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Operations on distribution functions not derivable
from operations on random variables

by
B. SCHWEIZER and A. SKLAR* (Amherst, Mass. and Chicago, IIL.)

Abstract. A binary operation # on the gpace of probability distribution functions
is derivable from an operation on random wariables if there exists a Borel-measurable
2-place real function g such that, for any 2 distribution functions F, & there exist
random variables X, ¥ such that the distribution function of X is F, that of ¥ is &,
and that of g (X, ¥) is (%, ¢). Thus, for example, convolution is derivable from the
operation of addition on random variables. The purpose of this paper is to exhibit
a class of very simple and very natural operations on distribution functions that are
not derivable from any operation on random variables. To facilitate this purpose,
we introduce and establish some of the salient facts concerning 2-dimensional copulas,
i. e., the functions that connect a 2-dimensional joint distribution function with its
one-dimensional margins,

1. Introduction. The triangle inequality for a probabilistic metric
gpace, in the formulation due to A. N. Serstnev [7, 8], reads

(1.1) Fpp > v(Fpgy Fap).

Here F,,, F,, and F, belong to the space A of (one-dimensional) proba-
bility distribution functions(!) and = is a suitable binary operation
on 4. The most common choices for = are convolution and the operations
7 defined for any 7, G in A and any real # by
(1.2) 7 (F, @) (@) = sup T (¥ (u), G(v)),

. Ut v=a
where T is a t-norm, i. e., a suitable binary operation on the unit interval,
The firgt choice yields Wald’s inequality, while the second leads to the
family of Menger inequalities (for a discussion, see [4], [6], [8]).

* Supported in part by the National Science Foundation, grants GP-22515 and
GP-34526. ‘ .

() The elements of 4 are thus non-decreasing functions I defined on the extended
real line B = [— oo, 4+ oo}, with F(—~ oo) = 0 and F(+ o) = 1. For convenience
of exposition, we shall normalize 4 by requiring its elements to be left-continuous
on the unextended real line B = (— oo, -+ o0); as will be seen, nothing of importance
hinges on this particular choice of normalization.
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It is well known that convolution of distribution functions corre-
sponds to addition of random. variables, in the sense that if ' and @& are
distribution functions then there exist (independent) random variables X
and Y, defined on the same probability space, such that F is the distri-
bution function of X, @ the distribution function of ¥, and their convolu-
tion F+@ the distribution function of X --¥. It is therefore natural
to ask: What operations on random variables correspond to the operations
7% The primary purpose of this paper is to show that the general answer
to this question is: None. More precisely, we shall do the following: We
begin with:

DrrinirIoN 1. Let § be a binary operation on the space 4. Then f
is derivable from an operation on random variables if there existy a Borvel-
measurable 2-place real function g such that, for any F, @ in 4, there
exigt random variables X, ¥, defined on a common probability space,
such that the distribution function of X is 7, that of ¥ is @, and that of
9(X, ) is B(F,G).

DErINITIoN 2. The set 7 congists of all functions 7' such that: (a) T
maps the closed unit square [0,1]? into the closed unit interval [0, 1],
i.e, T is a binary operation om [0, 1]; (b) T is non-decreasing in each
argument; (e) 7' satisties

(1.3) T(a, 0) =T(0,a) =0,
for every a in [0, 1]
Then our major result is: .
THROREM 1. Let T' be any function in 7~ other than Min. Let vq be the

binary operation on A defined by (1.2). Then vy is not derivable from any
operation on random variables.

This result clearly shows that the distinetion between. working
directly with distribution functions (as we generally do in the theory of
prohabilistic metric spaces) rather than with random variables, is intringic

T(a,1) =1T(1,a) = a

and not just a matter of taste. It further shows that there are topies in'

probability which are not encompassed by the standard measure-theoretic
model of the theory. ‘

The easiest way to prove Theorem 1 is with the aid of copulas. These
are the funections which connect an s-dimensional distribution function

with ity one-dimensional margins. Copulag ‘were introduced by one of ’

us in [9], and are discussed at length in [10]. However, these papers
contain no proofs. Accordingly, the next section of this paper iy devoted
to a recapitulation of the salient facts concerning copulay, complete with
proofs. However, since more is not required in the sequel, 'we confine
ourselves to the two-dimensional case. The third section is then devoted
to the proof of Theorem 1 and to several allied results.
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2. Copulas. Let X, Y, ..., be real-valued random variables defined
on a common probability space. For each such random variable X, let
Py denote the distribution function of X, so that for any real z, Fx(x)
is the probability that X is less than x. Similarly, for each pair (X, ¥)
of random variables, let Hy, denote the joint distribution function of
X and Y, so that for any real « and v, Hxy (4, v) is the probability that
X < w and ¥ < ». Clearly, for all u, v, we have:

(2.1)  Hyp(u, + ) = Fx(u) and Hyp(+ 00, 9) = Fy(v),

i. e., the individual distribution functions Fy and Fyp are the marging
of the joint distribution function Hyy. ‘ :

It is ‘well-known (see, e.g., [3], pp. 148-149) that the function Hyy
has the following properties: .

