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On linear properties of separable conjugate
spaces of (*-algebras

by
P, WOJTABZCZYK (Warszawa)

Abstract, It is proved that the conjugate space of a separable (*-algebra in

L=}
which any hermitian element has a countable spectrum. is isometrie to ( Y N (Ha))1
n=l
where N (Hp) are nuclear operators on separable Hilbert spaces H,. This implies
that a C*-algebra with a separable conjugate space has a Schauder basis.

The present paper is a study of some linear properties of a class of
O*-algebras which can be considered as a generalization of spaces of
continuous functions om countable compact spaces. We prove an iso-
metric representation of a conjugate space of such an algebra. This result
can be considered ag a generalization to the C*-algebra setting of a theorem
of Rudin [b]. The method of the proof was influenced by [7]. From our
representation theorem we deduce some corollaries on the linear structure
of such algebras.

Our terminology on C*-algebras agrees with that of [6] and our

- terminology on Banach spaces is that usually adopted in' Banach space

theory (cf. [3]). i

DrrINITION. A (*-algebra is called countably scatiered if it is separabl
and each abelian *-subalgebra has a scattered spectrum.

LummA 1. The class of countably scattered C*-algebras is closed wnder
taking x-subalgebras, x-homomorphic images and.sums in the sense of ¢,.

Proof. Obvious from the definition and the following

SunrnmmA. A O*-algebra X is countably scattered iff X s separable
and every hermitian element in X has o countable spectrum.

Recall that a W*-algebra is a (*-algebra X isometric to & conjugate
space of some Banach gpace X,. This space X, is unique (cf. [6], 1.13.3).

LammA 2. Let (2, u) be a measure space which is a disjoint sum of
sets of finite measure (call such a space a localizable measure space) and
let W be a factor, i.e., & W*-algebra such that an element commuting with
any other is a multiple of identity. If every central projection in L (2, W)
contains a minimal projection, then (£, u) is purely atomic.
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Recall that & central projection is a projection which commutes with
any element of an algebra. By L, (£, W) we mean the space of all W-valued,
essentially bounded, *weakly locally measurable functions. With pointwise
operations this space is a W*-algebra.

Proof. It is easily checked that every central projection in L, (2, W)
has the form y 47 where y, is an indicator function of a set 4 < Q and I
means the identity in W. Moreover, such a projection is non-zero if x(4) > 0
and is minimal iff A is an atom of Q. So the asyumptions of the lemma
imply that any set of positive measure contains an atom. So Q iy purely
atomic. )

Recall that by the Sherman theorem (cf. [6], 1.17.2) if X is a O*-al-
gebra, then X™ is a W*-algebra. Recall also that B(H) is a W*-algebra
and its predual is N (H), the space of all nuclear operators on a space H.

Lmmyva 3. If X is o separable C*-algebra, then each irreducible W*-re-
presentation of X** acts on o separable Hilbert space (a W*-representation
is a represenbation continnous from the ¢(X™, X*) topology into
o'(B(H), N(H))).

Proof. Let ¢: X™->B(H) be an irreducible W*-representation
of X**. Then p(X) is norm-separable and dense in ¢(X**) in the strong
operator topology. Since ¢(X) has a separable invariant subspace and @
is irreducible, we conclude that H is separable,

Leyvma 4. If X is a separable Banach space, then X* is ot isomorphic
to (Z;Y,,)l where card A >N, and Y, are separable conjugate spaces.

"Proof. If X* is isomorphic to (Y ¥}, with card 4 > N, then X* >
acd ‘ )

1(4) and, by [2], X* > I;(0, 1). But this implies that L,(0, 1) = ( 3 ¥, },
0 Nl

for some sequence (a,) = 4. Since (ZY%)jl iy a separable conjugate

=l

space, this contradicts the classical theorem of Gelfand [1} (ct. [27).

LeyMA 5. Let X be a countably scatiered O*-algebra. Then X contains
o minimal abelian projection, i.e., o minimal projection p such that pXp
W8 an abelion algebra.

