158 M. Leinert im

-ProBreM: Hat die Fourier- Algcbu der freien Gruppe mit zwei
Erzeugenden approximierende Einheiten? Oder allgemeiner: Gibt es lokal
kompakte Gruppen, deren Fourier-Algebra keine approximierenden Rin-
heiten besitzt (auch keine unbeschrinkten)?

Fiir einige Verbesserungen und Iinweise bin ich P. Eymard sehr
zu Dank verpflichtet.
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STUDIA MATHEMATICA, T. LIL (1974)

Sums of independent Banach space valued random variables

by
JORGEN HOFFMANN-JORGENSEN (Arhus)

Abstract. Varvions goneralizations of classical thoorems about sums of indepen-
dent' real random varinbles to Banach space valued random variables are given:
Let (Xn) bo indepondont random variables with values in a Banach space, and let
(9) be their partial sums. Then necessary and sufficient conditions for (8,) to con-
verge in I i givon (0« p & oo0). Tor p == co this gives a new characterization of
those Banach spacoes which do not contain ¢y, Later we characterize the class of Banach
gpaces for which a.s. boundedness of (8,) implies a.s. comvergence of (8,). Finally
wo prove that convergence in distribution of (Sy) in a weak topology of our Banach
gpace implies a.8. norm-convergence.

1. Introduction. We shall in this paper study the properties of series
of independent random variables with values in a Banach space, that is,
geries of the form

[+
(1.1) >,
)
where X, X,,... sve independent random variables with values in
a Banach gpace Jf‘
Such series have been studied by Nordlander [13], Kahane [9], and
Ito and Nisio [8].
Section 2 contains the basic definitions and notation, and we list
some known lemmas and theorems for reference in later sections.
In. Section 3 we study boundedness and convergence of (1.1) in
IP (0 = p = oo0). Theorem 3.1 is a generalization of Theorem 4, p. 17 in [9]
and of Theorem 18.1.A, p. 254 in [12]. In [9] Kahane only considers the
case X, == &,m, whore (e,) is a Bernowlli sequence and (#,) is a non-random
sequeriee of vectors. In [12] Loéve only considers the case where X, is
real and the X,’s are uniformly bounded. Theorem 3.1 gives new results
even. for real valued random variables. Theorem 3.5 and Corollary 3.7
give o new characterization, of those Banach spaces that do not contain ¢.
In Section 4 we show that convergence or boundedness -of (1.1) may
imply convergence or boundedness of
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where (¥,) are independent Banach space valued random variables,
such that ¥, is a random multiple of X, with the multipliers atisfying
certain conditions. In Theorem 4.8 we uge an idea of B. Maurey (oral
communication) to strengthen our original version considerably.

It is well known that if X, is symmetric and real for all n > 1, then
boundedness of the partial sums of (1.1) implies convergence of (1.1).
In Section 5 we show that the clags of Banach spaces for which this holdg
is the class of Banach spaces for which ¢, is not contained in IA(I, 2, By
for some (or all) 1< p < oo, where I is the unit interval and 2 iy the
Lebesgue measure. I conjecture that if ¢, < L?(1, 4, B) for some 1 < P < oo
then ¥ containg ¢,. In Section 5 we show that relatively compactness
of the partial sums of (1.1) in suitable topology  on B implies convergence
of (1.1).

In Section 6 we prove that weak convergence in & weak topology
of the partial sums of (1.1) implies a.s. norm-convergence of (L.1), it X,
is symmetric. This result is closely related to that of Ito and Nigio [8].

2. Definitions and preliminary results. Lot # donote a Banach spaco
with norm ||-|| and (2, &%, P) a probability space in all bf this paper,

An B-valued random variable X: QF is a P-measurable funetion
in the sense of Definition ITI. 2.10 in [4]. That is,

(2.1) XHNA) = {Xed}e F ¥ Ae Z(W),
(2.2) 318, separablé cloged subspace of B such that P (XeHy) =1
where %(F) is the Borel o-algebra on B,

We shall for short denote I*(Q, #, P, I by L?(Z) for 0 < P < oo,

;hat is, if 0 < p < oo, then L?(H) is the set of B-valued random variables,
, with .

E(IX)7) = [IX ()PP (dw) < o
Q2

j;vhere E denotes the expectation (= the integral with respect to P). .L(K)
is the set of all H-valued random variables, and L™ (E) is the set of H-valued

random variables with esssup ||X (w)|| < oo, We define the metric I+ 1l
(morm i 1< p < o) by

IL&lly = E‘{Mh”—lﬂw-}, VXeL0(m,

T4
X, =E(QX)?),
1Xll, = {Ex|P)e,
(Xl = esssup | X (o)),

VXeI(B), V0 <pl,
VX IB), V1i<p < oo,
V.Xe I*(E).

Then I?(H) is a Fréchet space for all 0 < p < oo, and if 1 < P = oo then
LP(B) is a Banach Space.

icm
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It is well known that we have:

Prorpostrion 2.1 If K < IP(H), 0 <p < oo, then K is o bounded
subset of LP(H) if and only if
(2.3) sup{|Xl,: Xe K} < co.

If K < L0(8), then the following 3 statements are equivalent:

(2.4) K s o bounded subset of Lo,
(2.8) Va0, 36> 0, such that |0X], <& V¥ Xe K,
(2.8) Ve 0, 3K < co, such that P(|X| > Ky<: VXK.

If (Xy) is @ sequonce in LO(W), then (X,) converges in LO(E) to X if
and only if

@.7)

\

P(|Xy =X 3 &) 5> 0 Vs> 0.

If X, s X in LO(H) we shall say that (X,,) converges in probability
to X. If X is a bounded subset of LO(H) we shall say that K is stochastically
bounded.

Let (H, #) be a measurable space, that is, a set H and a o-algebra .
It X0 QH is o measurable map, then the image measure of P under X
is denoted by Py and called the distribution law of X, That is,

Py(d) =P(Xed) VAdeo.

P

An B-valued random variable X is called symmetric if Py = P_y, and
a sequence (X,) is called a symmetric soquence it Py = Pyfor all ¥ = (+ X,,)
with an arbitrary choice of 4, where X = (X,); (here X and ¥ are con-
sidered measurable maps from Q into E*, with its product o-algebra:
BEYQH(D®...).

