II Marceli Stark 1908-1974

PWN (Polish Secientific Publishers). However, most of his heart and
energy went into the editorial work of Polish mathematical journals
and books. He was an active member of many editorial boards, such
as Acta Arithmetica (secretary), Wiadomosci M atematycene (editor), Studia
Mathematica (secretary), Matematyka Stosowana (editor), Dissertationes
Mathematicae, and the series of advanced textbooks Biblioteka Matema-
tycena (Chairman).

At least as important as his formal activities were his other contri-
butions to the mathematical community. Having no family, he put all
his time, energy and knowledge at the service of Polish mathemadtics.
He was irreplaceable as a source of information of any kind, and he en-
couraged many young people to write monographs, textbooks and articles.

Marceli Stark did very much for Studia Mathematics. He became
secretary of the Editorial Board soon after the war, and supervised the
publication of all postwar volumes (begining with Volume 10 published
in 1948) until his death in 1974. The present state of our journal is due in
great part to the contributions of Marceli Stark.
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Best possible bounds of the norms of inverses
adjoined to normed algebras

by
BELA BOLLOBAS (Cambridge, England)

Abstract. The note is a sequel to [4], where the possibility of adjoining inverses
to a commutative normed algebra was investigated. Here we examine the problem
of how small norms one ean choose for the inverses. In a certain sense the following
result gives a complete solution to this problem. Let = >1 and let Ayy iy Ay,
dysees dyy Byy By, ..., By be positive numbers such that 0 < di<1 and 4;d;B;> 1,
@ = 1,...,n Then the following two conditions are eguivalent.

(i) If o/ is any commutative normed algebra and a,, ..., ape o are such that
lagl < A; and |a;z| > dylz] for all zess, then there is an extension # of s such that
ailed, lo; < By, i =1,.. ., n

& logd;
@) M2l g,
i< log 4:B;

We also deduce some consequences of this result.

1. Introduction. All algebras appearing in this note are eommutative
unital normed algebras and the norm is always denoted by |- |. The problem
we discuss in this note is the following. Given a set of elements of an
algebra, when, can one adjoin, the inverses of all of them to the algebra
and how small can the norms be chosen? ‘ :

Shilov’s classical result [7] states that the inverse of an elemen
acsf can be adjoined to the algebra iff 4 is not a topological zero-divisor,
ie. it inf{laz|: xe o, || =1}> 0. 'Oonsequently throughout the note
we shall be interested in sets consisting of elements which are not topo-
logi¢al divigors of zero. To get a somewhat firmer grip on these elements,
let us introduce the following terminology. If 7 iy an algebra, denote by
I(o) the set of norm-increasing elements in s, i.e.

I(sf) = {a: ae o, |azx| = |5| for all se o},

Clearly an element is a topological divisor of zero iff no scalar multiple
of it is norm-increasing. To measure how far an element ae o is from
being a topological zero-divisor, introduce the number

(e
d(a) = dy(a) = m‘f{m\ ||

: we.s?, @ 0}.



88 B. Bollobis

Thus 0 < d(a) <1, a is a topological zero-divisor iff d(a) = 0 and d is
norm-increasing iff |a|d(a) > 1.

Arens [2] showed that if aesf, then there is an extension # of <«
in which |7 < B if and only if {ja|d(a))"' < B. In other words, a™* can
be chosen to have norm at most 1 in some extension of the algebra iff
@ is norm-increasing. Thus the following would be the ideal situation.
“If 8 = o is such that the function d is positive on S, then there is an
extension # of o such that a™'e 4 and |a™" = (ja|d(a))™" for all ae 8.

In view of the result just mentioned this would hold if, given a, be o,
one could find an extension # of & in which ja™'| = (ja|d(a))™’ and d(b)
= dg(b), i.e. d(b) does not decrease when o is replaced by the bigger
algebra 2. This ideal situation was expected by Arens [2], but in [4] it
was shown to be over-optimistic. On the other hand, it was also shown
in [4] that if a,...,®, are norm-increasing, |d;| = A4;, and for every
iy 1< 4 < n, B; is bounded by a certain function of 4, ..., 4;, then there
is an extension in which |a;7| < B;, 1<i< n. The existence of these
functions enabled the author to prove in [4] that if § is a countable
set consisting of elements which are not topological zero-divisors, then
in an extension of the algebra every element of § is invertible. This result
indicates that if the norms of a,...,a,¢s are given. then the larger
the d(a;)’s are, the smaller norms of the inverses a;' we can guaraniee
in some extension. The aim of this note is to make this statement as
accurate as possible.

