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On the semigroup of 2" mappings on Fréchet Montel space
by '
G. R. WOOD (Canberra, Australia)

Abstract. It is known that the semigroup, under composition, of all differentiable
maps from the reals into the reals is inner, [7]. We show that this result may be exten~
ded to the semigroup of k-times Fréchet differentiable selfmaps of an FM-space.
Such semigroups will then characterize the FM-spaces. ,

Preliminaries. In' 1937, J. Schreier showed that the semigroup, un-
der composition, of all selfmaps of an arbitrary set has the property
that every antomorphism is inner [10]. Thirty years later K. D. Magill,
Jr. [7] showed that this property also holds for the semigroup of all differ-
entiable functions from the reals into the reals, while in [15] Yamamuro
has generalized this result to Fréchet Montel (FM) spaces. We give
here a further extension of this result.

Throughout, B and F will be Hausdortf locally convex spaces over
the reals, R. Roman letters will be used for elements of the former, and
Greek for the latter. We shall denote the conjugate space of ¥ by Z, while
Z (B, F) will be the space of all continuous linear maps from ¥ into F
with the topology of uniform convergence on bounded sets. Following
[2], p- 90, a map f: E—Fis said to be Fréchet differentiable at ae B if
there exists a we % (E, F) such that

lime™'r[f,a, ex] =0,

&0

uniformly for # in any bounded subset of B, where
r(f,a,y] = fla+y)—f(a) —uy.

We call 4 = f'(a). Higher derivatives are defined in the obvious way.
Let f, ge 9*(E), the set of all k-times Fréchet differentiable selfmaps
of H, and define the product fg by the composition,

(f9) (@) = flg(x)), for every weB.

Then 2%(F) is a semigroup ([1], p. 234). An automorphism of 2%(E),
which we abbreviate now to 2%, is a bijection ¢ of 2* yuch that

o(fg) = o(floly), for every f,ge D",
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An automorphism ¢ is inner if there exists a bijection A such that
by Wt e 2*, and

1) for every fe 9.

o(f) = W™,

Yamamuro has noted that to show every automorphism of a semi-

group of differentiable functions, & (B), is inner, is tantamount to showing
that the semigroup characterizes the underlying locally convex space,

B. Briefly, whenever an isomorphism exists between & () and L (),

with only a notational change in our proof we may find a bijection h from
Fonto F such that & and h~' are differentiable. Since

(=) (h(@)) B (@) = B’ (@) (W) (b(@)) =1,

for every ze B, and b (z)e Z(H,F), W' (x) provides & linear horaeomor-
phism between H and F. In view of this it is of interest to prove the fol-
lowing theorem, which iz the purpose of this paper.

TerorEM. Let B be an FM-space. Then every automorphism of the
semigroup D* is inner.

Notation. Our notation and terminology follow that in [12], but
certain frequently used items will now be given. By {e,}e (¢)) we mean
{&;} = R and lime, = 0. The constant map on H, whose single value is

N—00 . .
ac B, is denoted by ¢,. For ae E, ze F, the map a®a from E into F is
given by ‘

(v@7) () = <y7 ayw,

where {y, @y denotes the value of @ at y.

When ac B, a@iec £ (H, F), abbreviated to £ (H). Inductively we
-define a@™% = (@™ 2)RA, an element of £, (¥, H), also defined
inductively by Z,(B, B) = Z(B, %,,_,(¥, B)). For he 2™(H), the mth
Fréchet derivative of h at we B is denoted by h™(z), an element of
Z..(B, E). Atter m evaluations at ae B, h™ (#) is an element of B denoted
by b (2)(a)™.

In order to phrase our results in as general a form as possible, we
introduce the following notion: a map f: B—F is said to be weakly-2
it the map f: BF—EH, is Fréchet differentiable, where H, denotes the
space F endowed with the weak topology, o(#, E). Discussions of prop-
erties of locally convex spaces which are used without reference may be
found in [6], or [8]. In the obvious way we also define weakly-2* maps.
The bulk of the paper is devoted to the proof of the following lemma,
from which the theorem readily follows.

Levwa. Let ¢ be an automorphism of 9*(H), B a Fréchet space. Then

there exists a bijection h of B satisfying (1), such that both h and B~ are
weakly-2*.

for ye B,
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This is an extension of the result in [15], in which the case fork = 1
ig given. That # be a TFréchet space is required for differentiability ab
a point to imply continuity in the proof of step 1, for the result of Banach
in 2.1, and the separability assumption in 3.1.2. That Z be Montel is
used only in the deduction of the theorem.

