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On finite dimensional subspaces of Banach spaces
with local unconditional structure

by
WILLIAM B. JOENSON* (Columbus, Ohio)

Abstract. If X is a Banach space which has local unconditional structure, then

- X is super-reflexive or X contains subspaces uniformly isomorphic to % for all n

or X containg uniformly complemented subspaces uniformly isomorphic to I¥ for
all n. Thus if either X or ¥ has local unconditional structure, there iz a compact,
non-nuclear operator from X to ¥.

Introduction and motation. The first result stated in the abstract is
a local (i.e., finite dimensional) version of the theorem of James’ [13] that
it X is a non-reflexive Banach space with unconditional basis, then X con-
tains a complemented subspace isomorphic to either ¢, or I,. The result
gives new information on the well-known problem whether every infinite
dimensional non-reflexive Banach space contains a uniformly comple-
mented sequence (F,) of subspaces with

a(B,,ln)—~1 or d(B,, )1

(Here d(X,Y) = inf{|T}-||T"Y: T: X°%° ¥ is an isomorphism}.)

In [11] Grothendieck raised thé problem whether there exist infinite
dimensional Banach spaces X and Y for which every (bounded, linear)
operator T: XY is nuclear. The results herein combine with the main
result of [3] to yield that if X and ¥ are infinite dimensional Banach
gpaces and either X or ¥ has local unconditional structure (Lu.st., in
short) then there iy & compact, non-nuclear operator from X to Y.

Before explaining the terminology used, we mention the organization
of the paper. Section II contains a listing of known results needed later.
Some proofs are given for completeness. The specialist in Banach space
theory can skip all but the first two paragraphs of this section (where
the definition of admissible choice of signs is given).

Qection III contains preliminary results. The main fact proved here
is that if X has an unconditional basis but does not contain I, uniformly
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for large %, then there is p << cc and an equivalent norm |j-|| on. X so that
{2 (Xl )M for any y,;e X with (y,) having pairwise disjoint supports
relative to the unconditional basis. Furthermore, the basisis uncondition-
ally monotone relative to ||

After the work on this paper had been completed, T. Figiel pointed
out to me that a recent generalization by Maurey [21] of a result of Rosen-
thal’s [23] easily yields that if the space X does not contain I, uniformly
for all n, then the identity operator on X is (p, 1) absolutely summing
(cf. [19]) for some p < co. This result can be used instead of Corollary ITI. 4
to prove the renorming lemma Corollary IIL5 for those spaces X which
do not contain I3, uniformly for all n. This slightly weaker version of
Corollary IIL.5 can be used in the proofs in Section IV, and thus the
reader familiar with the Rosenthal-Maurey chain of ideas can skip the
material in Section IIT preceding Corollary IIL5.

The main results are in Section I'V. Here we show that if X has Lu.st.,
then X is super-reflexive or X contains a sequence (H,) of subspaces
satisfying either d&(,,1%)—1, or d(B,, ")—~1 and B, is 141/n comple-

mented in X. Actually, the techniques prove a little more; namely, that

if X is a non-super-reflexive subspace of a space ¥ which hag Lu.st. and
d(@,, I,)—occ for any sequence (@,) of subspaces of ¥, then X o B, with

d(B,, })~1 and B, 1-+1/n complemented in X. This last result and the .

two problems mentioned already lead naturally to the (almost certainly
difficnlt) embedding problem mentioned at the end of the paper.

After this paper was submitted for publication, T. Figiel and I proved
that if X has Lu.st. then X** ig isomorphic to a complemented subspace
of a Banach lattice, ¥, and Y ig finitely representable in X. From this
result and results of Tzafriri [26] it follows easily that if X has Lu.st., X
i3 not reflexive (resp., X is not super-reflexive), and X does not contain 12
for large n, then X contains a complémented copy of I, (vesp., X containg
subspaces uniformly isomorphic to Iy for large n). However, the argument
for this result (which is rather -easier than the arguments used in the

present paper) does not seem to yield the existence of uniformly comple-

mented 17’ in those non-super-reflexive spaces with lu.st. which do not
contain I2’s for large n.

Most of the terminology is standard for Banach space theory. “Space”
means real Banach space, but similar results for the case of complex
scalars can be deduced from the real case. Operators are bounded and
linear; subspaces are closed; [4] is the closed linear span of the set A.
A subspace X of ¥ is complemented if there is a projection (= idempotent
operator) P from Y onto X. If ||P| < K, X is K-complemented.

