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Beurling algebras on locally cempact
groups, tensor preducts, and multipliers

by
J. EDWARD KERLIN (Lexington, Ky.)

Abstract. Let &, H, and K be locally compaet groups and 0: K@ and y: K ~H
be continunous homomorphisms. A (6, p; y, g)-multiplier is a bounded linear trans-
formation T of L?(G) into L4(H) ruch that To Eg(z) = Lyo T for allz in K, where Ly
is the left translation by x operator. Via tensor product theory, a representation of
the Banach space of (8, p; v, g)-multipliers can be obtained by identifying the topo-
logical tensor product L?(F)@gl~?(H). A fundamental step in this analysis is the
representation of the tensor product IMG)@xL~'(H) as I'(GRQxH), where GRgH
is a locally compact homogeneous space (carrying a quasi-invariant measure) cano-
nically related to G'; H, K, 0 and y. More generally, it is shown here that (e

LYE)
(4

Ll( ) o LL-@ - H(G®xH), where w, %, and { are weight functions on &, H, and K
defmmg the Beurling algebras L}A’(G), L}l() and L%(K). The analysis is effected by
obtaining an extension of the isomorphism Ll (6)/JL (G, H) = Lt (G/H) of Reiter

(for closed mormal subgroups H of @) to permit arbitrary closed subgroups H of G.

If ¢ is a locally compact group, L?(G), for 1< p < oo, denotes the
usual Lebesgue space with respect to left Haar measure on G. For each
we @, L, denotes the left translation operator on L”(@) given by L,f(y)
= f(@™'y) for fe LI7(G) and ye@. Let G, H, and K be locally compact
groups, and let 0: K —@ and y: K — H be continuous group homomorph-
isms. Let 1<p,q¢< oo. A (0, p;y, q)-multiplier is a bounded linear
transformation I' from L7(@) into LYH) such that ToLa(z = LyoT
for all z¢ K. In this context the “multiplier problem” is to ehamacterlze
the space Homg(L”(@), L?(H)) of (6, p; v, ¢)-multipliers of L?(@) into
LA(H). When ¢ = H = K and .0 =y =idg, the identity map on &,
we recapture the classical multiplier problem of characterizing the bounded
linear transformations of L?(@) into IL#(@) which commute with left
translation by the elements of @. When 1. p < oo and 1< ¢ << oo, and
»—3 —}-E; = 1, the theory of tensor products of Banach modules introduced
by Rieffel in [12] shows that

(0.1) Homy (L7(@), I? (H)) = (I?(@®x (B,
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where the isomorphism is linear and isometric, (+)* denotes the Banach
space dual, and, where L”(¢) and L(H) = L(H) are the left and right
Banach K-modules, respectively, under the actions: 2-¢(:) = Lyyg(-)
and z-h{-) = Lyy1h(-) for ze K, g(-)e I7(¢) and h(-)e L7(H). A suit-
able function space representation of the K-module tensor product,
IP(@)Qg LU H), would yield a representation theorem for the (8, p;v, q)-
multipliers analogous to that obtained for the elassical multipliers by
Figh-Talamanca [1], Figh-Talamanca and Gaudry [2], and Rieffel [14].

The specific concern of this paper is with the case p =1 and ¢ = oo,
for then in view of relation (0.1), attention is directed to the tensor product,
IN@®g L' (H), and the problem is to characterize this Banach space.
In [10] the author has characterized the tensor product, I' (@) ® y1 L' (H),
in all instances of algebra actions of L*(XK) on L'(G) and L'(H) for locally
compact Abelian groups &, H, and K (cf. Theorem 6.5 [10]).

In this paper we extend the analysis in [4], [12], and [10] to arbitrary
locally compact groups &, H, and K, and continuous homomorphisms
6: K - @ and y: K — H. In fact, it is shown that if the Beurling algebras
L, (G) and L}(H). are left and right Banach IL;(K)-modules under the
induced actions from ¢ and v, then the tensor product I (G)®, Ll(K) +(H)
is isometrically isomorphic to a weighted IL'-space on a homogeneous
space G@x H carrying a quasi-invariant measure; the paper also contains
an extension of this to vector-valued Beurling spaces.