PROOF OF LEMMA

The proof is in six stages.

1. There exwists a bijection b of E such that (1) holds. Further, for any
@e B the function (h(2), &) from B indo R is continuous with respect to

xe H.

The existence of % is essentially due to Schreier [10], but a demonstra-
tion in the convex space setting can be found in [15], step 1. Since dif-
ferentiability at a point implies continuity at that point in a Fréchet
space ([2], p. 105), the continuity of <% (x), @ follows as in [15], step 2.
See also [14], p. 505, where it is shown that we can assume k(0) = 0.
In the same way that ¢ uniquely determines h, ¢~' determines h~7%, so
that any property shown for - holds also for A%

Ag was pointed out in [12], the elegant method of Magill which was
used to show h once differentiable is no longer applicable when the space
has dimension greater than one. A further difficulty is encountered in
the present situation. Even in the case where F = R, the derivative
of the associated % is everywhere finite, and

By (h(@) W (@) = 1,

for ze R, so0 that 2’ (z) == 0, for any #. Hence %’ is certainly not a bijection,
with the result that the method cannot be used in advancing to derivatives
of higher order.

In the remainder, a< / and @< B will be any pair of elements chogen
such that <(a, & = 1. For brevity we let h(a@®a) = h;, h™*(a®E) = h,.
The aim of steps 2, 3 and 4 will be to prove, -using induction, that &, < 9%,
which will enable us to deduce, in steps 5 and 6, that h is weakly-2*.
By noting that ¢, and a®a belong to 2*, we may show khye & as in [15],
step 3 to step 7. Now we assume hye ™, L < m < k, and show ke g™+,
Step 2 will contain all preliminary results, while step 4 will be the straight-
forward completion of the proof that ke 2™+, The bulk of the argument
is contained in step 3.

This step reduces in essence to showing that the limif
Lim g™ [ (ea) (a)™ — 1{ (0) (@)™]

&0

@)

exists. For this we are led to consider the differentiability of the real-valued
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functions of a real variable,

15(8) = (W™ (£a) (@)™, B, for each Ze< K.

‘When m is 6dd, we are able to show that for {s,}< (¢,) the sequence
{e5 ' [W{™ (aa + 8, 0) (@)™ — h{" (aa — s,.0) (a)"]}

is bounded, for ae R. Using a longstanding result of Khintchine [5] it is
then shown relatively readily that the iz are differentiable almost every-
where. Yet in the even case pursuing a similar path with the sequence
{en' (K™ (aa + 8, 0) (@) + B{™ (a0 — g, 4) (a)™ — 20" (aa) (@)™ T}
and using a result of Zygmund [16] yields only the finiteness of the Dini
derivatives of each i; on a dense set in R. With more effort differentiability
almost everywhere does follow and the method of the odd case takes over.
Regretiully the caleulations are necessarily lengthy since we are constantly

dealing with expansions of higher order derivatives of composition functions.
Specifically, if f, ge 2™, we have ([1], p. 234)

2 2 Om f(Q)

g=1
where the second summation is over all g-tuples of positive integers
Uiy reeyty Such that 4;4...449, = m, and o, is an integer coefficient.
‘We shall frequently abbreviate the above expansion to

szmf(q)(y(m))[la(% By @34y -

g=1
By Z#(E",F) we shall mean all jointly eontinuous. m-linear maps
from F™ into F, while £ (E™, F') will refer to the corresponding family
of geparately continuous maps. It is readily shown that the inclusions

LFE, F)c &, (B, F) c L (B™, F)
are valid at all times. For the lemma we require %, to equal %¢.
‘When m = 2, Kothe has shown in [6], p. 172, (3), that L& =2 7.
This may be generalized to m-linear maps in a straightforward manner,

and used to show, moreover, that the evaluation map from &,,(H, F)x B™
_into F is sequentially continuous,

Of the following preliminary results, 2.1, 2.4, and 2.5 will be used
most frequently.

2. Preliminary results.

2.1. A{™ (Ea)(a)™ is continuous with respect to £ < R.

If {en}e (00)y B{™(a)(a)™ is the limit, as n tends to infinity, of
{3) & [V (a4 epa) (@)™ — H{™ D (Ea) (@)™ 1.