Call a set of three sequences 4,,...,4,, d,...,d,, By,...,B,
accessible if it has the following property:

if o is any algebra, ay, ..., a,esd, o) = A; and d(a;) = d,, then
there is an extension of < in which each a; is inmvertible and |a;'| < B
1<<ign.

2]

As the main result of this note we will determine all accessible sets.

Arens’s expectation was supported by his result that if aes/ and
d(a) = 1, then there is an extension # of &, which contains a~! with
minimal norm (ja~!| = |a|™!) and d(b) = dg(b) for all bess. This shows
that when investigating accessible sets we can confine ourselves without
loss of generality to the case d;<< 1 for all . (In fact, one can consider
this case first and the general case, including this result of Arens, follows
iinmediately.)

As a simple case of a corollary of the main result, we obtain that
there exist an algebra <, elements a,, a,e and numbers By, B, such
that for each 4,7 =1, 2, there is an extension #; of o that contains
a7t (j £ 1) with |o;| < B, but if 4; is any extension with this property,
then a; is a topological zero-divisor. Thus the situation is considerably
worse than it used to be expected: if one is too greedy with the norm of
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a;' and requires it to be minimal, then not only must d(a,) decrease but
it must become zero. :

Some results and problems related to the ones discusséd here can
be found in [1], [3], [5], [6] and [8].

All the results of this note are closely connected to the regults in [4].
In fact, this note is a natural continuation of [4]; by taking more care
we sharpen the results of [4] and by showing that the bounds we obtain
are best possible we answer some natural guestions.

2. The main result. As we remarked, when investigating whether
set Ay, ..., 4., dy,...,d,, By, ..., B, is accessible or not it suffices to
examine the sets satisfying 0 < d; < 1. Furthermore, it also follows from
our remarks that if there is an index i such that 4,d;B;< 1, then this
set cannot be accessible. Thus one can suppose without loss of generality
that 4;d;B;> 1 for all i. Our main result is as follows.

TreOREM. A set Ay, ..., 4,, dy, ..., Gpy Byy.ooy By, where 0 < d;< 1
and A;d;B;> 1 for all i, is accessible if and only if

>~”w logd;
— — 1
= logA;B;

In order to simplify the notations, let us formulate this result in
terms of norm-increasing elements. Furthermore, as the necessity and
sufficiency will be proved independently, we state the two parts separately.

TEEOREM 1. Suppose o is a normed dalgebra, ay, veny Gpe I(2A),
lal < 4;>1 and By, ..., B, (1< B;) satisfy

= log A,
éil log 4, B; <1

Then theire is an extension B of sf such that o7 'c @ and la; Y| < B; for all
1, 1< i n.

THEOREM 2. Suppose 4;, B; (1<i< n), 1< 4;, B;> 1, satisfy

logds .
~ log 4,B;

Then there is an algebra s comtaining elements a, y ooy Oy e I (&) with the
property that |a] = A, and no emtension B of o is such that a;te B and
la7*| < B; for all 4.

Theorem 1 is a somewhat clearer form of.[4], Theorem 3.4, whose
proof is indicated in [4]. (When writing that note the author did not
expect [4], Theorem 3.4 to be best possible.) For the sake of complete-
ness we shall give a proof here. This proof is formulated in a slightly
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different way from the one indicated in [4]. Before turning to the proofs
of the main results we state and prove a simple technical lemma which
allows us to replace the inequalities of the theorems by more readily
applicable conditions.

LeMMA. Suppose 4;>1 and B; =1, 4 =1,2,...,n Then

log 4;

— 1.1
1ogA B;

if and only if whenever kl, ceey Ky are nonwwgative integers, there is an
index 1 for which

2) (B> [ Af.
7=1
Proof. Suppose (1) holds and %, ..., k, are non-negative integers,

not all zero. Put K = 2 k;logA;. Then we cannot have

e forall j
IS Togd,B, oD
since that would imply
n n
"Klog4
= Ejlog 4 ?
F's ; Jlog ;<;;1ogA,B,- ,

Consequently, there is an index 4, 1 << i< n, for which klogAd;B;> K
and so (2) holds.