It is clear that if Xy, X, ... ave symmetric independent E-valued
random variabley, then (X,) is a symmetric sequence.

It X iy an H-valued random variable, then X* is called a symmetri-
aation of X, it X" == X~ X', where Py = Py, and X and X' are indepen-
dent. Tt (X,) v o sequence of E-valued random. variables then (Xy) is
called o symmelrization of (X,) if X% = X,—X, where (X,) and (X))
are independent and equidistriputed, A symmetrization of (X,) will
always oxist ot lowst on the produet probability space (@ x Q, FQF,
P xP). T (X,) is a sequence of independent random variables, and (X7)
is & symmetrization of (X,), then it is easily seen that (X7}) i§ a symmetric
sequence,

I () ave independent random. variables, 8o that p(e =1) = p(g
= —1) = § for all =1, then () is called a Bernoulli sequence, and we
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define

C(B) = {(m/)e'Ew‘ iejmj converges in L"(E)},
1

B(H) = {(x,)ez«zw] (j’@,m,)j;l is bounded in Lo(B)}.
1

It follows from Theorem 3.1 that we may substitute L°(E) with L? ()
for all 0 << p < oo in the definition of C'(H) and B(H).

The following two propositions are well known (see, for example,
Lemma 1, p. 12 in [9] and 17.1.A, p. 245 in [12]).

THEOREM 2.2. If X* is o symmetrization of X and ae I, then we have

PXM =) <2P(IX—ol>$t), VYizo.

TeBOREM 2.3. Let (X;) be a symmetric sequence and put S, = X+
A+ X, If M is an infinite subset of {1, 2, ...}, then

(2.8) P(max | =) <2P(ISul =1 Vix=0,
1<j<n

(2.9) - P(uplili=i< 261151’(“&,“ =1 Viz0.
7 nedl

If 8, comverges im probability to 8 then
(2.10) P(Sl}pllﬂjll =2 <2P(I8=1) Vizo.

A slight modification of the proofs of Theorem 1 and Theorem. 2,
p. 11 in [9] gives us:

THEOREM 2.4, Let (X)) be a symmieric sequence and 8, = X, +...+ X,
then the following 3 conditions are equivalent:

(2.11) (8,) has a subsequence which is convergent in probability (stochasti-
cally bounded),

(2.12) (8,) ds convergent in probability (stochastically bounded),

(2.18) (8,) is_convergent a.s. (bounded a.s.).

TeEEOREM 2.5, Let (X;) be independent B-valued random variables and
put 8, = Xy +...4+X,. Then (8,) is convergent in probability (stochas-
tically bounded) if and only if (8,) is convergent a.s. (bounded @.s.).

. Let us conclude this section with. the following simple but useful
propositions:

THEOREM 2.6. Let X and Y be two independent random variables both
belonging to LP(E) for some 0 < p < oo,

If either X has mean 0 and p =1, or X is symmietric, then we have

Rl < X+ ¥,

icm°®
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Ny <X XY, for 0<p<1,

The proof is easy and we leave the verification to the reader.

Prorosurton 2.7, Let X be an H-valued random variable and @ an
inoreasing continuous function om [0, co). Let R(t) be the tail probability
Sfunction:

L(l) =PX=1t), 20,

Then @ (|1X1]) is integrable if amd only if R(1) s Lebesgue-Stieltjes integrable
with respect to @, and then we have

E(p(1X1) = ¢(0)+ [ R(t)dp().

This is simply integration by parts!
ProposriroN 2.8, Let (X;) be a symmetric sequence; then we have

r ( _}: & aowva'rges) = P((X;)s 0(B)),
1

n 4
P> x), is bounded) = P((X;)e B(H)).
i3
This follows ousily from Tubini’s theorem and the fact that (X;)
and (e, Xy) are equidistributed if (e) is a Bernoulli sequence, which is
independent of (;&X,).

3. Conw"crgence and boundedness of (8,) in L¥(B). Let (X,) be a se-
quence of independent H-valued random variables, and put

n
8= D Xy; N =suplXal; M = sup|S,|.
Jenl (s n

We shall in this seetion study convergence and boundedness of (8§,) in
LP(H) (0 p =5 o0), Weo know already from Theorem. 2.5 that convergence
or boundedness of (8,) in LP(#) implies a.5. convergence respectively a.s.
boundedness of (8,). Our tivst theorem tells us when the converse. holds.

Tunowem 3.1, Let (X)) be independent H-valued random variables
such thaot

(3.1) (8,,) is stochastically bounded,
(3.2) NeIP(R), -

Jor some 0 <<p < o0, Then Me LP(R).
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Proof. Notice first that M < oo a.s. by Theorem 2.5, and N < 2M
< oo. Let us first assume that X is symmetric for j =1

Let By (t) = P(I8) =1, B(5) = P(M >1) and Q() =PV
shall then prove that

(3.3) Ry(2t+9) < Q(s)+4R, (1) V1,820
Let T be the stoppmg time defined by

= inf{n> 1| 8, =1}
where inf(@) = oco. Then |8l >

=1). We

Vik=1.

2t ¢ implies that T < &, and 80 we have

I
Ry(2+8) = O P(I8] > 2t+8, T = j).

i1
2t 45 then [|8;,_,Il < ¢, and so

185l — 18)—slb— 1 &K;ll 22 0 +-8 — V.

¥ T =jand |8 =
18— 8jll =

Hence we have

P(T =j, I8 = 2t+8)< (T =j, I8—=8ll = t-+s—N)

' <SP(T =§,N>8)+P(T =j, 18— S;ll > 4)

-

=P(T =§,N > 8)+P(I =) P(I8—8) =1
sinee {T = j} and {|8,—8,ll =t} are independent events. Heice we have
that
R, (2t +5) < 2? P18 — 8l = 1).
Je=1

Now let ¥y = 8, —8; and ¥, = §;; then ¥, and ¥, aré symmetric inde-
pendent random varmbles and Y+ Y, = AS,“ %0 by Theorem 2.3 we have
that

P(I8—8ll =1
<k} = {max ||l =
1<k

)< Z-P(”SI':H =1),

and since {T 1}, we have that

I
Ry (26+5) < Q(s)+ 2Ry (t) ) P(T = j)