()™ () @) L™ (@) (@)1 ... [¢" (@) (@)"0]

1 8g)]
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For fixed », (3) is a continuous function of &, s0 by a result of Banach
([3], p- 397), the limit function, h{™(&a)(a)™ is continuous on a dense
set. Suppose that « is such a point of continuity and & an arbitrary real
number. Then if {e,}e (),
W (Ea+ e,a) (0 = BV (L + Cggeq) (20 + 5,0) 1 (@)™
=[p(t+ Csa—aa) hl](m) (00 +e,a)(a)".

That <{a, @) = 1 is used here, to ensure the commutativity of the maps
a®d and 1—c¢g,_,,. Using the expansion for the higher order derivative

of a composition function, it is evident that the last term converges to

[P (1 + Cro—aa) 11]™ (a) (@)™ = A (£a) (a)™

a8 ¢, tends to zero.
2.2. Given & R and {e,}< (c,),
does not converge weakly to zero.
We use [15], step 3, in which the case & = 0 is given. Suppose we
can find an &< R and sequence {¢,}« (¢o) such that

lim (e;* [h(éa+&,a) —h(éa)], Z) = 0,

N—>00

the sequence {e;'[h(fa+e,a)—h(Ea)]}

for every Ze E. With some calculation, we may show
(4) &7 h(2,0) = p(1—0z)'(h(£a)) (657 [R(£a+-ena) —h(£a)])+
et r[p(l— ), B(E), 2 (e (B(Ea+ 80a) —
Sinee ¢ (1 — cg,)'(h( £a)) € £ (H), we have
fﬂ(w — 6ga)'(h(£a)) (67 [h(£a+epa) —h(£a)]), Z) = 0,

h(za)))].

for every Ze E. Further, the set {e;'[h(éa+e,a)—h(éa)]} is bounded,
being weakly convergent to zero, so the limit of the second term in (4)
is zero. Hence the sequence {e;'h(c,a)} converges weakly to zero, con-

tradieting [15], step 3.

2.3. Given &e R, there ewists an Ty e E such that
2[(a®Te) (1 —0,_y,,)] (£a)(a) 5 0.

The proof iy almost the same as in [15], step 4, where the cage { = 0
was given. For completeness we include it here. Suppose there exists
an ée R such that for all e &,

o L(a®) (1 ¢, _y,,)T (¢0) (a) =

Take a sequence {J,}e (¢;) such that 4, # 0, any =, and let. M be the
get of all Te E such that the sequence {(A™'(éa-+d,a)—h~'(sa), 2D}
contains infinitely many non-zero members. If Z ¢ M then the sequence
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{67107 (bt b,0) —
(8) 0 = lim &, p[(a®@F) (1 —

N—>00

— lim 671 (2 (%

n~—>00

h'(éa), B} converges to zero. If Te M we have
ch—](Ea))] (f(l + 611 a‘)

+ 8y @) — W7 (£a), B 7 h(7, )

where T, = (b~ (fa-+S,0)— k7! (£a), By. Suppose that the sequence
{67 (WY (Ea+ S,a) — b7 (éa), T} does mot converge to zero. Then
there is a subsequence {4} and a ye R, y >0, such that

| B (S0t 8y ) — D7 (Ea1), B >

for every k. Then by (5) the sequence {r"‘h rnka} converges to zero,
which contradicts 2.2. So for any Ze F, the gequence

{87 <h7 (a+ 8,0) — 17 (£a), B}

converges to zero, again contradicting 2.2.
Note- that if # satisfies w[(a@i)(l—ch_l(m)]'(w)(a) # 0, so too

does —.
We may show
@ [(a® - Zi") (1 - clb—l(Ea))] (Ea = (p( _-1 ?’ [(a’®w (1 h"l(Ea) )]' (50’) .

But ¢(—1)'(0) is a linear bijection, because

©e(~1) (0)p(—1)"(0) = ¢(1)'(0) =1,
80 the result follows.

