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Inverse limits of compact convex sets
and direct limits of spaces of continuous
: affine functions

by
PETER D.TAYLOR (Kingston, Ontario, Canada)

Abstract. Let (K, ;) be the inverse limit of an inverse system (K, ¢§) of
compact convex sets. Then it is proved thet, in the category of Banach spaces and
linear contractions, (& (Ke), < (p7)) is a direct limit of the direct system (= (K;), (¢f))-

If K is a compact convex set, let A (K) denote the space of affine con-
tinuous functions on K. We always assume that 4(K) separates points’
in K. The purpose of this note is to prove that if K, is the inverse limit
of an inverse system {K;} of compact convex sets, then 4 (K,,)is the direct
limit of the direct system {4 (K;)}. The terms are defined below.

Our result can probably best be stated in the language of eategories.
If Compeonv denotes the category of compact convex sets and continuous
affine maps, and Ban, denotes the category of Banach spaces and linear
contractions, then 4 : Compeonv — Ban, is clearly a contravariant functor.
Our purpose is to prove that A is inversely continuous, i.e., it transforms
inverse limits into direet limits. :

Let U be a category. We recall that an inverse system (in ) is a family
(Wogr of objects indexed by an upward directed set 7, together with
a family (af), of morphisms af: W,—~W; such that of is the identity
and if ¢<<s<r, then of = aja}. An inverse limit of this system (in 2U)
is an object W, together with a family of morphisms a;; W,,—~W,; (teT)
such that (i) afa, = a; for < s and (ii) for any object W and any family
of morphisms b;: W->W, such that afb, = b, for t < s, there exists a unique
morphism b: W—W, such that a;b = b, for teT.

Dually, a direct system (in ) is a family (W), of objects indexed
by an upward directed set T, together with a family (af),<, of morphisms
ai: W!>W?* such that af is the identity and if #< s <r, then o} = ajaf.
A direot limit of this system (in ¥) is an object W together with a family
of morphisms a,: W!—>W* such that (i) a,a! = a; for t< ¢ and (ii) for any
object W and any family of morphisms b,: W'->W such that bb§ = b,
for ¢ < s, there exists a unique morphism b: W*-W such that ba; = b,
for te T.
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It is clear that if an inverse (direct) limit exists it is unique up to
unique commuting isomorphism.
In the eategory Compeonv inverse limits always exist. If (K, ¢f)
is an inverse system of compact convex sets, leb I, = {(k)e [ Kyt ¢ (k)
:

=k, for 1 < s}, and let ¢ KK, bo the projection map. It is easy to
check that (K, ¢), with the product topology and componentwise opera-
tions, is an inverse limif of the system. The same process constructs an
inverse limit in the category of compact spaces. This particular realization
of an inverse limit will be referred to as the inverse limit.
Before stating our theorem, we introduce some notation. If ¢: K, K,
is a continuous affine map between compact convex sets, we will denote
by o/ (p) the induced operator o (p): of (K,)— o (K,).
y If Bis a Banach space let us denote by 0* B the unit ball of the dual
space B*, with the weak* topology. Then O* B is an object in the category
Compceonv. If T: B,—B, is a linear contraction, then the induced map
0*T': 0" By~+0* By is continuous and affine. Olearly, 0*: Ban, ~> Compconv
is @ contravariant functor.

TEEOREM. Let (K, ¢;) be the inverse limit of an inverse system (KEyy 95)
of compact convex sets. Then (M(Km), £ (qat)) s a direct limit in the category
Ban, of the direct system (L(K,), o (o)) .

The following lemmas are well known. The trick in Demma 1 is 6o
notice that any Banach space B can be thought of as the space of continuous
affine functions on 0* B which vanish at zero. Lemma 8 is an immediate
consequence of the Hahn-Banach Theorem.