Joml
=Q(8)+2R,(H) P (mmllﬁjn 2 1)
< Q(8)+ 4R, (1%,

where we have used Theorem 2.3, Hence (3.3) is proved. From (3.1) and
Theorem 2.3 we find that

R(20+5) <2Q(s)--8R(#)* Vit,820

since Ry (f) < R (1) < 2sup Ry (1).
k

icm°
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Now let t, > 0 be chosen so that R(f,) < ———. If A > 3¢, we then
have 1637

4 Afs
fpm”"‘l%(x)dm - 31’-pf #" "' R (3w) da
J 0

Af3 Af3

< 82p-2 [ @ Q(w)dw - 8p3P [ @ R0y
0 0

A(3
< 2-8"E(N") 8371+ 8p3” [ 0" R(to) B (a)dw
()

P
< 0+4 [ po?™ R(o)do
J .
where ¢ == 2-3PE(N?)+8-370, where we have used Lemma 2.7. Hence
4 :
[pe" " R(z)do <20 VA>3
0

and so Me LP(H) by Temma 2.7.

It (X,) are not gymmetrie, then we oonslder & symmetrization X;
= (X;—~Xy) of (X;). Let us define

k3
TSN TR\ -

Jr i=1

M = sup|Syl; M = sup|ISh < M +M';
7 n

V' =pup|X,l; N =sup|X;|< N+
3 n

Since M ﬁnd M' are equidistributed and & and N’ are equidistributed,
we find that M* < oo a.s., and N*¢ L?(B). Thus from the argument
above wo have that M*e L?(H), and so
00 3 B{{M*)} = fli{s’uq:»”é’ﬂ ¥ H (dw),
ne "

where p is the distribution law of (X,). Now since (S,) is bounded a.s.,
we can find (w)eB® so that

Lid
¢ = supHZm,H < o0,
no gl

E{(ﬂup ”’Sn"'sn“)m} < 00,

=
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where 8, = ®; +...-+o,. Now

e-+sup 8, — sl
n

and so MeL?(H), which proves the theorem.

CoROLLARY 3.2. Let (X;) be independent I-valued random variables,
so that (8,,) is stochastically bounded, and let 0 < p < co. Then the following 3
statements are equivalent:

(3.4) (8,) is bounded in L"(H),
(3.5) M = sup|S,ie I (R),

n
(3.6) N =supllX,lle L2 (R).

Furthermore (8,) is bounded in L (E) if and only if Me I®(R).

Proof. The last statement is obvious.

‘We know from Theorem 3.1 that (3.6) implies (3.5), and (3.5) obvi-
ously implies (3.4) and (3.6). Hence it suffices to prove that (3.4) implies
(3.5). To do this we shall first assume that X; is symretric for all j = 1.

Let R(t) =P(M =1), Ri(t) = P(|S,ll=1?); then by Theorem 2.3
we have )

Rt)< 2 ]imin‘fR,c(t) Viz0,

Ie-vo0

Now let A > 0; then by Fatou’s lemma we have

fpw” 'R(» )dw<2hm1nffpw”‘1l‘lk( o) dw

/c—»oo

2 liminf E |8, |1?
Ty
< o0,

Thus, by Lemma 2.7, we have that E(M?) < co. The general case follows
by & symmetrization procedure similar to the one in the last part of
Theorem 3.1.

COROLLARY 3.3. Let (X;) be mdepmdent H-valued random variables,

so that (8,) converges a.s. to 8, and let 0 < p < oo, Then the following &
. statements are . equivalent:

(3.7) . 8,=8 in IP(B), .

(3.8) Se I (B),

(3.9) Me I (R),

(3.10) NeLP(R), ¢
(3.11) (8,) is bounded in L” ().

Furthermore 8 L*(H) if and only if Me Lo ().
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Remark, Tt is easy to construct an example where § belongs to
I”(¢y), but 8,+»8 in L*(e,). However, in Theorem 3.5 we shall prove
that if 8¢.L(H) and K does not contain ¢y, then §,~9 in L™ (H).

Proof. (3.9), (3.10) and (3.11) are equivalent by Corollary 3. 2, (3.7)
obviously implies (3.8), and (3.9) implies (3. 7) (use Lebesgue’s theorem
on dominated convergence). Hence it suffices to prove that (3.8) implies
(3.9). To do this we shall assume that X; is symmetric for all j > 1. In
this case we have by Theorem 2.3 that

P(M 3z 1)< 2P (18] > 1),

and so it Se¢ L"(H) then by Lemma 2.7 we have that Me L¥(R) (note
that this result also holds for p = oo),

Henge (3.8) implies (3.9), and we have also proved the last part of
Corollary 3.8 under the assumption of symmetry of X;. The general
cage i proved by a standard symmetrization procedure.

CororLAwY 3.4. Let (X;) be independent H-valued ramdom variables
and (@) a decreasing sequence of non-negative real numbers. Let

"
Up =a, 3 X5 V= sup|Unly W = suplla, X,
Feil n

Suppose that V < oo a8, Then W < co 8., and if WeI?(R) for some
0 < p < oo, then VelV(R).
Proof. Let us define

Xy (05 000y 0, 0y Xy, g Xy ooy 0, X5 000,

Then ¥, ;I8 a I®(B)-valued random variable, such that Xl, XB, ... are
independent, and

1 (0o == 4| ;@) Viz1, Voef.
It :q, = jfl e zi’ and 8y, is the kth coordinate of §,, then
W ; X, it j<k

U, it >k

kj,lr e

Now since = a; Lor j <k, we find that
18 (@)l == fup 1853 ()l =f!},?&<jllU/nll < Viw).