1. Beurling algebras. Throughout this section @ will denote a locally
compact group with left Haar measure dw. A weight function on @ i8
an upper semicontinuons function w: @ - B such that (i) o is bounded
away from 0, (ii) o(2y) < w(@)o(y) forall 2,y G

The Beurling algebra on G with weight function o, denoted L (&),
is the subalgebra of L'(@) consisting of those f such that fwe L'(G), and
L,(@) is a Banach algebra under the norm ||f],, = flf )| w (@) d,

e Li,(@). These algebras were introduced by Reiter in [15 § 31

Let H be a closed subgroup of &, d¢ the left Haar measure on. H, G[H
the homogeneous space of left cosets of H in @, ny the canonical projection
of G > G/H, and g and Ay the modular functions on @ and H. According
to [16], Chap. 8, §1,2, there is a quasi-invariant positive measure d,®
on G/H corresponding to a_ strietly pou’nlve continuous function ¢ on G
satisfying the functional equation

(1.1) q(x&) = q(») An(6) for all 2« @ and e H,
; Az(£)
such that the measures dx, df, d,4 are canonically related, i.e.,
Flx
(1.2) flw)dy = { ~—d£}d @, NG
Gf ) ,L e feTH@
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The mapping Ty, defined by Ty f(2) ff(¢§)/g (z&)dE,

fe L'(@), is a linear contraction of I*(G) onto L1 (G/H).

If w is a weight function on @, then (#) = inf o (x8), & = 7y (),
SeH
is clearly an upper semicontinuous posxtlve function on G/H with values

bounded away from 0. Note that o has no submultiplicative properties
unless H is normal. However, one can still form the weighted Lebesgue
space and Banach space

@ = HH(ZD),

L(G/H) = {he TG/H; a,)| k], ; = f]h(w B)dy < oo

In this case there obtains the following generalization of Reiter ([15],
§ 8, and of. [16], Chap. 3, § 7.4).

(1.1) LevmA. If H is a closed subgroup of @, then Ty, maps L, (&)
onto L (GH). In fact, if J%(G, H) is the kernel of the restriction of Ty ,
to L, (G) then

T (GH) == LL (@) )T (G, H)

and this isomorphism is mot only algebraic but isometric (the right-hand side
being provided with the ordinary quotient norm).

Proof. The elegant proof of Reiter ([16], Chap. 3, §7.6-7.9) for
closed normal subgroups can be carried over with appropriate modifications;
we point out the less obvious changes. The lemma is first proved for @
countable at infinity exactly as in § 7.6 and § 7.7, Chap. 3 of [16], by
merely changing T to T , and observing that the necessary Proposition
4.9, Chap. 3, [16], can be extended to closed subgroups with a minor
modification in the proof given there (cf. the extended formula,of Mackey-
Bruhat ([16], eq. (2), p. 164 and lines (—7) to (—4), p. 165) is applied
50 .9(+) 2ar, (*) and g(-) xa ().

If G« is any open subgroup of &, and if H, iz the open subgroup
HnGy in H, then Ay and 4y, are simply the restrictions of A, and Ay
to Gy and H,, respectively. Consequently, the restriction g, of g to Gy
satisfies the functional equation

Ag, (&)
g, (€)
and hence with the restricted Haar measures on Gy and H, there corre-
sponds & quasi-invariant measure d, @ on Gy/H,. Let 7 denote the topo-
logical isomorphism 7: Gy /H, =~ nH(G* v(2/Hy) = wy(®), veGy. Then
the restriction of d 4 to my (Gy) is preelsely the positive measure indunced
on zmy(Gy) by v and the measure d, @ on Gy[Hy, i.e.,

(1.3) [ hovd,i = [ kg, hedt (ng(@,).