‘We use standard facts concerning basic sequences. A sequence (¢,) = X
is called basic if there are functionals (ep) in X* biorthogonal to (e,) such
that @ = Y'¢}(w)e, for every wele,]. If the series expansion converges
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unconditionally for each w« [¢,], the basic sequence is called nnconditional.
It is known that (e,) is unconditional iff there is a constant K such thab
|3 anen| <K || 3 Bnenl| Whenever |a,|<|f,]. The smallest such constant is
denoted by %(e,) and is called the unconditional constant of the bagic
sequence (e,). If %(e,) = 1, (e,) is said to be unconditionally monotone.

Given =, ye [e,], Wwe say s <y if ¢(») < el (y) for all n (where (&%)
are the functionals biorthogonal to the basis (e,)). Also, for F a set of

integers, Py: [¢,]—>[6,]n. s the projection defined by Pgx =3 e (®)e,.
. nekl
It is clear that |Pgi < % (e,). If ze [e,], the support suppa of & is the set

{n: é(x) # 0}. A sequence m, in [e,] is a block basie sequence of (e,)
provided the supports of (z,) are pairwise disjoint ‘and finite. Obviously
U(%,) < % (e,) for ‘any block bagic sequence (m,) of (e,). Note that our
definition of block basic sequence is non-standard. However, (x,) is a block
basic sequence of (e,) in our sense iff (x,) is a block basic sequence in the
usual sense of (6y) for some permutation (e,y) of (e,).

Basic sequences (e,) and (@,) are said to be K-equivalent provided
the map e,— =, extends to an operator T': [e,]->[=,] satisfying

max (1, [|7) max (1, [T7'])) < K.

We come now to the concept (introduced by Dubinsky, Pelezynski
and Rosenthal in [4]) of local uncqhditiona.l structure (lL.u.st.): X has
1L u.st. provided there is a constant K and afamily (H,) of finite dimensional
subspaces of X, directed by inclusion, with X = (JH, and such that
each B, has a basis (699, with #(ef) < K. The infimum over all such
constants K is denoted by LU(X) and is called the local unconditional
constant of X. »

The common spaces havel.u.st. For example, LU (X) =1 if X is a Banach
lattice. However, Gordon and Lewis [10] have recently given examples of
spaces which are not complemented in, any space which has l.u.st.

Finally, we mention James’ concept of super-reflexivity [15]: X is
super-reflexive provided that every Banach space which is finitely repre-
sentable in X is reflexive. (Y is finitely representable in X provided that’
for each ¢ > 0 and each finite dimensional subspace E of Y, there is a sub-
space I of X for which d(E, F)< 1+e.) James [15] proved that super-
reflexivity is invariant under isomorphism and Enflo [5] showed that X
is super-reflexive if and only if X is isomorphic to a uniformly convex
space. Of course, there are reflexive spaces with lLu.st. which are not
super-reflexive, so the main theorem we prove gives new information
even for spaces which have unconditional bases.

II. Background material. To construct I’s in a non-super-reflexive
space with lu.st. we use an extension by James [15] (cf. [24] and [2]
for alternate proofs) of one of his earlier theorems [14]. Before stating
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this result, we introduce notation that is used often: A choice (e;)f, of
signs is called admissible provided all + signs precede all minus gigns. More
formally,

DrFINITION II.1. Suppose ¢ = _1—1 for 1<i<n (g, is called
admissible provided that there exists %, 1< k<fn, go that & =1 for
1<i<k and ¢ = -1 for bk <i<< M.

James’ theorem ig: .

ProrosirroN IL2. Suppose X 48 not super-reflexive, m is am imteger,
n
and & > 0. Then there exist wnit vectors ()2, in X so that ” S‘simi“ =>n(l—g)

for every admissible choice (e;) of signs and there is a norm one fumctional
2* in X* with o* (@) > (1— &) for each 1 < i< n.
Remark IL.3. Proposition II.2 is usually stated for X not reflexive.
The extension to the non-super-reflexive case is immediate. Also, #* does
. n
not appear in the usual formulation. However, the inequality | 3 |}
i=1

2 n(l—¢) is derived by using a functional which satisfies the condition
on z*.

We shall need later the following elementary lemma regarding
admissible choices of signs. \

Levma IL.4. If (a,)2, kris a real sequence, then there is an admissible
choice (g;) of signs so that IZ%G | < max|a,.

Proof. Agsume, w1‘uhou13 loss of genera.hty, that 2 ;2 0. Let m
i=1
be the ﬁrst positive mteger satlsfymg Z >3 Z‘ a;. For notational ease,

set 4 = Za“B Z‘a,,, 0= 2 a;.

f=m-+1
NOW
B> }d = }(B40) > Bay,
80 i
B> $0>4B—a, and B—020>(B—0)—2a,.

Thus

< B—-0 < 2a,.
If B—0<a,, we are finished, otherwise

a, < B—0< 2a,,,
80
—@y < (B—0)—2a,, < a,,.