0o,

Hence (§(w)) is .4, bounded and Corollary 3.4 is an immediate conse-
quence of Theorvem 3.1.
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TemoruM 3.5. Let (X,) be independent T-valued random variables such
that the series i

(3.12) : 8= DX

converges a.s. and SeI®(E). If B does not contwin & subspace isomorphio
to ¢,y then the series (3.12) comverges in L ().
Proof. Suppose that §e L (H). From Corollary 3.8 it follows that

L
= DEX,
J=1
converges to ES. Let X; = X;—EX; and put 8, = X;+...-+X,. Then
8, ——» 8 = 8—ES as, 8« L*(B), and 8,8 in L (H) it and only if
S —->S in L°°(E
* This shows that it is no loss of generality assuming that EX; =0
for all j =1, which we shall assume for the rest of the proof.
Now suppose that 8,+8 in L7 (H); we shall then show that I contains
a closed subspace isomorphic to ¢,. Since S§,~»8 a.8., we see that (S,)
is not a Cauchy sequence in L”(F). Hence we can find a > 0 and a sequence
of integers: 0 = 7y <7y < ... such that (put §, = 0)

Wy — Bl >a = Vij=0,1,...
—~8,, for j =0,1,... Then

k-
2T, =8,

=0

Let Yj =8

i1

and so 2 Y, = 8 a.8. Now Y, takes values in a bounded separable subset

of B w1th probablhty 1. Hence we can find random variables Z; such
that EZ; =EY; = 0 and

Zy = Yoyl Viz0,

Yrm]

12— Yl < @279 Vx>

where {4, v =1,2,...} are digjoint sets in the awlgebm

¥y (4 ()
and ;¢ B. Since

o0
D Z—Yle<a< w,

F=1

we find that ' Z; = T exist a.8. and TeL®(H). Also wé have that
0

1Zile = 1 ¥ jle—a2 "> 3a Vj>0

icm
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Hence we can find »(j) = 1 such that llem)ll %o and P(4;;) > 0. Let
us p’llt y] == WJ”U) and. .BJ == Aj‘u(j) for j = 0.

Since ¥, ¥y, ... are independent random variables, we have that

Zyy Zy, ... are independent and so, by Theorem 8.5, we can find a constant
K > 0 suchi that
|32
j=1

Since BZ, == 0, it follows from Theorem 2.6 that whenever o = {0, ..., n},

then we have
|2 ZZJH <K

That is, there exisis an event £, < 2 with P(2,) =1 and

WSE VYazl.

HJZZM)H <K Vo

and for all finite subsets o of {0,1,...}
finite subsets of {0,1,...}).
We know that P(B)) > 0 and that By, ..., By, ...

n
Henge we have that P | mBj) > 0 and o we can find an w,e 2,NByN...NB,.

(there is at most countably many

are independent.

Since Z;(w,) = y; for 0 < j < n, we find that

|4 <x

But. this implies that

os{l,..,n} Vazl

00
ik, gyl < 2Kl Vo' B,
=)
and sinco |yl > }a, it follows from Theorem B in [1] tha.t B contains
a subspace isomorphic to ¢,.

Trmoran 8.6, Let (XX,) be o sequence of independent integrable B- valued
random variables, with BX; == 0 for all j 2 1. Then the following 4 conditions
are equivalent:

n
(3.13) (D)) is bounded in L*(B),
1
(8.14) 3IK >

od
D)<'y Xy ()] < K ']
Jeal

0, 3QyeF, such that P(Q) =1 and

Vo' e ', Ve,

§ — Studia Mathematica LIL2
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Yo' < 8,3 K@) > 0, such that P(w\ i‘(w’,Xﬂw))lQK(w’))ml,

Je=l

(3.15)

Vo e, 3 K(m") > 0, such that I’(m’ ‘Zn(w’, Xy(o) < K(m’)‘)

i=1

(3.16)

=1 VYazl
If integrability of X, and BX; =0 48 not asgumed then (8.14) and
(8.18) are equivalent, (3.15) implies (3.16), and (3.16) is equivalent to (3.13).
Proof. Suppose that (3.13) holds and EX; = 0. Let K be a finite
constant such that

n
ISzl <x
Then, by Theorem 2.6, we have that

|35 <x

for every finite subset o of {1,2, ...}. Since there is only countably many
finite subsets of {1, 2,...}, we can find Q¢ F with P(Q,) = 1 and

H;Xj(w)kzc Y we Q.

Hence we have

DK, (o) < 2K o]V wey, Va'e B
=1
Now let us drop the assumptions on integrability of X; and EX, =0
for the rest of this proof.
Tt is evident that (3.14) implies (3.15), (8.15) implies (3.16), and
(3.13) implies (3.16). )
Suppose that (3.16) holds. Since X; is ewsentially separably valued
for all j > 1, it is no loss of generality to assume that B is separable. Let
U’ be the unit ball in B’ equipped with the w*-topology. Then U’ is metriz-
able and compact. Let T' be a countable w*-dense subget of U’
We know by assumption that (&', §,> belongs to L®(R) for all @' ¢ ',
hence we may define the linear map

n
A0 =@, 8> = ) <oy Xp)

Fe=1
from &' into L®°(R). It a—a" and A,2p—f in L®(R), then

(@ Bp(@)) 5> <2y Ba(0)) Voel

* ©

icm
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and so f = A, Hence A, is continuous by the closed graph theorem.
By assumption we know that sup 14,0 |l < co for all '< E', so by the

n .
prineiple of uniform boundedness we have that there exists a finite con-
gtant K such that :

P, Syl < E) =1 VYazl, V<l
Sinee 7" is countable, we can therefore find £« &#, with P(£2,) =1 and
Kty (oDl <K Vael', Voe
Tt is well known that we can find compact subsets K, of. B such that
P(8pe Kpp) 22 L2777
pecause F is o Polish space. Now let
Qy = nQ1 ﬁ]l {8 Ky} N85

it is then eagily seen that P(£,) = 1. .

Lot ug take an o ¢ U’ and an we £,. Then by Banach-Dieudonné’s
theorem (see, for example, [10], 21.10 (1), p. 272) there exists Ypme Ui
guch that

KO = Ynms W] S LV 0 Ky Yu,m.

Since we £y, we can find an integer m > 1 with we 2,08, ¢ Ky} for
all » > 1. Hence we have

1<y B (@)1 < 1<y Sa(@)D] 10" — Yoy Bu(@))| < E+1
gince we 2, and S,(@)e¢ K,y,. But this shows that 18, ()| < E+1 for
we 2y, and so (3.16) implies (3.13).

