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STUDIA MATHEMATICA, T. LI (1974)

On Toeplitz sections in FK-spaces

by
GLENN MEYERGS* (Kingston, R. J.)

Abstract. Let T= (t,,m be a regular row-finite matrix. Let x be any sequence.

Define I'yz = Z‘ [ 2 zp.6%, where eF is the sequence having 1 in the k-th posi-
n=1 k=

tion and 0’s elsewhere. Let E be an FK-space containing the finite sequences and let

F’ be its dual. E has T-AK if imTp,a = o for all z< B (i.e. the ¢¥’s form a Toeplitz

mn
basis for B). B has T-FAK if Hmf(Tn) exists for all z¢ F and fe B’. B has T-AB if

m

the set {Th,x: m = 1,2, ...} is bounded in E for each z ¢ E. We introduce a new class
of FK-spaces and show that every FK-space F having T-AK, T-FAK, or T-AB can
be imbedded in a member of this class. We then use properties of this class to give
a partial answer to the following general problem. Let T and T” be any given regular
row-finite matrices. If B has T-AK (T-FAK) (T-AB), must ¥ have T/-AK (T"-FAK)
(T’-AB)% 'We introduce a new class of matrices for which this problem is solvable and
show that we can expect quite different results for matrices not in this class.

1. Introduction. A K-space is a locally convex linear topological
space of sequences in ‘which the coordinate functionals are continuous. An
FK-space is a complete metrizable K-space. Let # = (2;) be any sequence.

n
Define the n-th section of # to be the sequence @ = > »,e", where &*
k=1
denotes the sequence having 1 in the k-th position and 0’s elsewhere. We
make the following generalization of sections. Let T = (%,,) be a regular
row—ﬁnite matrix. Define the m-th T-section of « to be the finite sequence

Tpe = Z’ t,,mm Note that T,z = z it T is the identity matrix. Unless

othermse stated E will denote an FK-space which contains Z*, the set of
finite sequences. We denote the set of continuous linear functionals on . H
by E'. We shall be concerned with FK-spaces with the following properties.

1.1. DEFINITION.

(i) B has T-AK if imT,x =2 for all zeB.

(if) B has T-FAK if Bmf(T, ») exists for all fe B and xeB.

m
(iii) B has T-AB if {T,o: m =1,2,...} is bounded in B for oll xe B.

* This research is a portion of the author’s doctoral dissertation, which was
prepared at S.UN.Y. at Albany.
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Clearly (i) implies (i) and (i) implies (iii). Denote by By sx the subset
{ge B: imT, » = #}. In the case when T is the identity matrix, we denote
mn

properties (i)—(iil) above by AK, FAK and AB respectively. Spaces having
the AK, FAK and AB properties have been studied by several authors.
See, for example, the works of Zeller [15], and Garling [5], [6]. The above
properties have been studied in a recent work of Buntinag [2], in the case
when T is the Cesiro (¢, 1) matrix. Note that it B has T-AK for some T,
then the €5 form a Toeplitz basis for 7. ‘Toeplitz bases were originally
introduced in [7] and [8]."
In Seetion 3 we introduce a mnotion of duality which is relevant to
the study of T-sections. This duality is analogous to that developed by
. Garling in [6] for ordinary sections. In Section 4 we introduce a new clags
of FK-spaces, and we show that we can suitably imbed any FK-space
having T-AK, T-FAK or T-AB in a member of this class. This class is
analogous to a class introduced by Garling, [6], in the case when T is the
identity matrix. In Section 5 we use this imbedding to give a partial
answer to the following general problem. Let 7 and 7" be any two regular
row-finite matrices. If £ has T-AK (T-FAK) (T-AB), must & have T'-AK
(T"-FAR) (T'-AB)?