Proof. Let B be a maximal abelian s-subalgebra of X, Since the
spectrum. of B is scattered and metrizable, we infer that B iy isometric
with Cy(a) for some countable ordinal . (Cy(a) means the space of all
continuous functions f which are defined on the set of all ordinals legs
than or equal to o equipped with interval topology, and such that f(a) == 0.)
To gee this, use the Gelfand representation theorem and the Maznrkiewicz—
Sierpiriski theorem [4]. et p be an isolated point of ¢, p 3 a, and let g,
be the indieator function of p. Zp< B and it is a minimdl projection. in B.
This( lx)xea.ns that for yeB there is a scalar y(p) such that w,y = x,yx,
=YP)Ap-
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We shall show that y, is a minimal projection in X.
Let us congider v¢X and yeB. Then
(X0 ®10)Y = Zo®%o Y2 = Y (P) 1%y = Y (D) X XoP%0 = Yo X0 Yo Tn
= YA @xp .
Since B iy maximal, we infer that y,xy, ¢ B. So if we put ©(p) = y, @y, (),
we obtain
Yo @ty = Ap Xp¥kpXp = O (D) xp;
80 y, I8 & minimal projection in X, Moreover, y, is an abelian projection.
TumoreM. If X is @ countably scatiered O*-algebra, then X* is isometric

( ZSN(H,»)I “

ne=l

to

where H, arc separable Hilbert spaces and 8 is finite or oo.

Proof. Let us consider X** and let 2¢X* be a central projection.
Xz is a x-homomorphic image of X, and 8o, by Lemma 1 and Lemma 5,
Xz contains an abelian projection e. Since Xz is w*-dense in X**¢, ¢ is
an abelian and minimal projection in X**z. So each central projection
in X** containg a minimal abelian projection. Hence by [6], 2.3.2 and
2.3.8,

™= (éz,,@ﬂ(ﬂﬁ))m

where K is some set of cardinals, Hy is a Hilbert space of dimension f
and Z, is an abelian W*-algebra. Since X** has an irreducible W*-repre-.
sentation onto each B(H,) (cf. [6], 1.22.11), by Lemma 3, K does not
contain any uncountable cardinal, and so N(H,) are separable for all
fe K. So, by [6], 1.18.1 and 1.22.13, !

X = (3L (2, BHY)),.,
BeK
where (£2;, up) are localizable measure spaces. By_ Liemma 2 each. (2 1tp)
is purely atomic, and so X* = (ZAN (H): (ef. [6], 1.13.3) where H, are

separable Ililbert spaces. Now Lemma 4 gives us the required represen
tation (N(H,) is a conjugate space). :
Now let us state the following obvious
8
ProrosrrionN 1. The space ( 3 N (H,)); has a basis (x,) such that there

=1 8
ewists a sequence of indices (%,) such that span {w, ), s isometricto ‘211\7 (H

where S is finite and H} are finite-dimensional Hilbert spaces.
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Now a result of Johnson, Rosenthal and Zippin [3], as stated in
[10] Lemma 2, implies

COROLLARY 1. A countably scattered C*-algebra has o basis (z,) such
that there is a constant C and a sequence of indices (k,) such that the Banach—
Moazur distance from span {m,}ie, to some finite-dimensional O*-algebrg
48 less than C.

Remark 1. Since any infinite-dimensional C*-algebra contains o,,
the results of [8] can be used. to obtain some gpecial types of bases.

Remark 2. It follows from the results of [9] and the easily provable
fact that the Szlenk index of O(a) is greater than a that for a countably
seattered (*-algebra X there exists a countable ordinal f sueh that X
" does not contain subspaces isomorphic to O(a) for a = f.

Remark 3. It is obvious that a 0™-algebra X is countably scattered
iff X* is separable, and so by [7] X is countably seattered iff it is a G.C.R.
algebra with countable composition. series.

Remark 4. The space X has the Schur property if the weak se-
quential -convergence implies the norm convergence. It is well known
that the space I, being the conjugate space of an abelian countably
scattered (*-algebra, has this property. We should like o discuss this
property for conjugate spaces of other countably scattered (*-algebras.

o0
If all H, are finite-dimensional, then (ON (H,)), has the Schur property
B Tirs]
which can easily be proved. If at least one of H, is infinite-dimensional,
then ( SN (H,,))1 does not have the Schur property sinee it contains I,.
n=1

However, Theorem IV.1 of [11] easily implies-that in this cage the fol-
lowing i8 true:

If (fa) is o sequence of positive elements in (2 N(H,): weally con-
vergent to f, then |f, —f|—0. Rl

This result can also be proved directly. Let us remark also that
Theorem.IV. 1 of [11], which is apparently formulated in a more general
form, is in fact equivalent to the above statement.
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