—1
| But (B—0)—2a, — 3 a,—

=1

k .
2 @;, and thus the proof is complete.
i=m
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Next we mention some known facts concerning I' and I7, that are
needed in the sequel. The qualitative part of Proposition IL.5 goes back to
James [14] (see algo Giesy’s paper [8] for the I, part). A nice (but unpub-
lished) proof of the theorem as stated was given by Rosenthal and
Lindenstrauss. Figiel discovered a similar proof of (b) independently;
his proof is gketched in [7]. )

ProrosirioN ILbO. (a) If (2,)7 @,,,1 is a normalzzed basic sequence which
is K equivalent to the unit vector basis for Z , then there is a normalized
block basio sequemce of (@) which is K equwalent to the unit weolor basis
for U

(b) Given &> 0, K < oo, and an integer n, there s am integer
q = q(g, B, n) so that if (x,)], 48 o normalized basic sequence which is K
equivalent to the umst vector basis for 1%, then (@;) has a normalized block
basic sequence which i8 1 e equivalent to the .unit vector basis for 1%. (In
fact, given any ¢> 0 and K < oo, ¢(s, K, n)n >0 as n—>oco for some
constant ¢ = c(e, K).) '

We algo need the fact (cf. [13]) that a block basic sequence of an
unconditional basis spans a complemented subspace, if the block basie
sequence i§ equivalent to the unit vector basis of 7,. Since the proof is
short, we include it.

ProvosrioN I1.6. Suppose (e,) is an unconditionally monotone basis
for X and (y;)j. 18 o normalized block basic sequence which is A equivalent
to the unit vector basis for 1. Then [y}, is A complemented in X.

Proof. By the properties of the unit vector basis for I and the Hahn~
Banach. theorem, there is #* e X* with ||o%| < 4 and @ (yy) = Lior L <j<m.

n

Let I(j)

the B(j)’s are pairwise digjoint, P is a projection onto [y;]. Further, for
re X,

= suppy;. Define P: X—[y;] by Pz :jzl‘ w* (Pgy @) y;. Sinee

n n
1Pal) < Y 0% (Pyya)| = a*( > sign[2*( Prgya) Py
Jeal Foml
L3
< ]| ) sign [0 (P @) Py
),

n
A HZI’W)mH by unconditional monotonicity
=1 .

< Al

Thus [Pl < 2
The final background result about If is a Bessaga—Petezynski [1]-type
perturbation lemma.
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LeMMA I1.7. Suppose (x,); « X is A-equivalent to the unit vector basis
For T, ol < 1, |l —yall << 8 < 1 for each i, ||yl < 1, and there is.a projection
P: X o0 [g,] with ||P]| < A. Assume 04 << 1. Then (y;) is A(1—064)"" equiv-
alent to the unit vetor basis for 17, and there is a projection @: X 2% [y,]
with Q) < (1 + 6A)(L—82)"A.

Proof. We have, for any scalars (a;)j;,

Zlaﬂ?“Zai?]i ?HZ%%H‘“”Z%(%“%)H
> 2 Y- Slads =22 S,

0 (y,) is A(1—28)~" equivalent to the unit vector bagis for If'.
Let T: [@;]—>[y;] be the linear extension of the map z;—y;.
8: XX by 8 =(I—P)+TP. Then |I— 8| =|P—TP|< A<, 80 §
isinvertible and |8~} < (1 — 84)~%. Also Su; =y, for each i. Then Q = SPF~!
is a projection of X onto [y;] and [|Q|| < (1 -+ d4)A(1— é4)™*

Define

III. Preliminary results. Suppose X is Banach space which has an
unconditionally monotone basis (e,) with biorthogonal functionals ().
The first major lemma wé need is that X contains I, for all » or there
.existy p < oo and an equivalent monotonely unconditional norm |-| on
X satisfying |Y ,|> (3 1,/”)"* whenever (z,) is a sequence in X with
pairwise disjoint supports. We begin with a dual version to the re-
quired lemma.

LeMmA IIL1. Given an integer %k there exists p = p(k) > 1 so that
if (e,) s an unoonditionally monotone basis for a space X, which has the
property that (z,)%_, is not 10- equwalent to the wmt vector basis of 1 for any
normalized block basic sequence (m,)_, of (e
for any disjointly supported sequence (y,).

Proof. Choose p >1 so that 2k < 3 (1/p+1/g=1).

" Suppose there did exist a disjointly supported sequence (y,) in X
satistying || v, > 3(3 |y|PJ*. Chooso fe X*, (]l =1, f(Syn) = | Z-
Since the y,’s have disjoint supports and the basis is unconditionally
monotone, we may pick such an f so that also f(y,) > 0 for each n.