2. Preliminary ideas and results. Let s denote the set of all sequences.
s is an FK-space with the topology given by the seminorins 912§ =1,2,..},
where p;(x) = |2;]. Let ¢ denote the set of convergent sequences and let
m denote the set of bounded sequences. Throughout, T = (t,,,) will be
a regular row-finite matrix. Tt is well known that 7T is regular if and only
if the following conditions hold:

(1) SUD Y ftye] < 005
m p=1

. : 00
(2) ' lim 2 tmn = 17

: M =1
and
(3) lim¢,, = for n =1,2,...

m

For a sequence y = (v,) we define the sequence Ty = ((Ty)m), where
(TYm = 3 twnls- Let cp = {yes: Tye ¢} and my = {ye's: Tyem}). It
n=1

is known that ¢; and m, are FK-spaces with the topology given by the
seminorms {p;: j =1,2,...} and p, where 2y} = sup [(TY),,). (Bee [12],
n

Section 12.4.) If @ = (a;) and # = (x,) are any sequences, we cdenote by
az the sequence (a-ay).
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2.1. TuroreM. Suppose B has T-AB. Then Ep_x = E>.

Proof. The proof is a standard equicontinuity argument and is omitted.
(cf. [7], Theorem 1'; [15], Satz 3.3 and [5], Proposition 1).

3. Duality properties.

3.1. DEFINITION. Let E be any sequence space.

B = {yes: lim Y y,(T,n), exists for all xe B).
m k=1

B = {yes: sup| 3 yp(Tua) < oo for all we B},
=1

B and BT are called the B(T) and y(T) duals of E respectively.
3.2. TuEOREM. Suppose B has T-AK. Then B = BFT) = B0,

Proof. Since

=] oo =<3
Fl@) = lmf(T,e) = lim ' apf (") Y 1, =Lim D f(6%) (T
n M =1 n=k M f=1
we can identify cach fe B with (f(e))e B*™. That B = E*™ will then
follow from the Banach-Steinhaus theorem.

Clearly BT < B*™D. Suppose ye B"Y). Define f, (o) = k;’l V(T @i
form =1, 2, ... Since ye B, sup |f,; (@)] < oo for each x< E. Thus the set

{fm: m =1,2,...}is weak® bounded in B'. It follows from [}2], Section
13.3, Problem 20, that the set {f,: m =1,2,...} is weak rela,tlvgly
compact. Thus there is a sequence of integers (m;) and a contin-
uous linear functional f such that lim Fny(®@) = f(2) for all we B. But
f(w) = lim E f(ek) (me)k and f(ek) = lim fmi(gk) = Y- Thus Ye EB(T)'

m k=1

3.3. TamorEM (cf. [11], Theorem 3).

(i) B has T-FAK if and only if (Epuz)’® = BFD,

(i) B has T-AB if and only if (Bpix)® = B'O.

Proof. We will only prove (ii) as the proof of (i) is similar. Supposve
(ET_AK)?'(T) = "D, Tet feE'. Then (f(ek))e(ET-_AK)ﬂ(T) = (ET_AK)V(T) = B,
Thus sup |f(T,,»)| = sup| IZIf(e’“)(Tmm)k[< oo for all ze H. Thus B has
T-AB 11)ny the BétnacﬁiMajc:k(Ay theorem. .

Conversely, suppose that B has T-AB. By Theorem 2.1, By, is an
FEK-space with the topology induced by B. Let ye (Hq ). By Theorem
3.2, y defines a continuous linear functional on FEp ,x which has an exten-

sion, f, to all of E. Since ¥ has T-AB, sup|f(T, %) = sup|k21 f(e’”)(T,,,m)k|
m m =
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U (T} < co for all we . Thus ye B"P. Since the opposite

mclusmn always holds, B'D = (Bp.x)™.
3.4. CoROLLARY. Suppose B has T-FAK. Then EFD = B"D,

Very recently, Martin Buntinas [3], has obtained results which are
similar to thoge of this section.

