions as
described above, and let X be o Banach lattw@ Then the dual of Ay = A(B, X)
is Ay = A(B', X").

We first prove the following lemma to show that it is sufficient to
agsume that X is of positive type.

Levma 6.1. Let X be a Banach lattice of type a. Then 1, maps
Ay =A(B, XY continuously onto Ag_p = A(B,t77 XY,

Proof. Let ved, and wed,_,. Then

I<Tﬁvz 'u‘>[ = ]<’DJ T,s”)f,
Thus [{Tsv, up} <

where Tpued,.

ol 1 Tpulla < ¢llolle* [wlams. Therefore [T4o]is < ool

icm
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We need one more

LEMMA 6.2. Let B be o Banach space of tempered distributions as described
at the begimning of this section. Let the Banach lattice X be of type y negative.
Then B is continuwously embedded in A(B, X),, where ¢ is as described in
Theorem B5.1. ]

Proof. Let we B and let T'_,, be given by

7
Logpu = e

1
dt
s bk D - { e gy Wy
i
where @ and ¥e . Then
1

12y tlls < ol +e [ il

Y ol
. = = olvls-
0

Using the representation theorem of A. P. Calderén (Theorem 1.1),
we may write

: at
U = 7’/*‘/’”!‘[ “*(Pf*nt_t'
0

where » and ne & and » has moments of all orders equal to zero. Then,
chooging 0 < § < |y| and applying Lemma 3.1, we have for 0 <s<1,

g at
gl < oljul+0 j Il lc* el

os™° ulls-

dt
< ollulp+o f ol (£ S
An application of Lemma 2.1 shows that

o v < ol|ulls-

Proof of Theorem 6.1 Let the measure » bo of the form dv(z)
~~~~~ = p(w)dw, wheroe ¢ is as described in Theorem 5.1, viz. e &, and the
I‘oumm,' trangformn of ¢ is zero in a neighbourhood of the origin and,
for each non-zero vector z, ¢(w) is not identically zero as a function
of ¢> 0.

Let o wud 7 bo the test functions of Theorem 1.1. Thus, for each we s,

U == YR f Uk gk -d—t—, where 7 has the same two properties as ¢ above.

We ‘111(1,11 show that, if X is of positive type, then the dual of 4,
[(B'y X'),.
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Let wed, and vesd,. Then the functional L, defined on 4, by

1
dt
Zy(u) = @xp, w+ [ Corp, weny -
]
makes sense, since vxpe B’ by Lemma 5.1, and

: at

oy ()] < oyl o] 5 -+ j lodlz- el =~

0

< ellle el + ooy lw* myllxmy < el Jully -
Theﬁeﬁow the mapping v—-L, is continuous from .1, into Ay, and 1L |
< ¢|v]l;.
Conversely, suppose L is a linear functional on ;.

In Corollary 3.1 we showed that the mapping &: B @ X (B)-
defined for (u,F)e B@® X(B) by pping { @ X (B)->d,

S('lb ) —%*1/)—|‘J P*‘Pt dt

is continuous and onto ,. In fact § (4, win) = u for each wed,.
Now define L on B® X (B) by L(u, F) = Lo 8(u, F). Then Lig a bound-
ed linear operator on B@ X (B). Thercfore there exist we B’ and G e X’ (B')

such that
L(u, F) = (w, u>+f<a r>

and
(6.1) lwlle < IL|  and
Thus if we.l;, then

16|z < L.

1 .
L{u) = Liu, ukn) = {w, uy+ f {G, 'za*v7t>~(£—t-.
. @t 0
Now w = w*1p+fw*¢,*mT, and
0
1

- a o df
J ey S =f<0r*17u%>7

0
f<G*77,,u*1/)+fu*m*qos.@ ﬂ;.

={Wep, uy+ f<W*%, wrny %
H §

icm
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dt
where W = f G* n,w After notmg that X’ is of type —a (Lemma 2. 4)
we appeal to Lemma 5.2 to deduce that Wed, and
(6.2) Wl <

If we now write » = w-+ W, then we have shown that

G|z -

:
s (DX, U - [ vk @y, u*ns>"d;‘7
and
ol < llewlle -+ W1l

< ellwllp + |z iz
<ol (by (6.1)).
Remark. It should be pointed out that the proof of Theorem 6.1
differs from that used by M.H. Taibleson in [7] for the cagses he considers

there. While he used the theories of semi-groups and the interpolation
of linear operators, the present paper does not appeal to these theories.

(by lemama 6.2 and (6.2))
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