GylH, 75 (Gy)

Gy (2E) = gu () for all xe 6y and e H,,
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Indeed, let he A (my(Gy)) and let h; denote the natural extension of h
to a function on G/H. According to Chap. 8, § 2.3, and Chap. 3, § 4.2, of
[16], there is an fe # (G4) such that Ty, f=hove X (Gx/Hy). Let f
be the natural extension of f to a function on & Now, from [16], Chap.
3, §7.8 (i), we have Tp . f1(@/H) = Ty, qf(@/Hs) = h(z(2)) = h(z/H),
for all weGy and hence Ty fi(%/H) = h(s/H) for all ze@, H. Since
supp(fy) = supp(f) < G«, we have Ty f(¢/H) = 0 = hy(w/H) for all
we G\(Gy H), 50 that Ty ,fy = hy. Applying the Mackey—Bruhat formula
(1.2), we obtain [ kdd = [Mds = [ fidw = [fde = [ Ty, fd,
= [ hord,,s. wg (G GIH G o GH,
GJH,
In proving the result for general @ the analysis in Chap. 3, § 7.9 of

[167] can be continued without change down to line (19). Following line
(19) and in the notation of § 7.9, Chap. 3 [16] we have from the fact that
the lemma holds for groups countable at infinity,

4 =int [ |Tg, o f, (@) 0u(®)dgs.
Gx @ /A,
Since Ty, ,, fx(®) = Tq, f(r(ab)) for all #e@./H,, we have by appiying
relation (1.3),
dy=1inf [ [Ty f(@) oule™ (%) dys-
G gl
Now, noting that (v} (#)) = inf o(28), & = ng(®),v<Gy, the
&eH,

remainder of the proof that d; = ||TH,(,]:|]1,;D proceeds as in the proof
following line (20) of [16], § 7.9, Chap. 3, with the replacement there of
Ty by Ty o. This completes the proof.

In the lemma that follows we obtain a characterization of the subspace
J45, (G, H) for general closed subgroups H of @, extending the characteriza-
tion of Reiter ([16], Chap. 3, § 6.4) for closed normal subgroups.

(1.2) LeMMA. Let H, be o subgroup of G with closure H and let D be
o norm dense subset of L, (G). Then J%. (G, H) is the closed linear subspace
in L.,(G) spanned by all elements of the form A,f—f, neHy, fe D, where
A, f (@) = fan) dg(n), 2e G.

Proof. First, suppose Hy, = H and D = 4 (G). Since the proof
for this case is only a modification of the proof in § 6.4, Chap. 8 of [16],
we merely sketch it. Let J denote the closed linear subspace generated.
J < J,(G, H) since Ty ,A,f = Ty .f for all ne H and fe # (&) by relation
(1.1). Conversely, since J is left invariant it suffices (§ 7.2, § 7.3 (Remark 1),
and § 6.3 of Chap. 3 [16]) to show every continuous de LS (G) (Def. 7.3,
0111a,p. 3 [16]) that is orthogonal to J is also orthogonal to J% (G, H). Let
By ¢(@) = (an™); then since 0 = (4,f—f, ¢> = {f, Byp—¢> for all
fe o (@), we have by the continuity of ¢ that ¢ (v) = d(#)forallze @, neH.
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Thus, ¢ == ¢'ony, where ¢’ is a continuous function in L? (G¢/H). An applica-
tion of the formula of Mackey-Bruhat (1.2) shows that ¢ is orthogonal
to JL(G, H). Therefore, J,(G, H) < J.

Now, we treat the general case for H, and D as described in the lemma.

" Let J denote the closed linear subspace generated. Let fe D and ne H,.

For ge A (G) we have

1A f =) = (A9 =D llso < (@) +IIf —gle
and thereby from the density of (&) in I,(G) and the first part of
the proof we have J < J4 (@, H). On the other hand, let ge o#'(G) andée H.

" Given &3>0, choose feD so that |jg—fly.<< (L+w(£7) /2. Since

»— A,f is strongly continuous at the identity of & (ef. § 7.2 (3p), Chap. 3
[16]) and H, is dense in H, there is an » in H, such that ||f — 41,110

< o(£71)¢/2. Then we have

(1.4) (Aeg—9)— (A f=Nho < 1469 =0+ 14ef =4y flh,o+19 —Flho-

The sum of the first and third terms in the right-hand side of (1.4) is
bounded above by (w(§"l)+1)li9—flh,m< £/2. As for the second term
we have by the choice of 7 in H,,

ef— Ao flho = Ie(f= 41, N0 < @ (E) I =Lty flha < o2

Since & iy arbitrary, A.g—ged, ge A (&), £« H, and by the first part of
the proof, J% (G, H) < J, The proof is complete.