Let us then prove that (3.15) implies (3.14) (without the assumption
that EX; = 0). We have already proved that (8.15) implies (3.13). Hence
(8,) is bounded in L*(H), and X, is integrable for all j. Let o = EX;;
then ’ .

e & o
Vo, BX| = Y [EC@, Xpl < B 3160 Xyl < E(@).
Wl Joal N

P
7 =

o0 ~

Henee Y o 18 weakly unconditionally convergent in 7, Now let X, = X; —a;
1 ~

we then have that EX; = 0 and

N, Zyopl< Y Ky Xylol+ XK 3l
Jml I

Jeml

< K@)+ D o, (o)l

Jr=l
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This shows that (5(1) satisties (3.15), and so there exists Q¢ %, with
P(2,) =1 and there exists a constant K > 0 with

2” Kty Xj(@)

=1

SISEl] YoeRy, Voed.

Tt is well known that for a weakly unconditional convergent series

had
>' %, we have, for some L > 0, that
1

PRICHENES

Jel

L'«
Hence

YV oey, Vo,

3 i, Xy (@)

J=1

| < (K A+ L)' |

and so Theorem 3.6 is provéd

CororrARY 3.7. Let (X)) be a sequénae of integrable independent
B-valued random variables such that BX; = 0 for all j = 1, and such that
the partial sums:

n
= Z X,
=
are bounded in L™ (H).
If B does not contain a subspace isomorphic to oy, th(m {8,} converges
in L*(H).
Proof. By Theorem 3.6 we know that for all we 24, where 1’(.{2 y =1,
we have that

N Ke, opl< Ko Yo,
=
o ‘
80 by Theorem 5 in [1] we have that 3 X, converges a.5. and that
1

KK Ywe

=
H D Xj()
1
Hence by Theorem 3.5 we have that (S,) converges in L®(H).

4. The comparison principle. Lot (Xy) be w sequence of independent
H-valued random variables, and let (&) and () be sequences of indepen-
dent scalar valued random variables, we shall then study the series

2 1y X

J=1

icm
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in terms of the behaviour of the series

S“ 5.

Je=1

First we consider the case where #; is non-random and & = 1.

LummA 4.1, Let Xy, ..

1 Xy be independent H-valued p-integrable
ramdom variables, where 1 <

19<oo If EX; =0 for all j =1,...,n, we

then have that

H )_, X, Hp llm < 2max || {E”éxj”ﬂ}llp

lesfemm

for all ayy ..., aye R,
If X, is symmetric for all j =1, ..

{E

for all gy ...y aye R,
Proof. If ¢ < {1,2,...,n} it then follows from Theorem 2.6 that

£ 5, mn\\é:xj”ﬂ.

., 1, we then may pub ¢ =
~—1}; we then have

Y7 < fel Sofy” - 5=
2fe] 5}

TE I, m {( Gy oony )€ .it”] (gl 5 1y oouy oyl =5 1}, then K, is a compach
convex subset of R, whoge extreme points are the 2" points: (1, =1, .

, =k L), Thus i @ = (g, .., &) ¢ K, then by Carathéodory’s theorem
is a. coNvex com’k)lmmon of at most n--1 extreme points. That is, we
can find A, 0 for m =1, ..., n--1 with ‘

.y Wy we then have that

27]1/:0

I,é? an,H‘”}W < max |ay] {E Hé‘x,)

1 fsn

Ifa = Llforalj=1,. 1<ignla =41}

(E] 30

Nl nkl

\
oy == ,:”'_/ Y- 2 Iy =14

e el
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where @, = 1. Hence we find

(8] 3o 5Py = e 32l Som )}

n+l

< 3 fe] Sem )"
ofe) 32y

from which the first pa.rt' of the lemma follows easily.
It X; is symmetric for all j = 1,...,n, then we have

) Saxff -5| 55

whenever @; = +1. The last part of the lemma follows as above.

COROLLARY 4.2. Let X4, ..., X, be H-valued, independent, p-integrable
random variables with 1< p < co amd EX; =0 for oll j =1,...,n. If
Ny -ees T @76 Teal valued, p-integrable random variables, so that (Xy, ..., X,)
and (71y .+, 1) ore independent, then

g 6] 37 <] S5 < 5 ) 33

<JEGn

Proof. From Lemma 4.1 it follows that

5| 3oz

for all ay, ..., @, (the first inequality follows from Lemma 4.1 by putting
X; = 0;X; and a; =1/a;). So the corollary follows by integrating with
respect to the distribution law of (#y,..., #,).

TEROREM 4.3. Let (1) and (&) be sequences of independent, real valwed,
p-integrable random variables with 1< p < oo, and lot (X;) be a sequence
of B-valued, independent p-integrable random variables such that

(4.1) N =

2~Pmin|a,.|PEHﬁ‘X,H”< < 2ﬁmax|aj\1’EHﬁ’x,“”
J=1 Jeall

sup lnsle I (R),
(4.2) o = intE|&| > 0,
4

(4.3) (X)) and (&) arve independent, and (X)) and (1) are independent,
(4.4) E(nX,) =E(4X)=0 Vj>1

icm°
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Then we have

o St [ v

Remark. In my original version I assumed that P(inf|%| > 0)> 0
: 1

ij V.

ingtead of (4.2). The strengthen‘i.ng of the theorem is baged on an idea
of B. Maurey (oral communication).

Proof, Let (s) be a Bernoulli sequence, which is independent of
(X)), (&), (). By Corollary 4.2, with X; =5, X; and v =5, we have

| S <278 sz

Since ¢.X; is symmetric and (y;) is independent of (5.X;), we find by
Corollary 4.2 that

| P <278 3ol < exomie] Siu .

Let a; = E|&|; we then have by Lemma 4.1

B| ‘E’mxj < B max () E ijan,
ﬁ-{ lden “J

<(f e S ona

Let & be the c-algebra generated by (£1y ..«

define
" — 8 if Ej < 0,
&y if Ej ,>/ 0

By Xy erey Xp)y and

Then we have

Hﬁ’a,ijj "=
Jral

<E(| 3 615l

(IIZ 4 X |#).

Q(ma) () L“% gex)

; ()2"3 &1 e X\ |
Jeal

and so we Lind

EHZ X
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Tt is easily checked that (¢f) and ((&), (X)) are independent, and so by

Corollary 4.2 we find
- s [ 8\F & »
EHZ X, <(_) E(N’”)EHZ 5%,
a
=1 J=1
COROLLARY 4.4. Let (&), () and (X;) be a sequence of real (respec-
tively B-valued), independent p-integrable random variables satisfying (4.1)—

(4.4). If

n
8= D) 5%,

J=1

n
T, = > 0%y,
j=1
we then have
(4.5)  If (8,) is bounded in I7(B), then so is (Ty).
(4.6)  If (8,) comverges in L*(H), then so does (T).
)

(4.7) If (8,) is bounded in LP (), and if njmo a.8., then (T,) converges
in LP(B).