(2.2) Hyyp is left-continuous in each place;
(2.3) Hyxp(u, — 00) = Hyp(— o0,9) =0, for all u,v;
(2.4) Hxy(+ o0, + o0} =13

(2.8)  Hxyls, ) —Hxy(s, )~ Hxy (%, 1) + Hxy(u, v) 2 0,

whenever 8 < %, 1< v.

Oonversely, any two-place real function H satisfying the conditions
(2.2)~(2.8) is the joint distribution function of a pair of random variables
defined on & common probability space. The condition that a joint distii-
bution function. H is non-decreasing in each place follows readily from
(2.3) and (2.5), as does the inequality: For any s, ¥, 4, v,
(2.6) |H (s, t) —H (u, v)| < |F(s) —F (w)| + |6 (1) —G(v)],
where F and @ are the margins of H (see [1], p. 290). It follows at once
from (2.6) that if F(s) = F(u) and G(f) = G(v) then H(s, ) = H(u, v).
Hence the set of ordered pairs,
{7 (w), @ (@), H (w, v))|u, ve R}
defines a two-place real function whose domain is the Cartesian product
(RanF) x (Ran@). Thus we have:
Lmvwa 1. If X, ¥ are random variables with distribution functions

My By and joint distribution function Hxy, then there ewisis a unique
two-place real function Cy such that :
2.7

(2.8)

Dom 0%, = (RanF3) x (RanFy), RanCyy = RanHyy,
Hyy(u,v) = Oxr(Fx(w), Fy(v),

. In order to study functions such as (% it is convenient to introduce
several definitions. Let I denote the closed unit interval [0, 1].

for all u,v.
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DEFINITION 3. A subobpula is a function O* with the following prop-

erties:
(2.9) Dom(* = D, x D,, where D, and D, are subsets of I containing
0 and 1;

(2.10) 0*(a,0) = 0*(0,8) =0, for all ae Dy, beDy;
(211)  C*(a,1) =a, C*(1,b) =b, for all acDy,beDy;
(212)  0%(a, b)—O0"(a, @) — 0% (¢, b) + O* (¢, d) > 0,

whenever o, ce Dy, b, de Dy and a < 6, b << d.

DEFINITION 4. A copula is a subcopula whose domain is the entire
unit square I°.

‘We now readily obtain:

LeMuA 2. Bvery copula is in the set I~ of Definition 2.

Livnaa 8. The function Oy defined by (2.7) and (2.8) is always o sub-
copula and 4s a copuls if and only if RanFy = RanFy = I,

Lmmua 4. If 0% is a subcopula then O is non-decreasing in each place,
RanC* c I, and

(2.13) 0% (a, b) — 0" (¢, @)| < la—o| +|b—d,

for all a,ce Dy, b, de Dy, whence O* is continuous on its domain.
The next result is erucial.
Limnwia 5. Let C* be a subcopula. Then there is a copula O such that:

(2.14) O(a, b) = 0*(a,b) for all (a, b)e Dom (¥,

.., any subcopula can be ewtended to o copula. The extension is generally
non-unique.

Proof. Let Dom(* = D, x D,. Tt follows at onee from Lemma 4
that g* can be extended by continuity to & function ¢ with domain
Dy x Dy, where D, is the closure of D,, and D, that of D,. Cleaxly O is
also a subeopula. We next extend U to a function ¢ with domain I® as
follows: For any (a, b)e I*; let a, and ay, respectively, be the greatest
and least elements of I, that satisty 1 S 6 < ay; and by, by, respectively,
the greatest and least elements of D, that satisfy b, < b < b,. Note that
y =@ = a, if aeDl,bl =b =bgi.f be‘ﬁﬂ. Set

P l(a"‘ad)/(“a”‘“l)a it ay < a,,
L =

1 if ay = ay;

i b, < by,

_ "(b—bx)/(ba—bq),
H1 = .
1, . it by = by;
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and define:
(2.18)  O(a,b) = (1—A) (1~ p1)0(@r, ba) + (1 — A1) 2 0 (8, bs) +
+ 2 (1 — 1) C (@, by) + Ay 0,0 (a1, by).
It is immediate that DomC = I?% that

C(a, b) = C(a,b) for any(a, b)e DomC,

and that C satigfies (2.10) and (2.11). It therefore only remains to show
that O satisfies (2.12). To this end, let (¢, d) be another point in I* with
6= a,d>b, and let ¢, dy, Gy, Ay, Loy up be related to ¢, d a8 ay, by, s, by,
Ay, py are to a, b above. Let M (a, b; ¢, d) denote the second-order differ-
ence