Suppose now that whenever %k, ..., k%, are non-negative integers,
(2) holds for an index 4, i.e.

B ’ n
\ N kilogA;B;> D Kylog ;.
j=1
This -implies that whenever a,..., a, are non-negative real numbers,

there is an index ¢ for which
n

alog4;B;> Y ologd,.

j=1
In particular, choosing a; = (logd;B;)”, one obtains that (1) holds.

3. Proof of Theorem 1. Let us introduce first some additional termi-
nology. In what follows n-tuple always means an n-tuple of non-negative
integers. If 5 iz an n-tuple, = 0 means that n = (0,...,0). If @ = (fi, .:.
eooyfn) and ¥ = (g4, ..., §,) are n-tuples such that g, < f; for-all &, define
=y by p—y =(fi— 0, .- ,fn go)e Ty = (g1, .+, 9s) a0 @ = (fy, ...
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.., fn) are arbitrary k-tuples, put y+@ = (gi+fryoers G+ fo) I
1< i< n, denote by ¢; the n-tuple whose only non-zero term is at the ith -
place and it is 1. If % is a non-negative integer, denote by %ke; the n-tuple
whose only non- zero term is ad; the ith place anditis k. Ify = (gl, ey In)y

we write a” = H afi, n i ]—[ A% and B = H B,
Let us tum now to the proof itself. Let A [b] be the commutatlve
polynomial algebra (not normed!) over & in the variables b,,...,b,,

and let I be the ideal in «/[b] generated by the elements a,b, —1, a,b, —
=1, ..., a,b,—1. If p(b) = 3 ¢,b”, where I' is a finite set of n-tuples
and ¢,e & for yel, put *<* .

) = D'lo,| B,

yel’
Denote by # the commutative normed algebra «/[b]/I with norm
[p+1II" = inf{i(g): gep+1I}.
It is obvious (see [2] and [4]) that if there exists an algebra # required
by the theorem, then this algebra # we have just defined is one of them.
(In fact, this is the extremal algebra with the given properties.) Thus, to

complete the proof, we have to show only that if cesz, then [¢] = |¢|’.
In other words, supposing that

(3) c= Db
yel'
holds in %, we hawe to show that
(4) ol < >le,)|B”.
yel'

Let 6 be an n-tuple for which 8 = y if y¢ I. By multiplying (3) by o’ we
obtain that (3) holds iff
(8) o = > o,a’7
<4
holds in «.

Construet a sequence y(0) = 6, y (1), ¥(2), ... inductively as follows.
Suppose y(k) = (%, ..., k,) has been defined, it is an n-tuple y(k) # 0.
By the lemma there is an index 4 such that

(6) Bl [ Al
gt
Clearly, %;>> 1 since 4;> 1 for all j. Put y(k+1) = y(k)—e;. Thus we
can obtain a sequence y(0), y(1), ..., y(p) = 0.
Note that if y < y(k) and y & y(k+1), then
ATy & g9y [I Al

J#T



92 : B. Bollobés

and -

BY > Bl
Hence (6) implies that
(7) AYO-r < BY,

As a; is norm-increasing for each ¢, so is a* for each =-tuple y
Consequently we have the following string of inequalities:

le] < le— eyl +10yp)
< !my(m—-l)_ Z ayav(p—l)—v\ + ey T 1pp-y)

r<y(p—1)
<Jewwv— 3 6,870 |0, +loyp | + Z le, a"?=7|
r<p(p~2) YD

ynongy(p )1)

‘oa”(’) Z c,a’® l —f—Z 2 e, atP=1=?|

<yl k=0 r<y(p—k)
0 Vnon<1'(13—k+ 1)

Z 2 le, 407 3 o] B,

k=0 »<¥(0)
Vnongv(k+ 1)

where the last inequality follows from (5) and (7). Thus (4) holds and the
proof is complete.