Proof. Immediate. congequence of Theorem 4.3.

5. Boundedness and convergence. It iz well known that if ¥ =R
(or even if B is a Hilbert space) then boundedness of the partial sums

n
n = 2 'Xj ’
. j=1 .
where (X;) is & symmetric sequence, implies a.s. convergence of (8,).

Now from Proposition 2.8 it follows that a Banach space E has this prop-
erty if and only if

) B(E) = C(B).
We shall in this section study the class of Banach spaces with this property.

TuEOREM 5.1. If (2, F,P) is a probability space on which we can
define a Bernowslli sequence then the following statements are equivalent:

(8.1) B(B) & cy(H),
. (B.2) B(E) = 0(B),

(8.3) 31 p < oo, such that L (L2, ﬁ P, B) contains a closed subspace
isomorphic to ¢y,

(5.4) Vig P < oo, I (R, F, P, B) conlains o closed subspace isomorphio
10 ¢4.

Remark. I conjecture that (5.1)-(5.4) are equivalent to

(5.5) E contains a closed subspace isomorphic to ¢,.

icm
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Notice that (5.5) implies (5.2), as (e,) < B(E), but (e,)¢ ¢o(H) if ¢, is the
nth unit vector in ¢,. Notice also that Corollary 3.7 gives a partial answer
to the converse implication.

Proof of Theorem 5.1. (5.4) implies (5.3) for trivial reasons. Sup-
pose that (5.3) holds, and let (g;) be a Bernoulli sequence defined on
(9, #, P). By assumption there exist a 1< p < oo and f;e L?(B) such
that

o< filb <<t Viz1d,

HZ%W

where K is a finite constant. On the probability space (2 x O, FQF,
PxP)=(2,#,P) we define

WhereO<a b < oo,

Kma.xla‘, Vozl, Va,.,eeR

fj’(wla wy) = g(wy)fy(wy) for (o, wy) € Q.

It is then easily seem that

(5.6) a<|lfilb<d Vjiz1,
n

(5.7) Hza,f}’ﬁgKma,xlaj] Vax1, Va, ..., 6eR,
ji=1 1<jsn

and that (f;) is & symmetric sequence. From (5.7) it follows that =75
=]

§ bounded in I?(E). So by Proposition 2.8 we have that (fj(w'))e B(®
for a.a. o'e 2. Now if (fj(w'))e O(E) a.5., we then know that (g,) con-
verges a.s. to o random variable g' by Proposition 2.8. ‘So by Fatou’s
lemma we have

Eg'|” < limint E |jg,* < E”
n=Loo
ie. g'e¢ L7 (H). Since

P(suplig ) = 1) < 2P(lg'l > 1),
n

we have that sup|lg,lle L7 (R). Thus by Lebesgue’s theorem of dominated

n
convergence we have thatb (g,) converges in LP(H), but this contradicts
the fact that [f;l, > ¢ for all j>> 1. Hence we have

(fi(@")e
(Fi(@))¢ C(H) for all w'ed’
B(B) 5 0(H). And so (5.3) implies (5.2).

B(E) for aa. ocf,
where P(4')>0.

That is,
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Now suppose that B(H) = 0(B). And let (z;) be a sequence in
n
B(E)\ O(H). Since Y g, is not a Cauchy sequence in IME), we can

1
find &> 0 and a sequence 1 = 0y <N <... such that

E” Z sﬂ:,”}a, Vi=1,2,...

YT <M1
Now let '
o= > gy for k=1,2,..
Np<I<npyy
Then X,, Xs, ... are independent symmetric random variables. Further-

n
more, it M(w) = sup| ) &(w)a,, then by Theorem 3.1 we have
n 1

M(w) < oo a8 and EM < oo,

£ i

“E| 5 oef<ma<es,

I<j<ngy.

E|X,|>a Vox1,

IX, (o) < 2M(0) Yo>1.

This implies that P(X,+>0)> 0. And from Proposition 2.8 it follows
that (X,(w))c B(E) a.s. Hence B(E) ¢ co(H). That is, (5.2) implies (5.1).

" Now suppose that B(H) & ¢,(#). Then we can find (%)« B(H) such
that (o] =1 for all j =1,2,... Now let (g) be a Bernoulli sequence
defined on (2, #, P} and put

.Xj = &y.

Then by Lemma 4.1 and Theorem 2.6 we have

loy1 = (E llay X" < (E| Z"aux,, ) < maxa, (& Zﬂsﬂw,, o)
v=1 <v=n pea),

..y 0, R, Hence if

n
S,
Ve=

for n2j>1 and all a,.

K =sup (E

p)l/p
then

. n
max|a| < ” Zanij < K max |a].
1<f<n e isi<n

icm
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And by Corollary 4.4 we have that > a; X; exist for all (a;)e 6. Then
1

the inequalities above show that the map
oo
(@)™ 2 & X;
=~

is an isomorphism of ¢, into a closed subspace of IP(B) for all pe[1, o0).
That is, (5.1) implies (5,4). and so the theorem is proved.

TrroreM 5.2. If B has the Radon—Nikodym property, then B(E)
= ((H).

Remark. Later we shall see that if B = L? (S, X, u) for some measure
space (8, X, u) and some 1< p < oo, then B(B) = 0(B). Now it is well
known that I*[0, 1] does not have the Radon~Nikodym property. Thus
B(BE) = 0(E) does not imply the Radon—Nikodym property.

Proof of Theorem 5.2. Tmmediate consequence of Theorem 6
in [2]. n

We shall now show that if the partial sums, S, = D> X;, are a.s.

o 1

bounded and relatively compact, then the series > X; converges a.s.
1

Before we state the theorem, we observe the following application of
Chatterji’s results on vector-valued martingales (see [2]; compare also
‘Theorem. 4.1 in [8]):

TrpoREM 5.3. Let (X,) be independent integrable B-valued random
variables, and let F' be a subset of B' such that F' separates points in B.
If there ewists 8¢ L*(H) such that ’

(o _}j X<’y 8 in probability

()
J=1

for all &' ¢ F', and BX; = 0 for all j =1, then the series

S,

1
conwerges to 8 a.s. and in L*(E),
Proof. By Corollary 3.3 we have that 'y Sn)m@:’, 8> in L'(R)
for all o' ¢ F', where S, is the partial sum
n
8 = D) X;
F=1

Hence ES = 0 as F' separates B.
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Now let &, be the c-algebra spanned by {X,,..
#' ¢ I’ we have '

.y X,}; then for

[, 8,ydP = [<a, 8pdP Vde s,
A A

‘since (#', 8—8,> = 3 <&, X;> is independent of £, and has mean 0.