For i1, set B(3) = {n: [F670" | < f(ya) < (39 iy, ll}
and let .

= {n: [yl < Flo) < [lyall}-

We claim that
(*) |B(0)] > F,

or there exists ¢ > 1 so that |B()| > k¥ .

(Here |.4| denotes the cardi-
nality of 4.)

s then || Sy,|| < 3 2 llyal )2
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Indeed, if (*) were false, then

| Xl = 2stwm) =2 > fm) < }j1wm1—|«fj[-%k‘wli"‘12 lyal

nekih) nefi(0) i=1 neki(i)

< [B(0)}( L\J ol 3 pape = T@M( 3 Jyali?)™
nalu(0)] () neli(l)
(by Holder’s inequality)
, A ) ]
< (] Tl }_J( 2) ( 2wl
e Tigi)

nei(0)

< 8( Y lwalt)”,

which contradiets the choice of (y,).

Thus (#) is true. Ience by normalizing {y,: ne B (i)} for suitable
i, we have that there exist a positive integer ¢ and dlaJomtlv supported
unit vectors (zj Ty (m == il "l) so that f(z) = [$~Y2]* > 3”2”1‘01' each 7.
Thus (z) i8 37" oquivalent to the usual basis for I*(m = B ) and hence by
I’ropomlon 115 there is a normalized block basic sequence (w;)f_, of ()
which is 9 equivalent to the usual basis for I¥. Of course (w,)¥, is still
disjointly supported, so we may pick disjoint finite sets (F'(j))f., of integers
such that [jew; — le 'w,H < 907 or 1 < j < k. Setting o; = ||Pm)w]]| 1 Py Wi
we have thal (.Jaj)Ml iy & normalized block basic sequence of (e,) which
is 10-equivalent to the unit vector basis of ¥, which contradicts the
hypothesis on X. ‘

Remark IIL2. Of course, one can deduce in a purely formal way
from Lemma ITL1 as stated, that, given s> 0, the p of Lemma IIL1
may be chosen so that the inequality of the conclusion of Lemma IIT.1
reads | Sy < (14 e) (X lwll?).

Remark IIL.3. The idea of obtaining and using upper or lower [,
estimates has been oxploited by several authors. One striking result
along these lines iy the Gurarii-Jares theorem (cf. [12] and [16]) that
every bagic sequence in & super-reflexive space admits upper and lower 7,
estimates.

CorottArRyY TIL4. Suppose (e,) 48 an wncondilionally monotone basis
for X amd & is an integer such that ()%, 7,3;%00 10-equivalent to the unit vector
basis for I for any J block basio sequence (2,)5.,. Let p = p (k) from Lemma

L1 and set »2;- w!wg-z_ = 1. Then || X'9a|| = 1/3( EHynH“)W for any disjointly

supported sequence (y,) in X.
Proot. Suppose (#})2., i a normalized block basic sequence of the
funetionals (¢f) in X* which are biorthogonal to (e,). Suppose that (w})}.,

4— Studia Mathematica L1.3
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were 10- eqmvalent to the unit vector bagis for #. Then. there would exist z¢ X
with supps = U suppas, |ol| =1, and f (#) > 10 *for 1< i< k.

Let —-PE,)x, Where H(i) = suppa;. Then af (2) = of (#;), so
107 < |l < 1. Also, ”Z“"t“ )l =1, and (w;)kis disjointly supported,
50 by the uncondltwnal monotoneness of (e) || > a@m¢||<mm|ai| for any
choice (a;) of scalars. Since 107|a,| < jL\Ja,wl<1H Z‘ajw,H for each i, we

have that ()5, is 10-equivalent to the wunit vector basis of % which
contradicts the hypothesis.

Thus by Lemma IILL, | Y|l <3(Xiwal?)" for any disjointly
supported (#%) in [é;], from which the desired conclusion follows by
duality.

Now we come to the renorming lemma:

CoroLLARY IILB. Suppose & is an integer and set p = p(k) from
Lemme TIL1. If (X, U-H) has unconditionally monotone basis (e,) and no
block basic sequence (%)%, of (e,) is 10-equivalent to the unit vector basis
of &, then there is an cqmvalemt unconditionally monotone norm |-| on X
satisfying for all e X, |jol| < |#| < 3wl and | Y, ]> (3 12,P)" whenever
(Suppa,) s pairwise disjoint.

" Proof. Define |z = sup(}[|Puy@|f)*”, where the sup is taken
over all sequences (E(n)) of pairwise disjoint finite sets of integers. We
omit the routine verification that |-| has the desired properties.