= sup]

4. The spaces B, and F 0.
4.1. DEFINITION. Let «f be a countable class of subsets of s. For each
Ae o define the emtended real-valued seminorm p ) On 8 by

2 ak n® ‘

Let Foyry = {wes: pam(®) < co for all Ae o} and Byp
0
Hm 3 a(T,,a); exists for all AeUA}.
m k=1
If o7 is a single set 4, we denote F ooy bY F gy a0d B iy OY F gy
We will denote the sequence (1,1,1,...) by e. If & = {¢}, we denote
Foyry DY Foy and By by By
4.2. THEOREM. H and F oy are FE-spaces with the topolog'z/ generated
by the seminorms {p ym: Aest} and {p;: j =1,2,...}. In addition, B o)
and F oy contain B if and only if each A el is coordmatewwe bounded.
Proof. Since p; is a continuous seminorm for each gy Boyry and
F iy are K-spaces. Since o is a countable class of sets, B ry @04 F oy
are metrizable. It remains to show that ., and F ) are complete

Define the continuous linear functional f%(z) = Z’ a(T,,z), for
each aed and m =1, 2, k=1

Since {wes: Py (@ <s} = ﬂ ﬂ{wes |fm{@)] < e}, it follows that

m=1 aed
D 4(ry 18 lower semicontinuous on s. The completeness of F sy nOW follows
from Gﬂrlmg 5 completeness theorem ([5], Theorem 1). Now for eaeh
m=1,2,...and acd, |f3(#)] < Pymp (). Thus the set {ze F oymy: hmf“

exl%ts} is closed in F . by [19], Section 7.6, Theorem 4. Slnce Ep”,)

=N ﬂ {we T iy lunf‘z ) exists}, we have that By is closed in
ek aed

F ym and hence EM(T) iy complete.
Since SUp ;| < Pam(e)) < sup Z [t 1]

e

= lim 2 bun®; = &;, we have the second statement.

m  n=i
Unless otherwise stated, we shall assume that each 4 e o is coordi-
natewise bounded.

Py (@) = sup
aul

= {&e¢ FM(T)

o0
and lim 3 a,(7,.¢),
m k=1
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4.3. PROPOSITION. H g = BT and F g = TG0,

Proof. We first pmve the proposition for spaces of the form H .
Let B = {ze B gy Py (@) < 1}. Then Eyyy is an FK-space by Theorem
4.2, Note that B need not be coordinatewise bounded. We claim that Epq,
is a BK-space with norm pggy. To show this we must find M; >0 such
that |y;| < M; pB(T)( ) for ‘nH ’f/s EB(T) First suppose that pA(T)(e) # 0.
Let M; = P ypm(e’). Then, since e’/]l:[ eB and T is 1edu1m, Pry(Y)
= |y /Myl I p () = 0,1lct M, = 1. Then for each Ae R, A¢’e B. Then
o0 > Py (YY) = sup |Ay;] mnd s0 9; = 0. The claim is thus proven. Let

13. Since 4 = 0, By S Bn- Suppose oe FL,

a“ T my)"
and hence zeHyq. Now We have that Bggy < BYY, and thus

B < B, We now ‘have Hyqp 2 Bog) 2 B2 BN 2 By
and thus By = BHD. Since the theorem is true for Hym, it is then
true for B m = ﬂ E’ (T

The proof of the second part is similar.
4.4, THEOREM. (i) Suppose E has T-AK. Then E can be expressed as
a closed subspace of E g for some family . For this family o, B ,p
) B(T) MIIUT)
has T-FAK, F g has T-AB, B g = EFOPD gnd F oo = B
(ii) Suppose K has T-FAK (T-AB). Then E can be expressed as a subspace
of B oy F oqmy) for some family of. For this family o, B g has T-FAK
(F oy has T -AB), By iz = (EM(I'))T-AK (ET—AK = (F JI(T))Tv,iK)7 and Ed(T)
= RADAT) (7 ) =-E?(T)V(T))' :
Proof. (i)Suppose B hasT-AK. Let {g;: j = 1,2, ...} bethe seminorrll}s
which define B’s topology. Let U; = {we B: ¢;() <1} and 47 = {aec B*®:
quplhmZ’ak T2 <1} Let of ={47:j=1,2,...}.
.reU m k=
We ha,ve that ¢;(z) = sup|hmz1 (T )| for all e B by the Hahn—
aed = m k=1

Banach theorem ([12], Section 4.4, Corollary 3). Thus

= {ye B, PB(T) () <

Since Hg is a BK-space, sup] Mp g (y) for some I >0

PAj(T)(‘”) = *‘uPl 2 a (T i)y 1 “113 'hmz wz (T t) Ici

ae_d) fe= asl =t fe=1
= gup llm 2 (T, (T,2)); ‘ = hup q,(T z).
n k=
. aed!