2.4. Given {e,}e (c;) and &e R, there ewists {0} e (¢o) and a subsequence
{en, such that (h7'(Eatbia)—h” Y(&a), Ty = &ny,y Sor every k.
It is evident from the equation

0 # p[(a®T) (L -0,y )] (6a)(a)
= 1:m 87 R(Ch (fa+ da)—BT (Ea), Fipa),
that the function (A~*(&a+ da)— ( ), Tgy takes nomn-zero values in
every zero-neighbourhood. Since (h (%), @ is continuous in a, there
is a sequence {;}e () and a subsequence {s, } of {s,} such that
W Ea+ Oya) —

W), B = e, OF — o

So by taking a subsequence of {e, } once more, and replacing &, by —Z,
if necessary, 2.4 follows.
Now, for fixed <R, we let

B(@) = {ne R: pl(a®F) (1—6,4,,)] (18) (a) # 0}

icm°
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2.5. 8(&,) is an open subset of R.
Suppose ne S (%). Then

By (a) (@), Bed 1y (0) (@) = Ty (0) [a®@T¢ ] By () (@)
= [ha(a®7) (1 — 6,y ) ha] (1) (@)
= p[(a®%;) (1 -0,y )] (n0) (@),
gince (4®a)(aQT;) = (aQF,).
80 (h,(na)(a), Ty # 0. By 2.1 this is a continuous function of 7,
gshowing S (%) to be open.
We are now in a position to show that (2) exists but must deal with
the cages where m is odd, and m even, separately.

3. The limit, im e~ [A{™ (ea) (a)™ — h{™ (0) (a)™] exists.
&0

3.1. Case where m is odd. We show, for arbitrary %e Z, that the
continuous map 2;, defined in 1, has the property that

limsup |7 [Az (& +8) — 4z(& —&)]| < oo,

for every £< R. For this the essential step is 3.1.1. Using Khintchine’s
result, together with some further calculations in 3.1.4, we will be able
to deduce (2) exists.

3.1.1. For any {e,}e (c,), the set

{en ™ (5,,0) (@)™ — B{"™ (— £,,0) (@)™ ]}
18 bounded.

With %, the functional agsociated with £ = 0, as in 2.3, and arbitrary
{8,}¢ (6y), we may expand the expression

[p (a®7,) a®a 1™+ (0) (a)™** + [ — a@%o) 4@ ™D (0) ()™,

and noting that (a®a)(a®%T,)
infinity, of

= a®T,, show it ig the limit, as n tends to

(6) 67 [(ha (a®Z))™ (W7 (8,0)) — (k1 (a®Te))™ (7 (8, 0))] (s (8, 0) (@)™ +

3 S 05731 (48T (8,00} (B s, 008, G5 i -1 ) +
g=1
+(—1)(Ra ( (aQTo) D —a(0y ) (B (ha; 6,0, @591y «-ny i)+

(L4 (=19 (b (a@F )@ (0) (B (g, 0, G5 6y ..., )] -
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We wish to show that the sequences formed by the terms within the
double summation are bounded. If ¢ is odd the term becomes
85 (h1 (@ @)@ (g (8, 0)) — (hr (a®70))@ ( —Ba (8 a))] X
X (B(hay 8y @5 8y +.ovy 5,))
= (87 17 (8,4), Boy {WH(8,0), Bod ™" X
XD (< (8,0), Top @) — h‘“’(O)]—[h“’( (W (8,0), Bo) a) — BP(0)]] %

X [ (3,0) (@), o) al...[(H P (0,0) (@), o) al,
gince if (h~'(8,a), EFy =0, the expression vanishes. By mnoting that
{6 W (8,a)} converges, {(h~(8,a), Bod}e (0o), H® is TFréchet differen-
tiable, and A (&a)(a)? is continuous in &, it is evident that the sequence

converges.
If ¢ is even, by adding and subtracting a suitable term we have,

87 [(7e (a®%o))@ Ry (8, @)) + (1 (a @)@ ( — by (8, @) — 2 (B2 (a®%0)@ (0)] X
X (R(ha, Sphy @3 Gyyenny 7'1)) +
+2 5;1(7‘1(“@50))@(0)(R(ha; Ouy @381y ony Bg)) —
—2 57 (3 (4®T0))@(0) (B (B, 0, 05 s, ..., )

Convergence of the first term follows in a manner similar to the case
where ¢ is odd, while the second and third terms may be rearranged as,

[(h1 a@%))@( )
(0 a) (@)™} (877 (1% (8, 2) (a)/2 — 12 (0) (a)'9)