(1.3) OoroLLARY. Let H, and D be as in Lemma 1.2. If 8 is a generating
set for Hy and D is right Htranslation invariant, then JH G, H) is the
closed linear subspace in L' (@) spanned by all elements of the form A.f—f
and Ag-1f—f for se8 and feD. ’

 Proof. Let J denote the closed linear subspace generated. By Lemma
1.2 we need only show J% (G, H). = J. Let fe D and ne H,. Since S gene-
rates Ho, Wwe can write n = byts...t,, Where & = sji, s;¢ §, and 2, is +1
or —1 for ¢=1,...,n Setting #.,...% =&, for j=1,...,2—1,

-we have

n—1

A= = A=+ 3 [y (dg, P =g, ).

Since &.,,¢ H, and D is right H-translation invariant, i.e. Asj feD,
we have A,f—feJ. Thus, by Lemma 1.2, Ju (G, H) < J.

We conclude this section with an extension of Theorem 7.10, Chap.
3 of Reiter [16].

(1.4) CoroLLARY. Let ¢ be a complem-valued function on G|H, H being
a closed subgroup of G. Then ¢ is in L% (G[H) if and only if domy 18 in
L2 (@) and in either case

”¢||oo,c'u = Hqsonﬂlloo,w'
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2. Tensor products of Beurling algebras. The main tools in the remain-
- der of the paper are Banach modules, their Banach space tensor products,
and their elementary properties. In this regard, the reader is urged to
consult the paper [13] of Rieffel.

Let @&, H, and K be locally compact groups, and let 0: K — @ and -

y: K —H be continuous homomorphisms. M (K) denotes the Banach

algebra of all complex-valued regular Borel measures on K. L'(G) is 2 left

Bapach M (K)-module under the action (u, g)—> u#,g,  Where ux.g(x)

= [g(6() " @}du(2), and L*(H) is a right Banach M (K)-module under
K.

the action (4, h) — u” *,h, where u” in M (X) is defined by the relation
™y > =<py I, f in Oy(K), where f*(2) =f(2™"). The map u—u”
of M(K) into M (K) is a real adjoint operation on the algebra M (K)
with [ (2) = f*(2)/dg(2) for f in L*K) < M(K). We will indicate the
- fact that L'(H) is a right module under this action by writing L*(H).

Now, suppose o, 7, and { are weight functions on ¢, H, and K,
respectively, and let L (&), L;(H), and L}(K) denote the corresponding
Beurling (group) algebras on @, H, and K. Let M, (K) denote the Beurling
(meagure) algebra on K corresponding to the weight function ¢, i.e.,
M (K)is the subalgebra consisting of all x in M (K) such that el = [Cd|ul

K

is finite. M, (K) is a Banach algebra under the norm | ll:, and L;(K) is
the closed ideal in M, (K) consisting of those measures in M, (K) absolutely
continuous with respect to left Haar measure on K.

(2.1) Lemwma. (1) L} (G) is a left Banach L;(K)-module under the action
(s 9) = F*eg if and only if there is a constant M = 0 such that w(ﬁ(z)m)
< Mi(#)w (@) for locally a. e. (2, ©) in K X Q.
(2) Li(H) is a right Banach L (K )-module under the action ( by —~f *,h
if and only if there is a constamt M > 0 such that 7y (z)"ly) < ME(2)nw)
- for locally a. e. (2, y) in K x H. :
The proof of Lemma 2.1 is routine and is omitted.

(2.2) Remark. Although the condition on w, ¢, and ¢ in Lemma 2.1
is clearly sufficient for L, (@) to be a left Banach module over L} (K) under
the action (f, g) — fxeg, it is not in general sufficient for IL(@) to be
a left Banach module over M,(K) under the action (145 9) = wrqg.
But rather, a stronger condition, such as: for a.e. @ in G, w(0(2)a)
< M{(#)w(z), is needed. Furthermore, note that if continuous homo-
morphisms 6 and y and weight functions w and % are given, then there
is always a weight function ¢ on K such that w(O(z)w) < £ {(2) w (@),
y(«pl(éarly) <@, vz, let () =max(w(6(2),n(p)7), - for &
in K.