Jmntl

Now since 8, and 8 both belong to L*(H) and I separates points of b,
we have that

[8,dP = [8dP VAes,.
4 A

That is, 8, = E(8| #,). Thus by Theorem 1 (a) in [2] we have that (8,)
converges in L'(H), and so by Theorem 2.5, (8,) converges a.s. Also the
limit of (§,) is of course equal to S as F separates points of T.

TaEOREM 5.4. Let v be a locally comvenr Hausdorff topology on B which
is weaker tham the morm topology, and such that the closed wnit ball in B
is t-closed. Let o = (1;)¢ B, and put

n
Flow) = {2 & (w)ayl n > 1} for  weQ,
i=1
where (e;) is a Bernoulli sequence. :
Ife 18 separable and F'(w) is relatively v-compact for a.a. w, then » e 0 (E).

n
Proof. Let us put 8, = 3 &;, and let ' be the dual of (H, 7).
1

Then F' = B as v is weaker than |- |.

Now, as ¥ i3 separable, we can find a countable set T < F' such
that T' separates E.

As ((@'w,>)e B(R) = ((R), we have that

D(2'y ) = lim<a', Sy (@))

ex%sts for all @' <T and all w¢ N, where P (N, o) = 0. By assumption there

exists a null set Ny 2 ¥, such that {8, (w)] n > 1} is relatively v-compact

for all w¢ N, and so if w¢ N, we can find a sequence (depending on w):

Ny <My < ... such that for some S(w)e B we have 7-lim Snj(w) = S{w).
o0

Since T < ', we find that

@, 8(@) =lmda, 8, (@) = 6(z), )
F-r00

icm
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for all o’ «T. This shows that for ¢ N, we have that {S,(»)} has one and
only one z-limit point ag T separates H. That is,

S(w) = v-lim S, (w)

exigts for all w¢ NV,. :
Since (#, ||-|) is a Polish space, we have that (¥, ) is a standard
space, and the Borel sets of (H, ) are equal to Borel sets of (#, |I-])) (see,
for example, Proposition ITI.1.7 and OCorollary IIL.2.6 in [6]). Hence,
by Theorem IV.2.4 in [6], we have that § is an E-valued random variable.
The property that the unit ball is v-closed is easily seen to be équiv-
alent to

(5.8) lloll = sup{|<a’, 2DI: &'« Fy ['ll <1}

Now since F is separable, we can find a countable set B' < {a'¢ F'| |&']
< 1}, with the property

VzeH.

(5.9) ool = sup{|<a’, &)|: @’ < B’}

Now let B = {#], 2, ...}, and define

]
8F = D) ety @) = <y 85

p=1

Ve B.

o0

NG =Zej<m;uwv> = <93‘;,.,, 8,

v=1
P 0
~ ’
;S’_;’,‘ = 2 6j<m;” Ly — 2 £;{ Ty Ty
v=1 . v=y+1
—aSi— .

(Notice that the sums converge a.s. since z;, is z-coutinuous.) Now let
t> 0, and define )
T —int{j| [S1># (inf(@) = oo).
We then have
P(sup |8yl > 1) = P(T < o) = D P(T =j).
i f=1
If T = j we then have, for some & > 1, that |S}| > ¢, and since 8 =38+
+48% we have that either
‘ sup |8%| > ¢
I
or y
sup |SF} > t.
k
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Hence we have

P(SI}PH‘SE'II > <
7

{P(T = j, sup|§f1 > )+ P(T =3, 181> 0}
=1
Since ¢; is symmetric for all §, we have that the two families, 8y, ..., 8,

8%, 8%, ... and 8i,..., 8, 8%, &, ... are equidistributed for all j = 1,...,
hence

v P(T =4, sukpléﬂ >t) =P(T =4, 81> 1)
‘ and so
P(m;p 18, > ) < 2P(I8) > 1) Vi>0.

Hence supl§yll < oo a.8., and 8o (w',)eB(E), and M = sup|S,| is inte-
g

i
grable. Now, since the unit ball is z-closed, we have that [|S|| < M, and
50 Se I'(E), and the theorem then follows from Theorem 5.3. ‘

COROLLARY 8.5. Let v be a locally convex Hausdorff topology on B such
that © is weaker than the norm topology, and the wnit ball of H is z-closed.
Let (X,) be a symmetric sequence of F-valued random variables and put

L Flo) = {i‘xj(wn n;l}:

If B is separable and F(w) is relatively z-compact for almost all we 2, then

©0
Z}‘Xj converges 0.s.

COROLLARY 5.6. Let S be a compact metric space and let X (1, w),
X, (ty @), Xy(t, w), ... be stochastic processes with time set S. Suppose that

(6.10) X, (%, -) is symmeiric for oll 1< S, and n > 0;
(8.11) X, (-, w) is continuous and real for almost all we 2, and all n > 0;
(56.12)  The processes {X,(t)| te 8} for n =1,2, ... are independent;

(.13) Xolt) = 5 X,00)

=1

a.s. for all te 8.
Then the series ;Xn (t, w) converges uniformly in te S for almost all we R,

. 6. Weak convergence. If (X,) is a sequence of H-valued random
variables and v is a topology on B that is weaker than the norm-topology,

we say that X, converges v-weakly to u, where u i ilit
" Z re u is a probability measure
on (B, #(H)), if we have v

lim Bf(X,) = [ f(o) u(de)

7,00

icm°
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for all z-continuous, bounded functions f from E into R. And we say

that (X,) is v-tight if for all &> 0 there exists a z-compact get K < &

with ) .