+ (R (a®))@ (0) (87 (15 (8,0) () — BV (0) (a)"))
.. (12 (0)(a)9)].
Since i< m, j =1,...,4, 2 is Fréchet differentiable and so
a fortiori Gateaux' differentiable. Moreover, by an earlier result,
[hy (a®%,)]?(0): B*~E is continuous, so convergence with = follows.
These techniques for showing convergence will be “used frequently, butb
elsewhere we shall refrain from presenting these detailed calculations.
The firgt term in (6) is
(B (8,@) (@), oy " [077" Cha(8na)y Fod ICHT(8,,8), Tgp ™ X -
X [h‘f")((h"l(@na) 1 Toy a) — W™ (— (B (0,.0), Fo)a)] (a)™.
Recall that (h;(0)(a), By # 0 and from 2.4 that given {z,}e ()
there is a sequence {6k} (¢o) and a subsequence {e, } of {s,} such that

(BT (80), By = 6ny,  for every k.
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Hence we can conclude that given {s,}< (¢,) there is a subsequence
{en,} such that the set

{ey (1™ (2,0 (@)™ — ™ (— &, @) (@)™ ]}

is bounded. Immediately we have 3.1.1. This property is now transferred
to an arbitrary £e R.

3.1.2. For any {e,}e (o), and &< R, the set

{ex M (S 8,0) (@)™ — W™ (Ea— e, 0) ()]}
is bounded.
Using the translation map 1+ ¢4, and ' combining the technique
of 2.1 with the technique and result of 3.1.1, we may obtain the above.
As was pointed out in [15], step 6, no loss of generality is suffered if at

V this stage we assume F to be separable. A result in [6], p. 259, then

gives that F is weakly sequentially separable, which means that every
element of E is the weak limit of a subsequence of a fixed sequence, {@;}
of elements of E. Notice that such a set is also total. We now show

. 3.1.3. For some ae R the limit
Lim e [A{™ (aa+ £a) (@)™ — K™ (aa) (a)™], &>
>0

ewists, for every i =1,2,...
Recall that each A; = 43, is continuous, while from 3.1.2 it follows
thait

Limsup g™ [A;(&+ &) — A, (£—8)]| < o0

for every &¢ R. An early result of Khintchine ([5], p. 217) shows that
this is sufficient for each A; to be differentiable almost everywhere. We
deduce the existence of an ae¢ R abt which each of the functions 4; is dif-
ferentiable. Coupled with the following, this enables us to show that
the limit

lim &~ [A{™ (sa) (a)™ — h{™ (0) (@)"™]

&0

exigts.
3.1.4. Given that {e,}e (c;) There is a subsequence {e,} such that the
limit
lim e, ! (A" (&, 0) ()™ — H{™ (0) (a)"],
koo

exists.

Although the inductive assumption was that %, 2™(H) we may
also assume that h,e 9™, since any property true of A can also be shown
for 1Y In fact we have h{™ (£a)(a)™ continuous in & With %, as before,
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and &< R, we examine the expression

o((a®E) (a@7e) (1 —¢ ) (a®3)| ™ (£a) (@)™

n=1(¢a)
For {8,}« (¢,), this is the limit of the sequence with nth term
5;1[(h1(a®%) (115 2a) ™ (G0 4 8, 0) (a)™ —

— (R (a®7) (1 — O, 105) o) ™ (€ @0) ()]

which with some computation may be shown to equal,

S M ((h (Ba+ 6, a)—-lf‘(fa m0>a)-h<m)(o )] (<hs (£a) (a), B a)™--

- 7 R (T (fa+ 8, ) — BT (£a), By a) (Chy (G0 6, 0) (@), B> a)™ —
— WM (h (Ea 4 8,0) — 17 (Ea), w.,>a)(<hz(fa>(a) %) a)"|+

+ 6_1[1<q2<‘1,,2 Ol (B (3 @7%,) ( h‘l(é‘u))) )(h(£a+ 8, a)) x
X(R(hay Ea+ 8,0, a3 40, ...y dg)) —
— (1 (a®7,) (1 — 615 (B2 (£0)) (R (o, &0, a4, ...y ia))}]*l“

+ 87 [ (<h7* (0t 8,0) — BT (£a), B a) — B (0)] (CHE™ (a) (a)™, Topa) +
+07H (A™ (a4 8,0) (@)™ — BE™ (Ea) (a)™), By X

X by (W (Eat8,a) — W7 (Ea) , Boda) (a).