Let @ denote the cloged subgroup in & x H and closure of the subgroup
{(6(2), v(2)): 2 K}. Lt GRzH denote the locally compact homogeneous

e _ ®
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space, (G x H)/Q, of left cosets of Q in G x H. BEquip G x H with the product
Haar measure dz® dy and let d(u, v) denote the left Haar measure on Q.
Let dg(w,'y) denote the quasi-invariant positive measure on GRxH so
that de®dy, d(u,v), and d,(s,y) arve canonically related. Let «*a n*
denote the weight function on @ x H defined by o™ A 7% (z, ¥) = o™ ()7%(y)
= a@ Yy(y™"); leb o*®,n" denote the guotient weight function on
(R H given by w*®uy"(z,y) = in:EQ o* A n* (wu, yv), for (#,9)c AQH:
L}u,,m,,. (G@xH) denqtes the Wei(gh)teQ Lebesgue space eorresponding
0 o*@u* and dy(x, y). ‘

With the above notations and definitions we are prepared to state
the primary result of this section.

(2.2) THROREM. Let A, be a subset of M, (K) such that L}, (&) and L (H)

“are left and right Banach Ai-modules wnder the actions (u, g) — uxeg and

(@ ) = p"~ %, h, respectively, and such that

(i) 0,xd, = A, for all 2 in K, and

(il) for each g in 2 (@), h in A (H), and & > 0, there exists a u in A,
such that ||g — pregll,o < & and h—p" bl , < e

Then there obtains the natural tsometric isomorphism

IL(6)@.4, L (H) 22 Dheg e (6@ H),

where the element g h corresponds to To o(g" A B7).
(2.3) CoroLLARY. If IL(G) and LL(H) are left and right Banach L (K)-
modules under the actions induced by 0 and y (¢f. Lemma 2.1), then ’

I, (G)@L%(K}Erl; (H)=2 Lfn*@;ﬁ* (G®xH),
where the isomorphism is linear and isometric:

Proof of Corollary. By Theorem 2.2 it is only necessary to show
that 4, = L}(K) satisfies conditions (i) and (ii). Condition (i) is obvious
and if g in (@), hin A (H), and & > 0 are given, choose neighborhoods
of the identity, U in & and V in H, such that |[L,g—gl,,, < ¢ for # in
U and ||L,h—hf,,<< ¢ for y in V. Let N be a symmetric neighborhood
of the identity in K such that 6(N)< U and (N)c V. I fe A (K),
Iflly = 1, and supp(f) =« N, then we have

Ifeeg —glho < [ 1 og—0lh,of (2)d2 < &,
N
If #ph =Ry < [ | Lygh—Hl,,f" ()de < 5,
N
and so condition (ii) is satisfied.

Proof of Theorem 2.2. Let R denote the isometriec isomorphism,
IL6)®, I (H) = L. ()®,L,.(H), implemented by the map R(¢®h) .
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=g "®h". Let S denote the Grothendieck [6; p. 90] and Johnson [9]
isomorphism, L ()®,Liw(H) e Liup, (G X H) (cf. [5], Remark 3,
p. 304), implemented by the correspondence S(9;®h;) = g1A by, and
finally let T denote the composite isometric isomorphism So . By Lemma
1.1, there obtains the isometric isomorphism

T p (G X H) [T p o (6 X H, Q) 2 L e (6@ H),

with the left-hand side provided with the ordinary quotient norm. The
proof of Theorem 4.1 is eompleﬁ’e once we have shown that T(K,)
= S (@ X H, Q) =J, where K, is the closed linear subspace in
A (H) generated by all elements of the form

L,(3®,L
(@)@ h—gR (u"#,h),  pedyy geLy(@), he Ly(H).