Since 5u1)q](Tm r) = Pafery () < oo for all j, we have B < Fyqg.
Since UAfCD’(T) we have F < Hygm. Thus by [12], Section 11.3,

j=1

Corollary 1, B’s FK topology is stronger then the topology induced by
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B oyr). Bince F has T-AK, ¢;(%) < pujr(#) for all §, and hence B’s FK
topology is equivalent to that induced by Bz . Thus B is closed in B P
and B = (Byp)pax = (F spomy)m-axc -

Tt is clear from the definitions that E'™ 2 B = span U Al
Suppose ye BT, By Theorem 3.2 and [12], Section 12.1, fact ix, We have

that ]111112 Yu(L @)y
m k=1

<M > q,m( ) for some M >0 and some finite
and [12],
Section 4.4, Problem 30, we have that y = Zy, whete each y'e BT

T=1
is such that |11m)jy,c (') k| Mg (2) for all e H. Thus ye span UA’

F=1
and Df,,f'},) = Eﬁ{l}g = span UA’ Thus BADAT) — Eﬁ " = By by

Proposition 4.3. We also ha.ve that I’f},ﬂ} 2 span U Al = BT . T

2 F. Thus B4 = B"D and BrO7D) = g (T — FW,) By Theorem
3.3 we hzwe that By has T-FAK and F ) has T-AB. This concludes
the proof of (i).

To prove (ii), suppose B has T-FAK (T-AB). Then Hy_,x is an FEK-
space by Theorem 2.1. One can then observe that the spaces & oy a4 F o
constructed from Fy_ - as in part (i) have the desired properties.

Remarks: (i) One should compare this result with those of Garling
([6], Theorem 5) and Ruckle ([10], Theorem 3.1) in the case when T
is the identity matrix. A related result has been obtained by Bumtinas
([3], Theorems 6 and 7). (i) A space having T-FAK or T-AB need not be
closed in the space F gy of the preceding theorem. For example, let 7T
be the identity matrix and let B be an FK-space such that ¢, < B < m
and yet & is not closed in m. An example of such a space, B, is found in [91,
where & space F is given such that F ne, = 0 and B = F + ¢, is dense in m.
One can easily show that Byp,g = ¢, D = FPD =1, and FIOAD
= B = m. B has T-FAK, by Theorem 3.3.

5. Applications.

5.1. LemMmA. Let of be any countable class of coordinatewise bounded
subsels of s and let we F 0. Then the set {Tiz: i =1, 2, ...} 18 bounded in
Fogay f and only if the set

i
A, ={y(“’”’)e i ylem™ =2 (T @)y @cdy m =1,2, }
k=1

collection {j(4): 1 =1,2, ,p} of integers. By Theorem 3.2

is bounded in ¢g for every Ae o.

Proof. Note that since T' is row-finite, each set A, is contained in
op Recall that the topology of ¢, is given by the seminorms ¢ and
{p;: §=1,2,...}. Suppose {T{z: i=1,2, ..} s bounded in Fy.

icm®
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Then for all 4e o,

w0 > upp.n(Tia) = sup| Day(To(Tioy| = sup| 3 (T2
: ded =1 ; Lm =
= sup Z (T | = supp (y™).
i,m i=1 E=1 m
aed aed
Also

7 oo
9 T,
supp; (4%™) < sup! X a,cmki D il < 00
m m i n=1

aed aed

since each Ae o is coordinatewise bounded and T is regular. Thus 4,
is bounded in ¢, for each Ade .