Firstly, assume m > 1. When suitable terms are added to and sub-
tracted from the general term of the second sequence, the scalar coeffi-
clents taken out, and the continuity result of 2.1 applied to the remainder,
the second sequence may be shown to converge. By fixing ¢ in the third
sequence, again adding and. subtractlng suitable terms, and observing
that i; <m, j =1,..., g so that h ) i5 Fréchet differentiable, we are
able to tuse the fact that dlfferenma,blhty implies continuity when the
first space is sequential to show that the third sequence converges. Thus
the three central terms form convergent sequences, as does the final
term for all £ in a set of full measure 4, by the results of 3.1.3. Choosing
£e 8(F)N A we are then able to find a subsequenee {en,} 0f {2,} for which
the limit

Lim g7 ¢ (™ (e, @) — ™ (0)] (@)™

exists, since <, (£a)(a), %) # 0. Note that when m =1 only the final
Dair of sequences remain and the proof goes through as before.
In view of the conclusion of 3.1.4, in order to show (2) exists we

icm°®
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must show that if {6,}, {s,} ¢ (¢;) and

lim e [1{™ (s, a) (a)™ — B{™ (0) (@)™] = a4,
lim 6, [A{™ (8, @) (@)™ — A{™ (0) (a)™] = as,

N—>00

then a; = a,. Now with « as in 3.1.3,

&7 [M™ (aa - e, @) (@) — B (aa) (a)™]
= ¢ (1+ 0g)' (0) (577 [A{™ (s, 0) (@)™ — 1™ (0) (@)™]) +
+ &2 [P (L + Caa)’ (B (8,8)) — (14 200)’ (0)] (RS (e,0) (@)™) +
+ Z Z%En (14 00)@ (hy (2, 0)) (B (P, 80, 85 6y 5 <oy ) —

2<gsm

—@(L+0,0) @ (0)(R(Ryy 0, @3y, ..., 5))] -

All but the first term on the right hand side converge to a value independent
of the sequence {s,} ¢ (¢,). Hence, by 3.1.3, ’

Pl +0as) (0) (1), &> = <p(L+¢aa)"(0)(as), @),

for every . Since {7} is total and ¢(1-+¢,,)'(0) is one-to-one, we have
Gy = Gy

3.2. Case where. m is even. Due to the fact that

(hy — 1)t (ea) (a)™,
— (b —1)" (ea) (a)",

for m even,

my _ m
o —ea)a) for m odd,
we are led in the even case to examine a second order difference quotient.
Using steps analogous to those in 3.1.1, 3.1.2, and 3.1.3 we ghow A;, ie N,
the natural numbers, have finite Dini derivatives on an everywhere dense
set in R. Employing the calculation of 3.1.4 we are able to show the set
{e7  [B™ (e,0) (@)™ — B{™ (0) (@)™]} is bounded, and with the aid of a trans-
lation argument and a theorem concerning the Dini derivatives, that
the A, are differentiable almost everywhere. The argument is completed
a8 in 3.1.4 and 3.1.5.

3.2.1. For any {e,}e (co), the set

{82 [ (20 0) (@) + 1™ (— en) (@)™ —21{"™ (0) (a)™]}

ts bounded.
Ags in the odd case we calculate

[p (a®%,) a®a]™ (0) (a)"** -+ [p( — 6®7Ty) a@a "™+ (0) (a)"™
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which for {4,}« (¢,) is the limit, as » tends to infinity, of

(b (8,0) (@), )™ (877 KB (8,8), Bod) <hH(8,), Fop™ X
X (WP (Ch7 (8,a); To a) -+ B (— (B2 (8,a), Bo @) —2H{™ (0)] (@)™ -+
+2 877 [(Ry (a®,))™ (0) (B (8, 0) (@)™ — (1 (a®7,))™ (0) {1y (0) (a))™]
+ (term identical to that involving double summation in (6)).
Since m i3 even, h, is Fréchet differentiable so the second sequence
converges. Again, (h,(0)(a), Z,p 5= 0 allowing us to conclude that given
{84} € (00), there is a subsequence {en,} such that the set
{omg D™ (2,,0) (@) 4+ ™ ( — £, @) (a)™ — 2 ™ (0) (0™ ]}
is bounded. Then 3.2.1 follows.
3.2.2. For {e,}e(co), and &< R, the set

{en" [™ (a+ e, 0) ()™ + K™ (60 — 2, ) ()™ —2 7™ (£a) ()™ ]}
8 bounded. ) '
This follows using the translation map 1-- sy 3.2.1, and standard
techniques.

In the terminology of Zygmund, [16], the continuous functions Ay
te N, have the property 4 on R. That is,

M(E+e)+2(6—e)—24,(£) = O(s), - £<R.