We first show that T(H,) < J. Let ued,, ge A (@), and he " (H).
Then for all (z, ¥) = (#, ¥)/Q « GRxH, we have ‘

TQ,q((‘u*ﬂg)~ A h~) (%, y)
__J‘j‘g(()(z‘l)'uﬁlzv“l)h~ (yv)
82 q(wu, yo)
Now, by interchanging the order of integration, making the change of

variables @ »(u,v) ~—> (uB(z*l), op(2"))e @, and taking account for the
modular function on @, we have

¥

Ag{(zu)™) dp(2)d(w, v).

To.q((u%eg)” A D7) (2, y) :
f f g{(wu)™) 1" (yop (2 “1)) Ag(6(z™1), w(z™)
(wub (27, yop(e™)) Ag(ou) 4g(0(z71))
Since g (xuﬁ(é_l), yoy ()=

g (@, y0) (48 (™), v (27™)) [ Aaxz (0 (2
and since Ag, gz (%, ¥) = dg(2) 45 (y) in general, we have

a (%, v)du(2).

yp(e™)

g (wu) by (2) (yv)~7)

W Ag ((yo)™) du (e
g (wu) p” *, b (yo)”
q (2, yv)

= Tq,q(g A (p *wh)N)(w; ).

Thus, To,q(T (u*eg)®h—g@ (s #,1))) = 0 for all u in A, g in (@), h
in. o' (H); by & density argument it holds for all g in I, (¢) and & in I} (H).
It follows by the linearity and continuity of 7' that T (K,) < J. To prove
the reverse inclusion, let D be the norm dense subset of L. ,,.(G X H)
_consisting of all functions which are finite linear combinations of functions

Too((uwog)” A1) (07y) = f )d(u, )

! Ag((yv) ™) d(u, v)

icm
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of the form g h for ge %(G) he A (H). Noting that @ is the closure of
the subgroup {(0(2), y())|2¢ K} in G x H, we have by Lemma 1.2 that
J = d oy (GxH, Q) lS the - closed linear subspace in Llup (G x H)
generated by all elements of the form Ay k—Fk forzin K and % in D.
(4,h), we have from the definition
of D and linehrity of A ,that J is the closed linear subspace in I, an(@ X H)

‘spanned by all elements of the form

(Aﬂ(z)g)/\ (Aw(z)h)—g/\ hy  geA (@), he &' (H).
Now, since (Lo (9”))" = Ayyg and (L, (k")) = Ay b, it iy easily seen
that T'(v) = (dye9) A (Aygh) —gA b, where
T = Ly (97 )@ Lyy (1) — 4" @1 ¢ LL ()@, L (H).

We show ve Ky, for then it follows from the isomorphic and isometric
property of T that J < T'(X,). Let ¢ > 0 be given, and choose pe 4, s0
that 97 —uxeg |10 < & and |u” *h" — 1" H1n< . Now,

T = (Lﬂ(z)(g — *p g )®L1pz )+
+ (Lo (409" )® Lyy b — 9" @p " #,17) + (9”@ (" %, 2" —17)).
The sum of the first and last terms in this expansion of = are bounded

in norm by E(w(ﬂ(z))lle(z)VHl,n +||‘g"[|1,,‘,). From the fact that in general
Lowyg' = 0,459, we have

Lﬁ(z) (/4*09~) = 55*0(M*09~) = (8% u)eg”

and
(0,0) (175 Bym)i (B0, h7) = w17

Applying these relations to the middle term in the above expansion of
7, we see that this middle term is equal to

v (Lw(z)h’l)

((65* H)*Gy~)®Lw(s) hu - g~ ® ((62* /“)—’*w (I’w(z) h~ ))

and since % is in 4, by hypothesis, it is in K,. Since ¢ > 0 is arbitrary,
we have v in K,. The proof is complete.’

(2.4) Remark. The set of all left translates of a two-sided approximate
unit in L} (K) is an example of a subset 4, in M, (K) with minimal structure
satisfying conditions (i) and (i) of Theorem 2.2 (and of course, provided
conditions (1) and (2) of Lemma 2.1 on o, %, &, 6, and 1y are satisfied).
Furthermore, if w(0(-))< Mi(-) and n{p(:)™") < ML(-), then 4, = K
and 4, = M,(K) satisfy the hypotheses (i) and (ii) of Theorem 2.2. On
the other 'hand, we remark that Theorem 3.14 of [12] is not directly
applicable since in general I.(@) and I}(H) are not uniformly bounded
Banach K-modules under the left and right actions induced by 6: K — &
and y: K~ H : (k, g) = 6%9 aﬂldl\k B) = Oz %, h = Bp-1x, h.