/\

4. The proof of Theorem 2. By the lemma the condition of Theorem 2
implies that there is an n-tuple 6 = (k, ..., k,) such that

(4;B)4i < ” Al for all 4.
=1

If necessary, by replacing 6 by a multiple of it, we can suppose without
loss of generality that

. n
(8) n(A;BYi< [[ 4% for alli.
=1 ,
As before, if y =(gy,...,¢,) is an n-tuple, we put X* = [JX%. Put
={1,...,n}. i=1

If M < N, let M also denote the n-tuple whose ith term is %; if 1¢ M
and zero otherwise. Thus o’ = ¢”. Furthermore, we use the notations
in the natural sense, e.g. if p = f1 s oeos o) and y = (g4, ..., g,) are n-tuples,
we put X?°? = (X*)(X?)? []Xfi“”i, XM-N = [T X;%, where the

=1 1,eN-
various products might be only formal products of symbols.

Let us define a number of normed spaces as follows. ¢ always denotes
an #-tuple whose jth term is s;: o = (s, ..., 8,).

Best bounds of morms of imverses adjoined to mormed algebras 93

a) Let S(o) be the one-dimensional normed space spanned by a°,
where |a°| = A°. (In particular, §(0) is just the scalar field with the
ordinary norm.) _

b) Let M= N, M +# N and let ¢ = (sy, -.-, 8,) be an n-tuple such
that s; < k; if j ¢ M. Let T'(M, ¢) be the normed space spanned by the
vectors ¢, a™*%, ¢;a™+° jc M, where the norm is given as follows: .

[z eoa™ e+ 21 @™+ — 2]+ Zu — ol [ [ 457,

ieM

c) If ie N, let U(4, o) be the one-dimensional normed space spanned
by the unit vector c;a® ¥He,
Let V be the sum of all these normed spaces. L.e., V consists of all

finite formal sums
z =2$a+2 Yﬁ—{-Zzw
a B8 k4
where @.e 8(0,), YpeT(My, o), 2,¢ U(i,,s,), with norm

ol = imal + ) al + ) 12,1
a A v

Let us turn V into a commutative algebra by putting
(¢a%)(era’) =0, j, kb =0,1,...,n,
(a’)a® = ¢;a®*", j=1,2,..,n,

(coa®)a® = cya°™* it 6 Lo+T
and

. .
€0°)aF = — Y ¢ata7*  if o+ > 0. ’
0 £ %

In other words, the multiplication is the natural multiplication of formal
sums of formal products with the relations

ciep =0

and
coa + ZciaN‘{"} = 0.
ieM
We claim that with this multiplication V is a normed algebra.
By symmetry and by the definition of the product we have to check
only that if ze V, then |a 4] < |#|4,. To verify this, and also to prepare

. for the last part of the proof, let us enumerate where and how each of

the summands of V is mapped under multiplication by a,.
(i) 8(o) is mapped into S(o+e), the map is 1-1 and if ze S(o),
lay | = A, |a].
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(if) Suppose 1eMi orl¢ M and s, < by —1. Then T'(M, o) is mapped
into T(M, o+ey), the map is 1-1 and if we T (M, o), |o| < [a2] < 442

(ili) Suppose M < N—{1}, M #N—{1} and s, =k;—1. Then
T(M, ¢) is mapped into T (M N {1}, ¢ —kys,). Furthermore, it is immediate
that if we T(M, o) then || < |o,2| < 442

(iv) Suppose M = N —{1} and 8; = k; —1. Then T(M, ¢) is mapped
into Y U(i, 0—sy¢;). Namely, if
i=1

z = (Zuooa“f—k ZliciaM““}) a°

e M
then
@@ _.( Aoy 0 1 2(1 — ) 6 m)nasj
Consequently, e i
ol = 12+ 5’ a2 A7 < Vil 2 Vh=2a] = 0] < Ay o

(v) U(%, o) is mapped isometrically onto U(s, ¢+ &,).

Note that a space U (¢, 0 —s,¢,), appearing in (iv), does not coincide
with a space U (4, o' +¢;), appearing in (v), since the first term of ¢ —s, ¢,
is zero, while the first term of ¢’ 4 ¢, is certainly non-zero. Thus under
the multiplication by a, different summands are mapped into sums of
disjoint sets of summands. Consequently, (i)~(v) imply not only .that |a,|
< Aylw| for all we V, and so V is a normed algebra, but also that |a,z| > |a|
for all e V.