Levma 1. Suppose (B, v§) is a direct system of Banach spaces and linear
contractions, and suppose B is a Banach space and, for each t, w: B,—~Bis
o limear contraction such that wyvi = v, for t < s. Suppose that (0* B, 0*y,)
is.am inverse limit of the inverse family (O* B;, O ;). Then (B, v,) is a direct
limit in Ban, of (B, vf).

Lemma 2 ([4], Chapter VIII Corollary 3.8). Suppose (X.,, a;) is the
tnverse imit of an inverse family (X, af) of compact topological spaces. Then
for every ¢, a,(X,.) = M af(X,).

&>

Lemuma 3. If X is a compact space let M, (X) denote the set of reqular Borel
(signed) measures on X of norm < 1. Suppose a: X—Y is a continuous
map between compact spaces. If a is onto, then the induced mep wr>poat
from M (X) fo M,(Y) is onio. i
"~ Proof of the theorem. According to Lemma 1, we have proved
the theorem if we can show that 0%« (K_,)is an inverse limit of (0* s (K))
For ease of notation, let us write K, and K, for 0*« (K;) and 0*«#(K.,),
and ¢} and @, for 0%« (¢f) and O* o (). Let (L, 4;) denote the inverse
limit of (K, f). Since §ip, = g, there is a unique continuous affine map
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i K~ such that 41= 3, We will be done if we can show that 1 is

injective and onto. :

First we show that 2 iy injective. Suppose b, ke K., and b = k. We

must find some ¢ for which g;(h) s ¢;(k). Choose fe of (K,) such that

(f) >Ek(f)+e for some &>0. Now the subspace U,cl(qvt)(ﬂ(Kt)) of
17

s/ (K,) contains the constants and separates points of K, (since the family
{p} separates points of ), so that by a standard result (see, for example,
[1], p. 224) it is uniformly dense in <7 (K,). So choose ¢t and ge o7 (K,)
such. that | #(p) () —fll < /2. Then g,(k)(g) = h((g) () > h(f)—e/2
>5(f)+2/2 > k(= (p)(9)) = @(k)(g), and we are finished.

To prove that 1 is onto, let us take xe¢ L. Then # = (z;) for elements
wye B, for which ¢f () = x, for £ < 5.

-As a preliminary step we shall show that for each ¢ there is an element
y, in K, such that ¢,(y,) = x,. First of all, for each s, use the Hahn—
Banach Theorem to find a measure v,e My (K,) such that »(f) = =,(f)
for every fe o (K,). Then for s > t, o, = v,0[gi]™" is a measure in M, (K,)
which lives on ¢j(K,). Suppose I': a->s is a subnet such that {wpq}
converges (weak*) to we M,(K,). Then y, lives on (‘2 Pi(E,) = g (K o)

8>
by Lemma 2. Since ¢;: K -~K, maps onto the closed subset ¢,(K,)
we can, by Lemma 3, choose a measure y,e M, (K,,) such that p = yop 1.
Then the map f—v,(f) for fe o (K,) is a member 7; of K. It will be
enough to show that @,(4)(f) = &,(f) for fe o (K,). Indeed, if I'(a)>t,
then
z,(f) = ?’f(u)(mr(a))(f ) = re(fo ?r®)
= "’r(a)(fo‘l’{(a)) = 0rg(f).

Now as a grows large, these numbers converge to

w(f) = reer Y = ey ().

Thus we must have @ = @,(y,). ‘

Now we complete the proof that 4 is onto. Suppose A: f—tis a subnet
such that {y,} converges in K, toy. We will show that A(y) = 2. For
arbitrary ¢ and A(f) =1,

2, = 0f P (@) = /P9 Ya) = P Yag)-
As f gets large, these expressions converge to
7 (y) = ).
Hence .= A(y).
Rematk 1. The notion of direct limit depends heavily on the eategory

in which it is taken. If we let &K denote the category of all spaces < (K)
for K compact convex, with morphisms the positive linear operators which
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map 1 into 1, then it is very easy to see that &/ (K,,) is a direct limit of
(s (K,)) in the category /K. Our theorem is a much stronger statement:
o (K,) remains a direct limit in the larger category Ban,.