PX,¢K)<e

TmvMMA 6.1. Let ® be a map from F' X 2 into R, where I s a linear

subspace of B'. Suppose thai E is separable and u is @ probability measure

on (H, B(B)) such that

(6.1) ®(w', -) is measurable for all @'c F';

(6.2) P(D(2)ed) = plwe Bl &, x) ed) Va'eF,VAcB(R).

Then there ewists an H-valued random variable X such that for o'« F we

have :

(6.3)

Vaxl.

bz, o) =<2, X(w)> for a.a. we Q.
Proof. Since T is separable, there exists a countable subset TeF
such that 7' is sequentially o(¥', E)-dense in ¥ (i.e., for all 4’ < F' exists
a sequence (&) = 7' with 1, 55" in (¥ ).

n n->00

Now let T' = {a},a;, ...} be an enumeration of T and define
Y(w) = (@(m}, w))‘;‘;l.
Then ¥(-) is a measurable map from £ into R®. Distribution of ¥ is
given by
, Po(d) = ulal ((&), 2))21cd) Y Aec B(R7).
Now let R, = R™ be the set
Ry = {(t;)e R°| wc B with ¢ = lag, w> Vj=1}.

Since R, is a continuous image of B, we have that R, is an analytic space
in the sense of [6] Chapter IIT.1, and obviously Pwu(R,) = 1. (Notice
that R, is universally measurable.) Now congider the set

A={t, o) B x Bl 1 = IR EERE

A is then a closed subset of B, x B, and so A is analytic. By definition
of R, we know that-the projection of A onto R, is equal to B,. Thus by
Theorem IIL.9.6 of [6] exists a universally measurable map @: Ry B
whose graph is contained in 4, i.e.

Loy, o)y =4 Vi = (t)e By.
Now let us define '
p(P(w) it oe¥PTHRd),
X(a)) = . -
0 it we PR
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Then X ig a P-measurable map from £ into B, and as F is separable we
have that X is an E-valued random variable. '
If we P~'(R,) we then have

@, X(@)) = @, p(F(0))) = D@, ©) Vol
and since P(¥~'(R,)) =1, we have that
@, X(w)y = B(@y w) a5, Vo'l
If o'« F' and #, « 7' such that o' in o(¥', ), then
<t;;X(w)>m;><m’,X(w)> for all w
and an easy argument shows that
B(t, ) (', ) in probability
and so we have
Vael

D@y 0) = @'y X(w)) a.s.

‘which proves Lemma 6.1.

TeEOREM 6.2. Let X,, X,,... be independent, symmetrio, H-valued
random variables and let v be a locally convew Hausdorff topology on H,
which is weaker than the norm-topology, and such that the unit ball of B is
T-closed.

o0
“Let 8, = YX;. If B is separable then the following statements are
equivalent: !
(6.4) - (8,) converges a.s.;
(6.5) (S ) converges v-wealkly;
(6.6) 8,) is T-tight;
(6.7) (S ) has a subsequence which converges t-weally.

) ??roof. It is evident that (6.4) implies (6.5) and (6.6), and that (6.5)
Ingplies (6.7), and (6.6) implies (6.7). Hence the only non-trivial impli-
cation is that (6.7) implies (6.4).

So let (n;) be & sequence of integers such that (S, ;) converges v-weakly.
Let ¥ = (B, 7)'; then F''< ¥, and since

n
<m[7 8> "":12 &'y Xpp,
we]
we find, from Theorem 17.B, p. 251, in [12], that

lim (@', 8, () = (2, w)
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exists for a.a. we  and all » "¢ F'. And if p is the z-weak limit of (9, ;)
then

P(®O(a)ed) = p(w] <&',aped) VaF.
Hence, by Lemma 6.1, there exists a random variable § ( ) such that
for all @'« 7' we have

&'y By (0)smr<a’y 8(0)> aus.

Now let T' be a countable subset of A' = F'n{a' ¢ B'| o' <1} ‘which
is sequentially o(E', B)-dense in A4’. Then there exists Q,¢ #, with
P(Q;) =1, and such that

Sp(0)mm

S(w) in o(@,T") Ve,

n—00
Now it is easily seen that o(H, T') = 7, is a locally convex Hausdorff
topology on E (see (5.8)), such that the unit ball of B is ,-closed, and z,
is weaker than the norm-topology. Hence, by Corollary 5.5, we have
that (S,) converges a.s. and so the theorem is proved.

Remark. Compare this with Theorem 4.1 in [8]. Ito and Nisio also
o0

shows in {8] that |- ||l-weak convergence of } X, implies a.s. convergence
1

whenever (X,) is & sequence of independent FH-valued random variables.

Added in proof. S. Kwapien has recently proved that my conjecture (5.5) is
true (oral communication). .
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On Banach spaces containing o,

A supplement to the paper by J. I-Ioffma.nn-]argenseﬁ
“Sums of independent Banach space valued random variables”

by
S. KWAPIEN (Warszawa)

Abstract. It is proved that a Banach space B does not contain subspaces iso-
morphie to ¢, if and only if the almost surely boundedness of sums of independent,
symmetric B-valued random variables implies the almost surely convergence of
the sums. : :

We shall prove the following result conjectured by Hoffmann-Jer-
gensen in the preceding paper [2].
. TumoREM. For every Banach space B the following conditions are
equivalent: )
(i) B does not contain subspaces isomorphic to the space ¢, of all scalar-
valued sequences convergent to zero,
(i) L,(B) does not contain subspaces isomorphic to o,
(i) the almost surely boundedness of sums of independent, symmetric,
B-valued random variables implies the almost surely convergence of the sums.
Tt has been proved in [2] that to prove the theorem it is enough
to establish the following
ProposiTIoN. Let B be a Banach space. Let (g;) be a Bernowilli sequence
on o probability space (2, %, P), i.6., a sequence of independent random
variables such that P(s; =1) = P(g = —1) = § for all i. Let (x;) be a

n
sequence on B, such that int||w;)| > 0 and P(sup|| ) & = oo) = 0. Then B
i n =1

contwins o subspace isomorphic to c,. .
Proof. Let B, denote the o-subtield of & generated by all es. Then
it is easy to see that for Be %,

@ HmP(Bn(e; = 1)) = mP(Bn(s = —1)) = 27'P(B).
i i
Pick M < oo so that P(4)> 2! where

A = {we 2: sgp”je‘(d)@“ < M}.
4=l
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