Choose V as the normed algebra of, required by the theorem.. As we have
just seen that @, is norm-increasing, by symmetry a,,..., a,¢ I (). By
definition, |a;] = 4;. Suppose now that there is an extension # of &
such that b; = a7'e¢ & and |a;?] < B; for all 4. Then by construction we
have

n
~ N
N ‘I‘ZGM @ =0,

=1

80 (8) implies

1 =|—e¢ —’ ofb’"

Z(HAJ"W)B’”»<1

=1 j#i
This contradiction completes the proof.

5. Additional results. Let. us give first a corollary of Theorem 1,
extending Theorem 1 and sharpening ([4], Theorem 3.4). To simplify

the notations we again renorm the elements in question to make them
norm-increasing.
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CoROLLARY 1. Let sZ be a normed algebra and let 8 c I(«/), Let
i(8) =1, se 8, be such that

log|s| <1
STIRTY R

T:él log (|s|4(s))

18]>1
Then there is an ewtension & of £ such that s~'c¢ B and || < i(s) for
all se 8.

Proof. Let «/[x] be the polynomial algebra in the variables #(s),

se8. XL p(@) = 30(81y eneySn5 Fuy.ony B (s)"1... 2(s,) e o [w], where
C(S1y -+vy Spj By orey bp)e & and the summation is over a finite set, pub

H(D) = D'10(1, -y S Buy oy ) [ [ils))5
=1
Let I be the ideal in o [z] generated by the elements sz(s)—1, seS..
Let # = o [#]/I and define a norm |- in & by

[p+1II" = inf{i(g): gep+I}.
To show that # is the required extension of <, we have to check only that

aesd then
la+I|" = lal.

In other words, we have to show that if p is a polynomial in & (s,), ..., Z(8,),
then t(a -+ p) > |a|. However, this holds by Theorem 1, since bthere is
an extension % of o such that s;l % and |s77| < i(sy) for all §, 1 <j < m.

The next result is a corollary of Theorem 2. It asserts the existence
of certain algebras, showing that an element might have to become a topo-
logical zero-divisor in every extension in which another element has an
inverge with small norm.

COROLLARY 2. Let n 22 be a natural number. Then there exisis an
algebra o that contams' norm-inereasing elements Gy, ..., Gy, 6] =2,
4 =1,...,n, such that gwen 4y, 1 <4< n, there is no emtenszon B, of o
for whfwh aite B, and aite By, oyt <2, df §o# i

Proof. Let ¢ and m be positive integers, 1 <i<<n. Let #(¢, m)
be the algebra constructed in the proof of Theorem 2, with B, =m and
By == 2" if § o ¢ (Note that #(¢, m) exists since (n~—1) @%—%22“_2)

n log2

i 0»—«-> 1.) Denote by' A, the sum of the summands S(o) of
0g.an

A (i, m) and denote by % (¢, m)’ the sum of the other summands of #(i, m).
Let 2, = S} Zﬂ’ (i, m) and let B = F,+%,. Extend the multiplication

m=1 g=1

from the algebras % (i, m) = Bo+B (3, m) to the whole of # by putting
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the trivial multiplication on 4,, ie. if @, ye %,, then let zy = 0. It is
immediate that # has the required properties.

Our final result, which extends Theorem 2 and Corollary 2 of the
present note and [4], Theorem 4.1, can be proved by sticking together
in a slightly more sophisticated way a large set of algebras constructed
in the proof of Theorem 2. The detailed proof is left to the reader.

CorOLLARY 3. Let T be an arbitrary index set and let 4, (4,> 1),
teT, be real numbers. Then there is an algebra sf , containing norm-increasing
elements ay.|ay| = A, te T, having the following property.

If By (=1), te S = T, are real numbers, then there exists an extension

I
B of o, aj'« B, \&;| < By, t; 8, if and only if éﬁ%g 1.