Conversely, suppose each 4, is bounded in ¢, for each A< of. By
reversing the above argument, we see that sup;p Am(T ;%) < oo for each

Aecod. Also supp,(Tiz) < [Jv,c|sup |Z%l<°° Thus the set {T;a:
i

i=1,2,...} is bounded in FJ,(T)

5.2. THEOREM. Suppose B has T-AK (T-FAK) (T-AB) and ¢p S Cq-.
Then B has T'-AK (T'-FAK) (I'-AB).

Proof. Suppose F has T-AB. Imbed B in F g a5 in Theorem 4.4.
‘We have for each ze I and Ae o/, A, is bounded in ¢y by Lemma 5.1.
By [12], Section 11.3, Corollary 1, the topology of ¢y is Iweal‘zer than. the
topology of ey. Thus 4, is bounded in ¢ and so the set {T;z: ¢ = 1{ 2, ..'.}
is bounded in F qy. Since the set {Ti®: i =1,2,...} is contained in
E™, we have that the set is bounded in (¥ yp))r.ax = Fp.ax. Thus {T;z:

4 =1,2,...} is bounded in F for each zeE.
Suppose E has T-FAK. Then, since ¢p S Cpr, hmf(Tmm
= lim S’ [ 2 z,.f (") = llm Z‘ iy 2 @, f(e* ) = Hmf( (T;x)y for all xe B
m n=1 = i

and fe B Thus K has T- FAK
Suppose F has T-AXK. It then has T-AB and hence T'-AB. Since

E = E*®, the result follows from Theorem 2.1.
5.3 Lmmma. If (2 a,cwk)ecr and | Z’ a(Tpe)): m =1,2,...} ~
is bounded in o, the'n, ( 2 ay ) € T

- k=1 . .
Proof. Let s = (8,,,), Where s, =1 for m < and §,,, = 0 otherwise.

One can then observe that the second hypothesis holds if and only if
{Praz: m =1,2,...,8F = > tn,} is bounded in ¢zg and that the con-
n=k

clusion holds if and only if aweE®""S, The result follows from [4], Theo-
rem 3.3.
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It has been shown by Zeller [16] that given any regular (row-finite)
matrix T, there is a regular (row-finite) matrix 7 such that cp = o°T.
We will use this notation in the following theorem.

5.4. THEOREM. F has T-AK (T-FAK) (T-AB) if and only if B has
T-AK (T-FAEK) (T-AB).

Proof. Suppose # has T-AB. Imbed F in F«/('l’) a8 in Theorem 4.4.
We have for each we B and A e o, A, is bounded in ¢,. Since o7 18 closed
in ¢z, we have that 4, is bounded in ¢z. Arguing as in the proof of Theorem
5.2, we have that the set {T;#: 4 =1,2,...} is bounded in B for cach
ze B. Thus B has T-AB.

Suppose # has T-FAK. Imbed F in ¥ wry 38 in Theorem 4.4. From
Theorem 3.3 and the proof of Theorem 4.4, we have that E’W ) = gpan U A.

Let feB'. Then (f(e")e spanUA By Lemma 5.1, {(Zf
m=1,2, } is bounded in cT By Lemma 5.3, (Zf
Thus l1mf ) exists for all fe B’ and ¥ has T- I‘AK

Suppoge & has T-AK. Then ¥ has T-AB and hence T-AB. Since E""
is dense in F, the result follows from Theorem 2.1.
The converse follows from Theorem 5.2,

. DeFINITION. 4 regular row f'mne matriz is said to be of type §
if a/nd onl Y Bz has T-AB.

The following proposition shows that if T satisfies the well- ]movm
“mean value property”, then T is of type §. See [1] and [13]. The (C, 1)
matrix and the identity matrix have this property.

5.6. PROPOSITION. If ¢y has AB, then T is of type S.

Proof. For T = ({,,), we define 1" = (t; 5), where t; = 0 and tzz+1

= t,. T' is clearly regular and row-finite. It is a straightforward computa-
tion to verify that

.Tw))

wk)e CT = ¢p.

2 2 (Tz$)k = 2 b (T5y )71""2 ti;‘(-T;ny)h
n=1 k=1 n=1 j=1

J
where y = (y;) is such that y; = ' @y Since ¢, has “AB, it has T-AB
k=1
and T'-AB by Theorem 5.2. Thus for e By
suppg(m)(_’l’ z) bup( Etm,, T.y) } —[—\up‘ Yt” my ’< co.
m, i
5.7. THEOREM. (i) <
() T s of type S.
(i) By has T-AK.

(1) <= (i) < (iv):

icm
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(iii) Fyp has T-AB.

(iv) F oz has T-AB for every coordinatewise bounded family < of
subsets of s.