Remark IIL.6. It follows from Remark IIL.2 that given ¢ > 0, the
norm |-| in Corollary III.5 may be chosen to satisfy |zl < || < (1+¢) (o
for all we X.

The final preliminary lemma is crucial for the proof of our main
theorem. Roughly the lemma states the intuitively evident fact that
if an unconditional basis admits a lower I, estimate as in the conclusion
of Corollary III.5, then 0 < # < y and ||#] close to |y implies that |y — ||
is small.

Lemma IIL.7. Suppose v>0 and 1<p<< oco. Then there ewisls
8= d(r,p) >0 so that if (e,) is an unconditionally monotone basis for
some space X imwhich|| 3|2 (3 \2.lP)2 for amy disjointly supported sequence
(2,), then X satisfies the following conditions.

If ¢ and y m*e X, 0< < y, 1-d< |joll < il < 1, and B is defined
to be the set {n: € (y) < (1 +7)en(x)}, then

(A) [Pga] > 1 v and

(B) ly—al <v+[1—(1—7)?].

Proof. Choose d >0 so that 0 < é < 7(r—0) and suppose @, y are
a8 in the hypothesis.
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Agsume that ||[Pgza2| < 1—7. Pick a norm one functional z*e X*
go that a*(x) = |j@||. Then

(1—90) < #* (@) = o*(Pya) +0*(Poge) < (1—7)+a*(P.ga),
go that
(z—08) < a*(P_pa).
But then
1z o*(y) = a*(Pgy +P.gy) = 2*(Pgo) + (14 7)2* (Pp®)
= g% (o) T (Poge) > || +7(z—8) = 1—8)+7(r—48).

Thus 7(v—0) < d, which is a contradiction. This establishes (A).
From (A) we have that |[Ppy|l=1—r7 and hence

o I1Pamyll < [1—(1—T)P]H2.
Therefore we have :

Iy — ol < |1 Py — Pl + |Pupy —Punl
S THIPopy | < v+ [1— (1 -T2
Thig proves (B) and completes the proof.

IV. Main results. The main theorem of this paper is an easy conse-
quence of Theorem IV.1 and the renorming of Corollary ITL.5. The argu-
ment for Theorem IV. 1 is actually just a modification of the proof of The-
orem 3.2 in Hnflo and Rosenthal’s paper [6]. The special properties
possessed. by Ly and used by Enflo and Rosenthal have analogues- in
spaces with unconditional basis, if the basis satisfies a lower I, estimate
a§ in the hypothesis of Theorem IV.1. A major modification of the tech-
nigque. of [6]is necessary mainly because we know a priori from Propogition-
IL.2 only that non-superreﬂexive spaces contain sequences (z;)7., of unit

vectors with H a%m¢|| ~ n for (s) admissible. Thus, Lhe Enflo-Rosenthal
hypothesis of Lenmm 3.1 in [6] that the average of | Z & fi|| over all cho-

ices (g;) of signs is close to n does mnot suit our purpose However, the
elementary Lemma IT.4 allows us to work with admissible choices of
signs only.

TrmorEy IV.1. Suppose p < oo, m is an integer, and 0 < A< 371,
Then there ewist 0 = 0 and an integer & so that if (e,) 18 an unconditionally
monotone basis for. some space X and || Y| = (Z’ llallP) 4 for every disjointly
supportcd sequence () in X, then the following is true: Given any sequence
(f)¥.1 of wnit vectors in X samsfymg

13
(i) k(l—d)< “2 & f¢H for every admissible choice (&;) of signs,
=
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and
(i) there is w*e X* with |o*| =1 and L—A<o*(f) for 1<i<k,
then there ewist a subsequence (fo)iv, of (fiYeey amd disjoint sets (B (n,))l,
of imtegers with [\fy,— Prn fnll|< 4. :

Gonsequemlg/, f,,z),=1 is (1—384)"" equivalent to the wnit vector basis
_fm v, and there is a proyeamon P from X onfo [ f,q]‘_l with ||P||

1 AL —24)7H1—-34)7"

Proof. A trivial approx1mmtion argument shows that we may assume
that dimX << oo, say dim X = z.

Choose 7, > 0 so that

(i) Tl —(l—7 )P < 4

and let 6; = (v, p) from Lemma IIT.7.
Now pick a >0 and the integer & to satisfy

. l—a
{iv) 1—|—a—1+a<61,
") 7>1n—[1+ 1*“]
. b >~ a Tral

Choose 7 > 0 %0 that

(vi) E[1—(1—7)"T" < aj2,
and finally pick 6> 0 to satisfy
{vii) 4 < min{a/2, 8(z, p)}.
k
Write f; = Z‘ die;, let f=1/ kZ 2 o] e; and set g, = 1/762‘26;(1116;
=]

for each a.dtmsmble choice ¢ —( )1 —; of signs.
Now for each admissible ¢ 0< g, <f and 1—-0< gl < IflI <1
by (i), so

(viti) If—gdlf <

Let B = {j: Zla,l < (

the of's slightly) tha.t max |af| is achleved for only one 4, 1 <4
wan to show that t

(ix) (1—a) < |Pgfl.