As indicated in [16], p. 55, this is insufficient to ensure the differen-
tiability of A; at even a single point. However, it does mean that the set
of points at which all four Dini derivatives of J; are finite ig everywhere
dense ([16], p. 55). i

3.2.3. Given {e,}e (c,), the set )

{ex" (A" (e40) (@)™ — B{™ (0) (@)™}
18 bounded. :

The caleulations of 3.1.4 suffice to show that if {64} (¢y), and the
set {8, [A{™ (£a -+ b,a) (@)™ — B{™ (£a)(a)™], B>} is bounded in R, then
s0 too is the set

{7 (£a+8,0) — W7 (£a), Ty x

X [P (KB (fa+ 8,a) — b2 (£a), By ) — h{ (0)] (ay™}
in B. Choosing & to be in the dense set in which all four Dini derivatives

of 4z, are finite, as well as in the open set 8(%,), we deduce the existence
of a subsequence {en;} of {e,} for which the set

{emg (A" (e,,4) (a)™ — B{™ (0) (a)™]}
is bounded. Immediately we have 3.2.3.
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3.2.4. Given {g,}¢ (c), £c R, the set
{e2” [A{" (£a+2,0) () — K™ (£a) ()™ T}
48 bounded.
This follows in the usual way from 3.2.3.
3.2.5. For any ie N, J; i8¢ differentiable almost everywhere.
If {e,}e (c,) the set
{Cea (W™ (£a+ 8, a) (a)™ — ™ (£a) (@)™], @)}

is bounded, any fe R, any ie N. Thus all four Dini derivatives of A; are
finite at every point in R, so by [9], p. 270, 1, is differentiable almost
everywhere. Following the argument of the odd case from here leads
to the existence, in the even case also, of the limit

lim &~ [A{" (¢a) (a)™ — H{™ (0) (a)™].

=0+
We call this [A{™7]*(0)(a)"+*.
4. K™ is Fréchet differentiable.
‘We begin.by showing
H(0) = [AMT*(0) ()" @™ a

which is certainly an element of .%,, ., (B, B). Thus A{*9(0)(») will equal
<@, @y [T (0) (a)"H@™a.
‘We have to show that for each bounded set B in F

&7 [ (em) — h{™ (0)] — <z, @) [P ]* (0) (a)"+ @™ 2
is uniformly convergent to zero for ze B. Since
W® (@) = K" (@, @) a)(a)"@™a

the expression is zero if (®,@) = 0. So we need consider only those x
for which <{z, @) + 0. Suppose the result is false. Then

<, @y[(s<w, @) [ (e, @) 0) (a)" Q@™ T —R{™(0) (a)"®"™ 7] —

— [T (0) ()" @™a]
does not converge to zero uniformly for #< B. Hence we can find a zero-
neighbourhood U in B, {g,}e(c), {#,} = B, and bounded sequences
{m}, ..+, {&™}, such that

iy @y .. Gy By By T [(e0 <y @) W (80 <20y By ) (@)
— M (0) (@)™ — [T (0) ()" *] ¢ T,

m
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for every m. But the sets {¢al, a)} are bounded, i =1,...,m, and
{84 {y, Ty} ¢ (¢,) 80 from the definition of [A{™]*(0) (a)™*+' we have a contra-
diction. We now show ‘ '
' W (@) = [p(L+<@, @), hy1™+(0),

which certainly exists in %, , (¥, F), since-we have shown k(™ iy Fréchet
differentiable at zero. Given a bounded set B in E we must show

e [P (@ +-8y) — W™ (@) — [ (L + <, @) ez) by ] (0) (e)]

= e (M (<, @ya+sy, aya)—h" ({w, Ty a)—
—[p(L+<@, @y ) 1, ] 9(0) (2y)]

converges to zero uniformly for y in B. As before it is evident we need
congider only those y in B for which <y, @) = 0. But the above expression
is

@ B[ (e<y, B (9L +<@, B 0a)ha)™ (e (y, Bya) —

—(p(L+<2, @ ea) )™ (0)] — (¢ (1 + <, @ 6,) by) ™) (0) ()]
which converges uniformly to zero for y in B. Hence ke D" (H), so
by induction, hye 9%(H). ®

5. (a®a)he D*(B).

Since h(a®a)e 2*(H), it follows that

¢~ [(a®E)] = W [1(a®@) 1k = (a®@) he D*(H).

6. b is weakly-2* (E).