Proof. Suppose T is of type 8. Let S be the matrix in Lemma 5.3.
Observe B,q) = ¢pg. The result follows from [4], Theorem 3.3 and
Theorem 2.1.

Suppose Fyq has T-AB. Then {T;: + =1, 2, ...} is an equicontinuous
seb of operators on Fyqy. Thus there exists M >0 and a set of integers

p
G@: ¢=1,2,... < M lpen (@) + X laya]-
=
Suppose xe F 4. Then for each Aec o, we ha,ve

SUPP.a(ry (T4%) = SUD Doy (T07)
asA

»
< M[i“fpem(“‘”)'l‘ 2 1) (q)\] <M [PA(T) "‘Z 16t5(q) q)l] < oo
€. q:l

since we F iy and 4 is coordinatewise bounded. ’I‘hus F oz has T-AB.

That (iv) implies (i) is obvious.

Remarks. (i) If T is of type 8, it follows from Lemma 5.2 that T
is perfect (i.e., ¢ is dense in ¢z). Thus any non-perfect 7' is not of type 8. .
Example 5.9 is perfect but not of type 8. (ii) If T is not of type 8, it is
still possible for a space of the form F Jm) to have T-AB. Any FK-space
having AB will have T-AB by Theorem 5.2. The construction in Theorem
4.4 will yield the desired space F .

5.8. PrOPOSITION. Let T be of type 8. If ¢r & cpey then By has T-AK
but does not have T'-AB.

Proof. The first statement follows from Theorem 5.7.

We may choose ¥ € ¢p/mq., otherwise mq 2 ¢p and since 7'is perfect,
¢p 2 ¢p. Define o = (a,) as follows: 2, =y, and @, = y,— ¥, Then

e Byg. Let fe By, be defined by f(z) =lim S (T @)

L
k=1

= Sl}P‘ih{j ijkf(‘?k)‘ = Sup |§t~:’j%| = o0
T9=1 =1 vog=1

since y¢ myp. Thus {Tjz: ¢ =1,2,...} is not bounded in B,y,.

ExaMpLE. Define the matrix T = (t,,) by the following equations:
ty = by yym = tun, = 1/2 for m = 2,3, ..., 1, = 0 otherwise. It is shown
in [14], Theorem 8 that T is perfect. Also ¢y has (C,1)-AB by [14],
Lemma 1. It follows from Proposition 5.8 and the following proposition
that T is not of type S.

5.9. PROPOSITION. Let T be the matriz of Hxample
(T-AB) if and only if E has AK (AB).

, P} such that suppe(T)(T-a:

Now

sup |f (T3a)

5.9. B has T-AK
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Proof. Suppose B has T-AB. Imbed B in F g as in Theorem 4.5.
By Lemma 5.1. we have that the set A4, is bounded in ¢z for each
Ae o and ze¢E. Thus

i—1

oo > §sup Ziu a’lc(fnza’ ’ bup ’th 2“1{: -2 ,
myi 5 i=1 k=1
aed e
G2 i1
= sup |( y 2+ (1/2) Z Uy ) «
i>2 7c=1 Ie=1
aed .
Also,

00 > SuUp I ty 2“’“ T, w)k'

’>1 =1 k=1

> sup|( 1/2 akwkl ——bup' 1/4) 2%% +(1/4) Za,uwk{

i>1 o
aed o= as

‘We have from the inequality immediately above that the second term
1
is finite, and thus sup| 3 a2, < co. Also
aed k=t
sup | 2 (T @) < 51D thmnl

m,F =1 4,m =1
‘add aed

Va,,cwk’ 0.

Thus 4, is bounded in ¢; = ¢. By Lemma 5.1, the set {gz m=1,2,..}
is bounded in I and hence in B. Thus E has AB: It follows from theorem
2.1 that if ® has T-AK, then F has AK.

Theorems 5.2 and 5.4 provide a partial answer to the question posed
at the beginning of this paper. Proposition 5.8 then gives a complete
answer in the case of type S matrices. Theorem 5.4 and Proposition 5.9
indicate the kind of results one might expect for matrices which are not
of type 8.
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