Using Lemma II.4, pick for each je ~H an admissible choice s = &(j)
of signs so that

T+ [1— (L -7 by (vii).

1+a) max |a,\} We may assume (by perturbmg
<k We

1+a)’23,ajl<2 HR

il

icm

50 a2< (a—8) <

On findte dimensional subspaces of Banach spaces . 235

Set F(s) = {je ~F: & = e(j)}. Now if (ix) fails, then
1—-8) < I < IPfll +I1Pegfll < (L —a) + | Pogfl

IP.zfll. However, by applying Lemma IIL7 with
y = f and & = g,, we have, for each admissible & that (1—1) << [P gy fll
and - hence [Py fll < [L—(1—7)"]*. But then

12l = | X 2mo || < 3 1Pro sl < L1 -

— 7P < 2.

This contradiction yields (ix).

The rest of the proof is analogous to the Enflo-Rosenthal argument
mentioned above. For 1<i<k, let H(() = {je H: max|af| = |of|}.
1

Recall that we have assumed that the F(:)’s are pairwise disjoint. Also,
from (ix) we have

L T ke
k(L —a) < ||y f] =H7021>E@)f” =H2 ZZmﬂejH
<3 S aaide]< <1+a>zy| 3 il

1=1 jeH(1)
= (1+ '1)2” ajejH = (1 -I-C‘)Z 1Pz fill s
i=1  feH () im]
That i,
1 I
—a
(x) k < 1Pre il
Since

IPrpfll < Ifill <1 for 1<i<E,

we have from (v) and (x) that there are integers 1S << ... <N <F
1 —
go that 1T < W Prmy fniH for 1<
Lemma IIL7 it follows that
“fn{"PIﬂ(ni)fni“ < 4.
To see the final conclusions, note that
.Pr(n )f""i) 1-24 for 1<i m,

and hence (since (Pry,yfy,) 18 digjointly supported) (Ppeu,fa,) 18 (1— 24)~*
equivalent to the unit vector basis for I}*. Further, we have from Proposi-

< m. Thus from (iv), (iii), and

.’mon I1.6 that there is a projection from X onto [Pgp,fy,] of norm

< (L —24)" Thus the last conclusions follow from Lemma IL7.
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‘We. come now to the main result of the paper.

THEOREM IV.2. Assume that (X, {-|) has local unconditional structure,
Y is a non-super-reflexive subspace of X, and there ewist K >1 and an
integer g so that d(B,1%) = K for each subspace B of X. Then there are
subspaces B, of Y and projections P, from X onto B, with |P,|-d(H,, I})~1.
Further, there is a constant A so that, for any & > 0, M < oo, and integer g,
there ewists am integer N = N (s, M, q) such that if B = X and 4(B, 1Y) < M,
then there are o subspace F of B and projection P: X~F satisfying |P| < A
and d(F, ) <1+s

Proof. Let (H,) be a family of finite dimensional subspaces of X,
dir%oted by inclusion, whose union is X and such that each #, has a basis
(€);2, with unconditional econstant < A < oo. For each «, let ||, be an
un%mdipionally monotone norm on B, satisfying || < |ol, < Alw| for
Qe duy.

From the hypothesis on X and Proposition IL.5, there is an integer %
so that d((F, |-|,), I%) > 10 for any a and any subspace B of H,. We then
have from Corollary ITL.5 that there are p = p (k) < co and unconditionally
monotone norms || ||, on H, satisfying |»|, < ||, < 3|2/, for all ze B, avn;i
| 2 2allaz (D llwl2)* whenever (z,) = H,, (x,) disjointly supported rela-
tive to (e2)%,.

We next employ, for convenience, a Lindenstrauss compactness
_ argument. Define 7',: X— Reals by

lellay i 2 B,

T.0 =
0, if »¢ B,.