A>1
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Hexotopeie BOnpocst
CHEXTPAJIGHOH TEOPHA CHMMETPH3YEMBIX ONEPATOPOB
B JIOKAJBHO BHIYKIGIX NPOCTPAHCTBAX

[O. II. ABPAMOB, I, ®. XAPA3OB (Jlemunrpan)

Pesrome. B paboTe u3yuaroTcs CBOHCTBA DE3ONBBEHTH! H CIEKTPA HEXOTOPHIX MHHEHHEIX oTe-
PATOPOB B JIOKAJBHO BHINYKIBIX NPOCTPAHCTBAX ¥ YCTAHABIIMBACTCH CHOPABEIUIMBOCTE TEODHH
Tans6epra—IMaaTa OIsi CUMMETPUSYEMBEIX ONEPATOPOB B TAKHX IPOCTPAHCTBAX.

Kax m3BecTHO, Teopus PpearonsMa Iyt JIHHEHHBIX ONEPaTOpPoB B GaHAXOBOM
mpocTpaHcTse, nocrpoernas ®. PuccoM,.6ruma yeramosnera XK. Jlepe [1] mix ciy-
9as JIOKQJIBHO BBIYKJIOro mpocrpancrsa. Ilocrpoenras I'mmsbeprom # IIMaITOM
CHeKTpalIbHAS TEOPHs CAMMETPAYHBIX KOMIAKTHBIX OEpPATOPOB G6bia 06006IIeHa Ha
cnysai KOMIIAKTHBIX onepaTopos (B TWIbOEPTOBOM IPOCTPAHCTBE), CAMMETDH-
3yeMEIX OrpaHiYeHHBIM onmepaTopoM, A. 3aameHoM [2] m B. PumoMm [3], a Ha cmy-
Yalf CHMMETPU3YEMBIX, BOOOIIE I'OBOPS, HEOTPAHUIEHHBIX ONEPATOPOB C TACKPET-
HBIM CHEKTPOM B IIPEArHILOSPTOBEIX M OAHAXOBBIX NPOCTPAHCTBAX — OJHHM M3
apTopos [4]-[7].

B macroésmell paboTe YCTAHABIMBAETCS CIpaBeTHBOCTE Teopuu I'mmbGepra-
IIMazTa I HEKOTOPBIX KIACCOB CHMMETPH3YEMBIX ONEpaTOpOB B JIOKAILHO BEI-
IyKJIBIX NPOCTPAHCTBAX. DTH KIACCH], B YACTHOCTH, COIEPXKAT CHMMETPH3YyeMEIS
KOMIOAKTHBIE OTEPATOPhI M ONEpPaTOPhl, HEKOTOPAs MTEPAus KOTOPHIX KOMIAKTHA,
a B ClyYae HOPMMpPOBAHHOTO IIPOCTPAHCTBA COBHAJAIOT C paHee H3YICHHBIMHE
5 [5] m [7).

s moxa3saTeNbeTBa OCHOBHBIX Pe3yNbTATOB MBI YCTAHABIMBAEM HIKE CBOH-
CTBO TONOMOP(HOCTE PE3ONBBEHTE HEXOTODHIX JIMHEHHEIX ONEPaTOpOB B IPOH3-
BONBHEIX JIOKANLHO BHIMYKIBIX IpocTpancTBax. Hackoabko HaM HM3BECTHO, BIEP-
BEle CBOMCTBO TOJIOMOP{HOCTH PE3ONLBEHTHI CYNEPHENPEPHIBHOTO —oneparopa
(ompenesnerue CynepHenpepbBHOIO ONEPATOPa CM. HHKE) B CYETHO HOJHOM JIO-
KaIbHO BEITYKIOM mpocTpaHcrse Hokasan X. Iledep [10] (oM. Tawke [11]). BTO
CBOMCTBO JIUISi XOMINAKTHOIO ONEPATOpa B NPOMIBONEHOM IOKAJNBHO BEIIYKIOM
IpOCTpAHCTBe [oKa3zaHo B [12].

1. HexoTopsie onpefeneHust M oGo3Havemnst. B HacTosuiee BpeMs B TEOPHH
JIOKATLHO-BBITYKIIELX TIPOCTPAHCTB ellie HeT COTTIACOBAHHON TePMAHOJIOTHH, B CBSI-
SH ¢ YeM MBI IPHBEIEM ONpeIleNe s, KOTOPhIX GY/eM IPUIePKABATHCS B IaTbHeH-
meM.