2 — Studia Mathematica LIT
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(2.6) Remark. Consider the (classical) case when G =H =K,
b=y =idg, and o =7 =7{=1 Then @ = diag(6¢xG) and G®G'C¥
= (6 x @)/Q. The mapping 7((®, #)/Q) = wy™ <G for (2,¥)/Q<GRE is
o topological isomorphism of G®gG onto ¢ and where v (2) = (=, €)/Q,
@< G. The mapping o (2) = (@, ), we @, is a topological and group isomor-
phism of G onto Q; let d(u, w) be the Haar measure on ¢ induced by the
adjoint map of ¢ and the Haar measure dz on. @, i.e.

(2.1) [ Rog(@)de = [R(u, w)d(u,u) for all BeI(Q).

& é

Define #(z, y) = q(@, y) = dg(y™") for (z, ¥)e G x G. Then r(w, y) satisties
the relations 7 (', yy') = #(w, y)*(x', ¥'), ¥ (1w, w) = Ag(t, )] Agya (U, u),
so that we can take the measure d,(z, ¥) == d (%, 4) on. GRxEG to be a rela-
tively invariant positive measure ([16], Chap. 8, § 1.4). Applying relation
(2.1) to Ty, (ga B7)(z~*(-)) one can show that :

(2.2) Tor(gnb7) [z (1)) = g=h(-),
‘and a further computation will show .
[ Tonlgrh™) (@ 9)d,(@y) = [geh(a)dm, g, he ING).
[el-Trles é ®
It then is seen that d,.(, y) is the positive measure on GG induced by

the adjoint of = and the Haar measure do on @. Thus, the adjoint of =
induces the algebraic and isometric isomorphism
o L2 (G do) == L7 (GR46; 4, (2, 9)

for all 1< p < co; in particular, when p =1, LNG) = L' (G®:F). Of
course, the fact that L'(G) sz L' (H®pye L' (G) is directly  derivable from
Theorem (4.4) of [12]. Relation (2.2) above along with Theorem 2.2
suggests a method for handling the (8, p; v, ¢)-multiplier problem mentioned
in the introduction while at the same time recapturing the classical repre-
gentations in [1], [2], and [13]. We pursue these notions in a subsequent
paper [11].

9s he'Ll(G),

3. (6, 1;v, oo)-multipliers. In this section we assume that either
1) 9@ y) < ML(@)n(y) for a.e. (2y) in KxH
or
1) n{wp(e)™") < ML(2) for locally a.e. # in K.
In either case, if f is in L}(K) and ¢ is in LP(H), then fu,p(y)
= [f(2)p(p(e) " y)dz defines a continuous function on H and [|f#, e,y
X

< M|l cl9llo,n, Where L;?(H) is the Banach space dual of L} (H) ([16],
Chap. 3, § 7.3) with the dual pairing given by

o> = [B(y)pH)dy.
H
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Under this action, L (H) is a left Banach L}(K)-module, and in view
of the relation

<f~*wh7 ‘P> = <h1 f*vp<p> ?

fin Ly(K), b in L;(H), and ¢ in LP(H), this left L}(K)-module action is
the adjoint action of L;(K) on LY (H) indueed by the right action of LK)
on L (H). Further, note that d,p, for 2 in K, is well defined with
184, @lloo,n < M][qo||°o,,1n(tp(z)'_1), and (2, ¢) ~ 6,%,¢ makes L (H) into a left
Banach K-module and it is the adjoint action of that induced by the
right action of K on I} (H). .