By passing to a subnet of (7,), we assume ||z = lim T, exists for each

¢ X. Obviously |-|is a norm on X and |o| < |jw|| < 31|x| for we X.
Now fix an integer m and e¢> 0. Choose 0< A< 3~! so that
(1—A)(1—24)"(1—34)"" < 1 +¢. Let & and & be as given from Theorem
IV.1 with this choice of m, 4, and with p:from above. Since (Y, |- is
npt super-reflexive, there exist by Proposition IL2 (f)f,c ¥ satisfying
(i) and (ii) in the statement of Theorem IV.1. For o sufficiently large we
have that also T
(Fokar = (Ifill ")l
satisties (i) and (i) of Theorem IV.1 with X = H,, ||| = I llay 20d f; = ;.
Hence by Theorem IV.1 there exist, for sufficiently large a, subspa.cés
F, of [f;] and Pbrojections P,: B, R, with 4(F,, M <l+e and |2,
< 1+z¢ Define P,: X +F, by ’

Pw, if ek,

P =
0, if r¢H,.
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Again by passing to a subinet, we may assume that Pz = limP,x exists
a

for all zeX. Since F,c [f], (@, )< 1l4e and dim[f;] < oo, we
have that P is a projection, PX < [f;], d(PX, ") <1-¢, and of course
|IP|| < 1+ Note that even PX = [f;JjL, for some 1< <4 <...< k.

Returning to the original norm on X, we have that a((PX,]]), l{")
< 3A(14-¢). Thus by Proposition II.5, for each integer # and & > 0, there
is B o Y with d(#,1})< 1+4e.

Now suppose M < oo, & >0, and an integer m are given. Using
Proposition I1.5, we easily reduce to the case where M < 1+, 50 assume
that M < 14e Choose an integer » so that (8AMY ™" < (1—6)", where
as before 4 satisties (1— A)(1—24)"(1~34)"* < 1+e, while 6< 4 and
% come from Theorem. IV.1 with this choice of m and 4. Set N = ¥ and
suppose that (z)., in (X, ||) are unit vectors which are M-equivalent
to the unit vector basis in I*. Then in (X, ||-1), (ol 22,) 2, is BAM equiv-
alent to the unit vector basis of IV and hence by Proposition IL5. there is
a | |-normalized block basic sequence ( e, of (») which is, in (X, [|-[}),
(L= ¢6)" equivalent to the usual 1* basis. Thus (fy)F., satisties (i) and (ii)
of Theorem IV.1, hence by the first part of the proof, there exist 1< %,
<y < .o K4y, < b 8o thatb [fi,]?ll is, in (X, |I]), 1+¢ complemented.
But then [f; 17, is, in (X, |-]), 3A(L+e) complemented and (|fi,|—1f¢,)}'?=1
is M-equimfem; to the usual " basis. Since M < 1+, this completes
the proof of the final conclugion of the theorem with the constant
A =311 +e).

To see the first conclusion, note that we have shown that ¥ contains
a sequence (#,) of subspaces which are A-complemented in ¥ and
a(F,, ) < 1. Thus Y* > @,, with d(&,, l)—~>1. Whence the firgt conclusion
follows by duality. This completes. the proof.

For the constant 4 in Theorem IV.2 we took (for any &> 0)
3(1+4-&)%(X). By Remark IIL6 and the proof of Theorem IV.2,
A = (14 s)2(X) (for any ¢ > 0) iy also a permissible choice for the con-

. gtant. Thus we can restate Theorem IV.2 as follows.

COROLLARY IV.3. Suppose X has Lau.st. Then either

(1) X s super-reflexive, or

(2) X = B, with a(W,,15)->1, or

(3) X o B, with & B, ~1 and B, 48 141/n complemenwd in X,

Further, suppose neither (1) nor (2) holds. Then given any & > 0, M < oo,
and integer m, there ewists an integer N so that if B < X and d(H, My < M,
then B = T so that d(F, 1) < 1+ and I is (1 - &) (X) complomented in X.

Remark. After this paper was submitted, Lior Tzafriri proved
a nice result related to Corollary IV.3.
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If X has an unconditional basis, then X contains uniformly complemented
copies of 1y for some p, p = 1, 2 or oo.

It is not known whether the hypothesis on X can be weakened fo
“X has lLu.st.” (Unless, of course, X is not super-reflexive, in which case
Tzafriri’s theorem is a consequence of Corollary IV.3.) -

Finally we apply this local version of James’ theorem to the problem
of Grothendieck’s mentioned in the introduction. For this we need the
following known proposition, In the proof we use L,(X, ¥) to denote
the finite rank operators from X to ¥ and N (T) is the nuclear norm of 7.

Prorosirion IV.4, Suppose X and ¥ are infinite dimensional Banach
spaces. Assume that there ave finite dimensional subspaces B, of X, bases
() for By, and projections P, from X onto B, so thai SUp||P,| = A< oo
and sup % (¢¥™ < co. Then there are compact, non-nuclear operators from
Y to X and from X to ¥.

