P. Mankiewicz

142

- P. Enflo, Uniform structures and square roots in topological groups II, Israel J. Math. 8 (1970), pp. 253-277.
- [7] I. M. Gelfand, Abstrakte Funktionem und linearen Operatoren, Math. Sbor. 4 (1938), pp. 235-286.
- [8] M. I. Kadec, A proof of topological equivalence of all separable Banach spaces, Funkcional. Anal. i Prilczen. 1 (1967), pp. 53-62.
- [9] V. L. Klee, Convex bodies and periodic homeomorphism in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), pp. 10-43.
- [10] G. Köthe, Topological vector spaces I, Springer-Verlag, Berlin 1969.
- [11] J. Lindenstrauss, On non-linear projections in Banach spaces, Michigan Math. J. 11 (1964), pp. 263-287.
- [12] P. Mankiewicz, On Lipschitz mappings between Fréchet spaces, Studia Math. 41 (1972), pp. 225-241.
- [13] On the extension of sequentially continuous functionals in LF-spaces, Bull. Acad. Polon. Sci., Ser. sci. math. astr. et phys. 20 (1972), pp. 929-933.
- [14] On differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), pp. 15-29.
- [15] On subspaces of $\sum H_i \times s_i$, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. to appear.
- [16] On spaces uniformly homeomorphic to the space H×s, ibidem 22 (1974), pp. 521-527.
- [17] E. Michael, Convex structures and continuous selections, Canad. J. Math. 11 (1959), pp. 556-575.
- [18] W. Słowikowski, Fonctionelles linéaires dans des réunions dénomerables d'espaces de Banach reflexifs, C. R. Acad. Sci. Paris 262 A (1966), pp. 870-872.
- [19] V. N. Sudakov, Linear sets with quasi-invariant measure, Dokl. Akad. Nauk SSSR 127 (1959), pp. 524-525 (Russian).
- [20] H. Toruńczyk, (G, K)-absorbing and skeletonized sets in metric spaces, Dissertationes Math. (Rozprawy Mat.)
- [21] Cartesian factors and topological classification of linear metric spaces, to appear.
- [22] H. Rademacher, Über partielle und totale Differensiebarkait von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919), pp. 340-359.

INSTITUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES WARSZAWA

Received May 25, 1973 (683)

STUDIA MATHEMATICA, T. LII. (1974)

On linear properties of separable conjugate spaces of C^* -algebras

b;

P. WOJTASZCZYK (Warszawa)

Abstract. It is proved that the conjugate space of a separable C^* -algebra in which any hermitian element has a countable spectrum is isometric to $(\sum_{n=1}^{\infty} N(H_n))_1$ where $N(H_n)$ are nuclear operators on separable Hilbert spaces H_n . This implies that a C^* -algebra with a separable conjugate space has a Schauder basis.

The present paper is a study of some linear properties of a class of \mathcal{O}^* -algebras which can be considered as a generalization of spaces of continuous functions on countable compact spaces. We prove an isometric representation of a conjugate space of such an algebra. This result can be considered as a generalization to the \mathcal{O}^* -algebra setting of a theorem of Rudin [5]. The method of the proof was influenced by [7]. From our representation theorem we deduce some corollaries on the linear structure of such algebras.

Our terminology on C*-algebras agrees with that of [6] and our terminology on Banach spaces is that usually adopted in Banach space theory (cf. [3]).

DEFINITION. A C^* -algebra is called *countably scattered* if it is separable and each abelian *-subalgebra has a scattered spectrum.

LEMMA 1. The class of countably scattered C^* -algebras is closed under taking *-subalgebras, *-homomorphic images and sums in the sense of c_0 .

Proof. Obvious from the definition and the following

Sublemma. A C^* -algebra X is countably scattered iff X is separable and every hermitian element in X has a countable spectrum.

Recall that a W^* -algebra is a C^* -algebra X isometric to a conjugate space of some Banach space X_* . This space X_* is unique (cf. [6], 1.13.3).

LEMMA 2. Let (Ω, μ) be a measure space which is a disjoint sum of sets of finite measure (call such a space a localizable measure space) and let W be a factor, i.e., a W*-algebra such that an element commuting with any other is a multiple of identity. If every central projection in $L_{\infty}(\Omega, W)$ contains a minimal projection, then (Ω, μ) is purely atomic.

Recall that a central projection is a projection which commutes with any element of an algebra. By $L_{\infty}(\varOmega, W)$ we mean the space of all W-valued, essentially bounded, *weakly locally measurable functions. With pointwise operations this space is a W^* -algebra.