Remark 2. Compare our theorem with the following theorem of
Semadeni.

‘'THEOREM ([3], Theorem 1). Let (X, ¢;) be the inverse limit of the
inverse system (X, ¢f) of compact topological spaces. Then (?f (Xoo)y € (q0))
is the divect lémit in Ban, of the direct system (%(X;), ¥ (rp‘;’)).

This theorem was proved earlier by Pelezydski ([2], p. 14), in the
speeial case where all maps ¢f are surjections. Semadeni’s theorem can,
in faect, be obtained as & corollary of our theorem, but only with some
additional work; one passes from compact spaces X to the simplex P(X)
of Borel probability measures on X. One can identify ¢(X) with « (P (X)),
but one must show that if X, = inv lim X, then P(X,) = invlim P (X,).

If one wants to obtain Semadeni’s theorem by the methods of this
paper, the most natural way is to imitate the proof of our theorem directly.
The proof that A: O0%%(X,)~L is injective is similar: one wuses the
Weierstrass—Stone theorem to prove that | % () (’K(Xt)) is dense in ¥ (X,).
The proof that A is onto is somewhat simpler than in our case.

Rematrk 3. T am grateful to Professor Semadeni for bringing the
problem to my attention and for acquainting me with the ideas from
category theory.

Remark 4. I wish to thank the referee for providing me with some
references and for suggesting some improvements in style.
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Continuity of operators on Saks spaces
‘ by
IWO LABUDA (Poznan)

. Abstract. In [13] Orliez initiated the study of linear operators acting from so-
called Saks spaces. His original investigations concerned operators taking values
in Banach and Fréchet spaces. In this paper we extend the theory to the case of opera-
tors with values in locally convex and general topological vector spaces. Generally
the proofs presented here are more direct than the original ones of Orliez; some refine-
ments of his classical statements and some new results have been obtained.

§ 0. Introduction. In the present paper we intend to give some
generalizations of results contained in [13]. Since we will constantly refer
to this fundamental work, we decide to preserve as far as possible
its terminology, notation and conventions. There i, however, one important
exception to this prineciple — an additive ([13], 2.1) continuous operator
v from a Saks space X, into a topologieal vector space ¥ will be termed
explicitly “additive (X, Y)-continuous”, while Orlicz, according to the
old terminology of Banach- [1], calls » in that case (X,, ¥)-linear.
Moreover, in many situations the topology of ¥ is explicitly mentioned,
ie., ¥ =(Y, 1) for example; we will then say simply that »: X,—»Y is
T-continuous, or only that » is 7-continuous, when no ambiguity about .
X, and Y arises.

An operator v: X,~Y¥ will be said to be linear (cf. [13], 2.1) if for
arbitrary #,, z,¢ X, and arbitrary scalars a,, as, a;@;+ ay2,e X, implies

Y (Qy 8y - Ay ®g) = Ay ¥ (@) -+ @y (2,). Note that with this terminology it
is obvious that an additive (X,, ¥)-continuous opomtor = g linear (X, ¥)-
continuous operator.

Following Orlicz, & Saks space is defined as a cloged unit ball of a funda-
mental normed space (X, ||'[) on which another norm (in general non-
homogeneous!), || ||* say, defines the complete metric. It is clear, however,
that instead of the unit ball of (X, ||-{]), a bounded, closed, convex balanced
set of an arbitrary Hausdorff topological vectior space could be taken.

If this unit ball endowed with the metric induced by ||-|* is not com-
plete, it is called a Saks set. ) .

Denote by X, a Saks space and by K(w,,r) the open sphere with .
centre @, and radius r in the space X,. We ghall consider Saks spaces
satisfying the following conditions:
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