Proof. Tseitlin [25] announced this when X is the range §pace,
80 we treat the case when X is the domain. (Actually, either case follows
from the other by a duality argument. We wish to indicate a direct proof
of one case hecause Tseitlin’s paper gives no details.)

It li;l’_lj:lpd(En, 1)y = oo, then by a result of Lindenstrauss and

Pelezydski [19], there are operators 7T,: E,—Y with 17,0l =1 and
sup sy (T,) = oo. (Here m,(T) is the abgolutely fumming norm. of T.)
Thus [|T,P,|| < 4 but N (T, P,) is unbounded as n—oo. This means that
the nuclear norm is not equivalent to the operator norm on Ly(X, Y),
and hence there is a compact, non-nuclear operator from X to Y.

It d(B,,})<< M for each n, then aA(PyX*, 1) < MA for each .
Let F, < Y*, &im ¥, = n. By the universality property of I%, there exist
infegers %(1), k(2),... and operators T,: B —>Piy X* with |T,] =1,
I3 < AM. The T,’s can be extended to operators T,: Y*Pj, X*
satisfying sup||T,|| < co. In fact, these extensions (by local reflexivity
[17], or direct verification) can be taken weak* continuous, say 7, = §%.
Now N(8})—oco (since the S:;,Fﬂ’s are uniformly bounded isomorphisms
with uniformly bounded inverses), thus also N(8,)—cc. Hence the oper-
ator norm is not equivalent to the nuclear norm on Iy(X, Y), whence
there is a compact, non-nuclear operator from X to Y,

TumorEM IV.5. Let X and Y be infinite dimensional Banach spaces.
Suppose that X satisfies either

(1) X has Lu.st. or

(2) X is isomorphic to a subspace of & space which has lLu.st. and which
contains no sequence B, with d(E,, 1%)~1.

Then there are compact, non-nuclear operators from X to ¥ and from
Y to X,

icm°®
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Proof. Assume (1). If X is super-reflexive, then the conclusion is
a special case of the main result of [3]. If X is not super-reflexive, then
the conclusion follows Theorem IV.2 and Proposition IV.4.

(2) follows in & similar manner from the results of [3] and Theo-
rem IV.2.

Since C(K) spaces obviously have lu.st., every Bamach space is
igometric to a subspace of a space which has Lu.st. The results proved
here lead to the question:

ProprrM IV.6. Suppose X does not contain a sequence (I,) of subspaces
with &(B,, i5)-1. Is X isomorphic to o subspace of some space ¥ such
that X has Lu.st. and Y does not contain o sequence (I,) with d(B,, II)—1%

An affirmative angwer to this embedding problem would (by the
results herein) golve the Grothendieck problem, as well as show that
every non-super-reflexive space X containg I, uniformly or contains I
uniformly and uniformly complemented. After this paper was submitted.
for publication, T. Figiel and I proved that the answer to Problem IV.6
is affirmative for spaces X which are complemented in a Banach lattice.

Added in proof. R. C. James (4 non-reflewive Banach space which is uniformly
non oclahedral) has answered Problem IV.6 in the negative.

'
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Weighted norm inequalities
for maximal functions and singular integrals

by

R. R. COIPMAN (St. Louis, Mo.) and C. FEFFERMAN (Princeton, N. J.)

Abstract. We present simplified proofs of the weighted-norm inequalities of
R. Hunt, B. Muckenhoupt and R. Wheeden, concerning singular integrals and maximal
functions. The inequalities in question are

[ 1Tf@Po@ds =0 [1f@)Po@)ds,
g R

where T' denotes either a singular integral operator, or the maximal function of
Hardy and Littlewood, and o satisifes appropriate (necessary and sufficient) conditions.

§ 1. This note is concerned with the problem of identifying those
weight funetions w(w) on R for which the Hilbert transform Tf(x)

= £ fi@_)_gi_y_ is bounded on L (w(#)da), that is
T e @Y,
(1) [1Tf@)Po@i< ¢ [ |f@Po@ds for all f.
r! Rl

Until recently, the only significant partial result known was that of
Helson and Szegd [6]: Inequality (1) holds for p = 2 if and only if w = ¢’1+7%2
for functions by, bye L™ with |[jbyll, < ©/2. Unfortunately, there is mno
obvious way to tell whether a given w can be so represented, so that
even for I*, the problem of inequality (1) remained open. Attempts to
generalize the Helson—Szegd theorem to L¥ (p % 2) were only partly
successful.

Burprisingly, there is a simple necessary and sufficient condition
for inequality (1) to hold. It was B. Muckenhoupt who made the key

discovery, by studying the analogue of (1) for the maximal function

. 1 o
7*(a) = sup o Qf f@lay in R

(Here, ¢ denotes a cube with sides parallel to the axes.)
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