Proof. It is easily checked that every central projection in $L_{\infty}(\Omega,W)$ has the form $\chi_A I$ where χ_A is an indicator function of a set $A \subset \Omega$ and I means the identity in W. Moreover, such a projection is non-zero if $\mu(A) > 0$ and is minimal iff A is an atom of Ω . So the assumptions of the lemma imply that any set of positive measure contains an atom. So Ω is purely atomic.

Recall that by the Sherman theorem (cf. [6], 1.17.2) if X is a C^* -algebra, then X^{**} is a W^* -algebra. Recall also that B(H) is a W^* -algebra and its predual is N(H), the space of all nuclear operators on a space H.

LEMMA 3. If X is a separable C^* -algebra, then each irreducible W^* -representation of X^{**} acts on a separable Hilbert space (a W^* -representation is a representation continuous from the $\sigma(X^{**}, X^*)$ topology into $\sigma(B(H), N(H))$).

Proof. Let $\varphi\colon X^{**}\!\!\to\!\! B(H)$ be an irreducible W^* -representation of X^{**} . Then $\varphi(X)$ is norm-separable and dense in $\varphi(X^{**})$ in the strong operator topology. Since $\varphi(X)$ has a separable invariant subspace and φ is irreducible, we conclude that H is separable.

LEMMA 4. If X is a separable Banach space, then X^* is not isomorphic to $(\sum_{a \in A} Y_a)_1$ where $\operatorname{card} A > \aleph_0$ and Y_a are separable conjugate spaces.

Proof. If X^* is isomorphic to $(\sum_{a\in A} Y_a)_1$ with card $A > \aleph_0$, then $X^* \supset l_1(A)$ and, by [2], $X^* \supset L_1(0, 1)$. But this implies that $L_1(0, 1) \subset (\sum_{n=1}^{\infty} Y_{a_n})_1$ for some sequence $(a_n) \subset A$. Since $(\sum_{n=1}^{\infty} Y_{a_n})_1$ is a separable conjugate space, this contradicts the classical theorem of Gelfand [1] (cf. [2]).

LEMMA 5. Let X be a countably scattered C^* -algebra. Then X contains a minimal abelian projection, i.e., a minimal projection p such that pXp is an abelian algebra.

Proof. Let B be a maximal abelian *-subalgebra of X. Since the spectrum of B is scattered and metrizable, we infer that B is isometric with $C_0(a)$ for some countable ordinal a. $(C_0(a)$ means the space of all continuous functions f which are defined on the set of all ordinals less than or equal to a equipped with interval topology, and such that f(a) = 0.) To see this, use the Gelfand representation theorem and the Mazurkiewicz–Sierpiński theorem [4]. Let p be an isolated point of a, $p \neq a$, and let χ_p be the indicator function of p. $\chi_p \in B$ and it is a minimal projection in B. This means that for $y \in B$ there is a scalar y(p) such that $\chi_p y = \chi_p y \chi_p = y(p) \chi_p$.

We shall show that χ_p is a minimal projection in X. Let us consider $x \in X$ and $y \in B$. Then

$$\begin{split} (\chi_p w \chi_p) y &= \chi_p w \chi_p \chi_p y \chi_p = y(p) \chi_p w \chi_p &= y(p) \chi_p \chi_p w \chi_p = \chi_p y \chi_p \chi_p w \chi_p \\ &= y \chi_p w \chi_p. \end{split}$$

Since B is maximal, we infer that $\chi_p x \chi_p \in B$. So if we put $x(p) = \chi_p x \chi_p(p)$, we obtain

$$\chi_p x \chi_p = \chi_p \chi_p x \chi_p \chi_p = x(p) \chi_p; .$$

so χ_p is a minimal projection in X. Moreover, χ_p is an abelian projection. THEOREM. If X is a countably scattered C^* -algebra, then X^* is isometric to

$$\left(\sum_{n=1}^{S} N(H_n)\right)_1$$

where H_n are separable Hilbert spaces and S is finite or ∞ .

Proof. Let us consider X^{**} and let $z \in X^{**}$ be a central projection. Xz is a *-homomorphic image of X, and so, by Lemma 1 and Lemma 5, Xz contains an abelian projection e. Since Xz is w^* -dense in $X^{**}z$, e is an abelian and minimal projection in $X^{**}z$. So each central projection in X^{**} contains a minimal abelian projection. Hence by [6], 2.3.2 and 2.3.3,

$$X^{**} = igl(\sum_{eta \in K} Z_{eta} \overline{\otimes} \, B(H_{eta})igr)_{\!\infty}$$