Let LG, ,0s (@@ H) denote the Banach space dual of Li.g o (GRxH)
and the space of complex valued d,(»,y)-measurable functions @ on
GQ@rH such that ) °

18], 007 = e55-5uD (10 (a; )} J*@¢ 7™ (2, ) < oo
Combining Theorem. 2.2 and [13], Corollary 2.13 we obtain a characteriza-
tion of the space of (8,1;y, oo)-multipliers for .Beurling algebras on
arbitrary locally compact groups.
(8.1) COROLLARY. There obtain the isometric isomorphisms

Homg (L}(&), LY (H)) = Hong(K)(L}"(G% L7 (H)) =~ Lf,f’ww (GRgH),

where the multiplier T corresponds to the linear functional ® so that

I Tgy> = [ Trelg” Ah")Bdy(a,y)
GO H

for all b in L (H) and g in L. (). ‘

4. Extensions to vector valued Beurling spaces. Notations are assumed
to be as in Seetion 2. If ¥ and W are Banach spaces, then I (G, V) and
L;(H, W) denote the usual Lebesgue—Bochner spaces of vector valued
functions. If 4 is a Banach algebra then L}(K, 4)%s a Banach algebra
with vector valued convolution as multiplication. (see [9]). If V and W
are left and right Banach A-modules for a Banach algebra 4, and if
w, 1, {, 6 and y satisfy conditions (1) and (2) of Lemma 2.1, then LL(&, V)
and Lj(H, W) = L}(H, W) are left and right Banach Li (K, A)-modules
under the actions:

(£, 9) > Frog (@) = (B) [f()-g(0(2) a) e,
K

(fy B) > f"#h, where f" (2) = f(z™")] Ak (2),

With {If*glh,o < Const||fllycllgh,« and [|f,hll,, < Const||f|,|lAl,,. The
verification that these actions are Banach module actions is tedious
but presents no unexpected difficulties and is left to the reader.


GUEST


20 J. E. Kerlin

(4.1) TamorEM. If A is a Banach algebra with a bounded two-sided
approvimate unit, and V and W are essential left and right Bomach A-
modules, then

L1 & 7)&

Ly(H, W) = Byeg e (OQxH, VR4 W),

11114

where the isomorphism is algebraic and isomeiric, and where the element
(g() )@ (R(-)w) corresponds to the element Toolg” ARTY( )o@ for all g
in IL(@), b nL(H), vin V and w in W. .

A proof of Theorem 5.1 can be obtained through the following sequence
of lemmas. For the sake of brevity in presentation we omit their proofs.

(4.2) LEMMA. Let A’ and A be Banach algebras, and let V' and V be
left (resp. right) Bamach A’ and A-modules, repectively. Then V'®,V is
a left (resp. right) Banach A'®, A-module wnder the action induced by

(a'®a)- (v ®v = (a"-v)®(a"v)
for a’e A’y aec A, v'eV', and veV.

(4.3) LEMMA, Let V and W be lefi and right Banach A-modules. If
IL(@)®,V and LN(H)®,W are regarded as lefi and right Banach L (K)®, A-
modules under the action described in Lemma 4.2, then the isomorphisms
LLG V) 2 TL@)®,V and L) (H, W) =~ L(H)®,W intertwine the module
actions by Ly (K, A) and L} (K)®, A.

(4.4) LemmA. Let A’ and A be Banach algebras with bounded two-sided
approwimate wnits, and let V', V and W', W be assential left and right Banach
A’, A-modules, respectively. Then there obtcwlns the natural isometric 1somor-
phism

(e, )®(A ‘® A)(W @, W) o (V'®A'W )®,(VQLW),
where the element (v'Q v)&{w’ @w) corresponds to the element (v'@w’)® (vBw).

‘We have found the hypothesis of Lemma 4.4 necessary in. order to
show " the canonical epimorphism (7'®,V)®,(W'®,W)— (V'®,W)®,
(V®,W) has kernel identical to the reducing subspace of (V'®,V)®,
(W'®,W) defining the tensor module (V'®, )®(_4® oH(W'e,W).

A proof of Theorem 4.1 can now be obtained from Lemmas 4.3 and
4.4 and Corollary 2.3, v. z., we have

L@ 7)® ,

LK, 4)

Ly(H, W) = (L@, 7)® (Lo

(THE)® )

1 1
(LN(G)®LZ(K)EW (H))®, (VR W)
o~ L}MW. (GRzH, V& W).

H)®,W)

)
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