The proof is by induction. The case k¥ = 1 was treated in [15], steps
8 and 9. Now assume h is weakly-2™(H), some m, 1< m < k. Unless
otherwise stated [(a®a)h]™ and [k(a®@)]™ will refer in this section
to strong mth Fréchet derivatives, while h™ will denote the weak mth
Fréchet derivative of h. Note that since % (E) and £ (¥, B,) are equal as

sets; strong-differentiability implies weak differentiability and the deri-
vatives coincide.

6.1. ™ is Qdteaus differentiable at zero.
With a, @ as. before, h{"*" (0)(a) exists and equals lime™ [A™ (sa)—
&~+0
—1{™(0)], an element of &,,(E, B). But this is Lim &~ [h™ (ca) — B™ (0)],
&0

an element of %, (B, H,), since the topology on Z(H,E,) is weaker
than the topology on #(H). We denote this limit by [A™T*(0)(a).

6.2. [M™T(0)e 2 (B, %, (H, B,)).

It is readily shown that if {§,} is & net in Zn(B, B,) then 8, converges
to zeroin 2, (¥, B,,) if and only if (a®a) S, converges to zeroin %, (H#, H,),
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for every a, @ such that (&, @) = 1. Now
[(a®@)R]"*(0) (y) = lime"[{(a@@) H)™ (ey) — ((a®a) B)™ (0)]

&0

in £,(8, B)
= lim (a®@) e~ [A™ (ey) — h™(0)]
&0

in Z,(¥, 8,)
= (a®a) [A™]"(0)(y), ’
using the ‘only if’ of the above result. Since for non-zero @ we can find
non-zero & such that {(a, @)y =1, it follows that [A™7T"(0) is linear. Any
net convergent to zero is mapped by [(a®%) 2]+ (0) into 2 net convergent
to zero, so using the ‘i’ direction of the result gives [A™7T*(0)e £, .1 (&, B,,).
6.3. 1™ is weakly Fréchet differentiable.
We show this property at zero. Let

PIH™, 0, 5] = KO (y) — K™ (0) — [K™ T (0) (9).

We require that e~'#[h™, 0, ey] should converge to zero in %, (#, B,)
uniformly for y in any bounded subset of B. Suppose this is false. Then
there exists a sequence {g,}« (¢,), bounded sequences {y,}, {#3}, ¢ =1, ...
..., m; and @e B, such that

et [W™, 0, &,9,1(05) - (U3, B

does not converge to zero with n. But [(a®a)h]™ is Fréchet differentiable
at zero, so for any bounded sets B, B;, 7 =1,...,m in E,

e rl((a®m)A)™, 0, ] (1Y) ... (47)
converges to zero in B, uniformly for ye B, y*e¢ B;, 4 =1, ..., m. That is,
<3—1"'[h(m)7 0,eyl(y) ... (¥™), &

converges to zero uniformly for ye B, 4°¢ B;, 4 = 1, ..., m, a contradiction.
We may use a method similar to that in [4] to move this point of weak
differentiability to any other point, so completing the proof of the lemma.

PROOF OF THEOREM

By the lemma we have a weakly-2* bijection % of F, associated
with an automorphism ¢ of 2%, such that (1) holds. We use induction
to show he 2*. The case &k = 1 follows as in [15]. Assume he 2™, some
m, 1< m< & and suppose k™, the strong mth derivative, does mnot
have Fréchet derivative at zero given by h™+(0). This is the weak Fréchet
derivative at zero of the strong mth derivative of h. Then there exists
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a neighbourhood U of zero, bounded sets B, B,,...,B,, a sequence
{en} € (c,) and sequences {y,} < B, {y’} < By, ¢ =1,...,m such that

e A, 0, 6,9, 1(00) - (W) ¢ U,

Using the fact that every weakly convergent sequence in a Montel space
is strongly convergent to the same limit, we contradict the lemma.

for every n.

Remarks

1. With a little additional effort parallel results may be found for
the semigroup %*(E), the k-times continuously Fréchet differentiable
selfmaps of an FM-space, F. In the finite dimensional case a far quicker
proof of this result is available in [11] using a theorem of Bochner and
Montgomery [4].

2. A gimilar treatment of the semigroups 2* and ™ of indefinitely
Fréchet differentiable and indefinitely continuously Fréchet differentiable
selfmaps of FM-space respectively, shows that each of their automorphisms
is inner.

3. For the semigroup % (H), F Banach, certain partial results of the
above type have been found by placing restrictions on the automor-
phism, ¢. See, for example, [14] and [13], Theorem. 4.
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