where K is some set of cardinals, H_{β} is a Hilbert space of dimension β and Z_{β} is an abelian W^* -algebra. Since X^{**} has an irreducible W^* -representation onto each $B(H_{\beta})$ (cf. [6], 1.22.11), by Lemma 3, K does not contain any uncountable cardinal, and so $N(H_{\beta})$ are separable for all $\beta \in K$. So, by [6], 1.18.1 and 1.22.13,

$$X^{**} = \left(\sum_{eta \in K} L_{\infty}(\Omega_{eta}, B(H_{eta}))\right)_{\infty},$$

where $(\Omega_{\beta}, \mu_{\beta})$ are localizable measure spaces. By Lemma 2 each $(\Omega_{\beta}, \mu_{\beta})$ is purely atomic, and so $X^* = (\sum_{a \in A} N(H_a))_1$ (cf. [6], 1.13.3) where H_a are separable Hilbert spaces. Now Lemma 4 gives us the required representation $(N(H_a))$ is a conjugate space).

Now let us state the following obvious

PROPOSITION 1. The space $(\sum_{n=1}^{S} N(H_n))_1$ has a basis (x_n) such that there exists a sequence of indices (k_r) such that span $\{x_n\}_{n=1}^{k_r}$ is isometric to $\sum_{i=1}^{S} N(H_i)_1$ where S is finite and H_i are finite-dimensional Hilbert spaces.

Now a result of Johnson, Rosenthal and Zippin [3], as stated in [10] Lemma 2, implies

COROLLARY 1. A countably scattered C^* -algebra has a basis (x_n) such that there is a constant C and a sequence of indices (k_r) such that the Banach–Mazur distance from span $\{x_n\}_{n=1}^{k_r}$ to some finite-dimensional C^* -algebra is less than C.

Remark 1. Since any infinite-dimensional C^* -algebra contains c_0 , the results of [8] can be used to obtain some special types of bases.

Remark 2. It follows from the results of [9] and the easily provable fact that the Szlenk index of $C(\alpha)$ is greater than α that for a countably scattered C^* -algebra X there exists a countable ordinal β such that X does not contain subspaces isomorphic to $C(\alpha)$ for $\alpha \ge \beta$.

Remark 3. It is obvious that a C^* -algebra X is countably scattered iff X^* is separable, and so by [7] X is countably scattered iff it is a G.C.R. algebra with countable composition series.

Remark 4. The space X has the Schur property if the weak sequential convergence implies the norm convergence. It is well known that the space l_1 , being the conjugate space of an abelian countably scattered C^* -algebra, has this property. We should like to discuss this property for conjugate spaces of other countably scattered C^* -algebras. If all H_n are finite-dimensional, then $(\sum_{n=1}^{\infty} N(H_n))_1$ has the Schur property which can easily be proved. If at least one of H_n is infinite-dimensional, then $(\sum_{n=1}^{\infty} N(H_n))_1$ does not have the Schur property since it contains l_2 . However, Theorem IV.1 of [11] easily implies that in this case the following is true:

If (f_n) is a sequence of positive elements in $(\sum_{n=1}^{\infty} N(H_n))_1$ weakly convergent to f, then $||f_n - f|| \to 0$.

This result can also be proved directly. Let us remark also that Theorem IV. 1 of [11], which is apparently formulated in a more general form, is in fact equivalent to the above statement.

References

- I. M. Gelfand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb. 4 (46) (1938), pp. 235-286.
- [2] J. Hagler, Some more Banach spaces which contains l¹, Studia Math. 46(1973), pp 35-42.
- [3] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel Math. J. 9 (1971), pp. 488-506.

[4] S. Mazurkiewicz, W. Sierpiński, Contribution à la topologie des ensembles denombrables, Fund. Math. 1 (1920), pp. 17-27.

[5] W. Rudin, Continuous functions on compact sets without perfect subset, Proc. AMS 8 (1957), pp. 39-42.

6] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag 1971.

[7] J. Tomiyama, A characterisation of O*-algebras whose conjugate spaces are separable, Tôhoku Math. J. 15 (1963), pp. 96-102.

[8] P. Wojtaszczyk, Existence of some special bases in Banach spaces, Studia Math. 47 (1973), pp. 83-93.

[9] W. Szlenk, The non-existence of a separable, reflexive Banach space universal for all separable, reflexive Banach spaces, Studia Math. 30 (1968), pp. 53-61.

[10] N. J. Nielsen and P. Wojtaszozyk, A remark on bases in ℒ_p-spaces with an application to complementably universal ℒ_∞-spaces, Bull. Acad. Sci. Pol. 21 (1973), pp. 249-254.

[11] C. A. Akemann, The dual space of an operator algebra, TAMS 126 (1967), pp. 286-302.

INSTITUT MATEMATYCZNY PAN
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Received Juli 14, 1973

(701)