(2.16)

G(“; b)——C’(a, d)—a(ca b)—l—C'(G, d)7

with corresponding expressions for other such differences. There are now
several cases to consider, depending upon whether or not ¢ and ¢ belong
to the same component interval of I\D,, and b and d to the same compo-
nent interval of I\.D,. The most involved of these cases is: a << a, < 6; < 6
and b < b, < dy, < d, which iy illustrated in Fig. 1. In this case, applying
(2.15) to each of the four terms.in M(a, b; ¢, d) and rearranging yields:
M(a,b50,d) = (L—Ay) oo M (@, o oy Do)+ paM (@, dyj 61, dg) +

+Aapa M (C1y dyj Cay do) +(1—Ay) M (@, byj ag, dy) +

+ M (@5 baj €1y dy) +2A2M (01, byj€ay dy) +

(L =21} (L — py) M (@, by; G, Do) +

© (L ) M (g, by 01y ba) + A (1 — pa) M (01, D150, 0).

' (ay,dy) (¢1,dg)

Aay,dy)e-————- - (.cQ,dg)

‘ (@,d (d

[ i ® : Aguy
tay,dy) - __MLH_L_JL(_“_'_‘IL)_ P depdp I (cg,dp)
(1-2,) 1 Iy

(ag,by) (opby) | b
(@1,b9)¢-- = === T S A L enbs

0 @h
@by —_— e == {0y, By)
(ay,b1)- (@piby) (cy,by) “Slead

Fig. 1
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Since O is a subcopula, the right-hand side of (2.17) is a combination of
non-negative quantities with non-negative coefficients, and hence non-
negative. Thus: M(a, b; ¢, d) > 0 in this case. The remaining cases lead
to similar combinations for M (a, b; ¢, d). Hence M(a, b; ¢, d) > 0 in all
cases and the lemma is proved.

As an immediate consequence of the preceding lemmas, we have:

THEOREM 2. Let X and Y be real-valued random variables defined on
o common probability space, with distribution functions Fy and ¥, respec-
tively, and joint distribution function Hx, . Then there ewists a copula Cyy
such that

218)  Hyp(4,9) = Oxy(Fx(u), Fr(v), for all u,v in R.

If, furthermore, RanFy = RankFy = I, i. e., if both Fx and Fy are con-
tinuous on E, then Cxy 8 unique.

For any two random variables X, ¥, the function Cyxp in (2.18)
will be called a connecting copula of X and Y.

The functions on I* given by Min(a, ), Prod(a, b) = ab and

(2.19) T, (a,b) = Max(a+b—1,0),

respectively, are copulas. Furthermore, we have:
THEOREM 8. Any copula C satisfies the inequalities

(2.20) Tm(ay b) < 0(a, b) < Min(a, b), for all (a, b)e I

In the other divection, any function on I* that satisfies (2.12) and (2.20)
is & copula. )

Proof. Let ¢ be a copula. From (2.12) with ¢ = d = 1 and (2.11)
we obtain

C(a,b)—a—b+1>0, or O(ab)>a+b—1.

Thus, since O(a, b) > 0 for any (a, b), we have O(a, b) > T, (a, b). Similaxly,
from (2.11) and Lemma 4, we obtain

0(e,))<C01) =a and C(ab)< 01, b) =,

Wl_Lenee .O(a, b) < Min(a, b). This proves (2.20). Finally, both T, and
Min satisfy (2.10) and (2.11), whence any function ¢ on I* satisfying
(2.20) inherits these properties.

3. Operations on 4. As in the preceding section, lot X, ¥ be random
variables with distribution functions I xy Py and joint distribution
function Hxy. Let Cxy be a connecting copula of X and Y. Then we have:

TaworeM 4. Let g be a Borel-measurable, two-place real function.

Then g(X, Y) is a real random variable whose distribution function Foyx 7)
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is given by:
Fox,n(@) = ff a0 xy (Fx(w), Fy(v)),
g(u,v) <z . .
Proof. Tt is well known (see, e. g. [3], p. 170) that ¢(X, ¥) is a random
variable, and that

(3.1) for all .

(32) Fyxp(@ = [[ dHxg(u,0).
o(u,vy<z

Substituting (2.18) into (3.2) yields (3.1).

The fact that the integral in (3.1) depends on the distribution functions
Fy, Fy, the copula Oxy and the function g, but not directly on the random -
variables X and Y, motivates the following:

DErINITION 5. For any Borel-meagsurable, two-place real function g,
any copula C, and any pair of distribution functions ¥ and &, # (g, C) (F, &)
i3 the real function given by:

[# (g, O)(F, O)(w) = [[ aC(F(u), G),

glu, )<z

(3.3) for all =.

It follows readily from (2.12) and the definition of a copula that
0< [H(g, O) (T, @)](») < 1 and that £ (g, C)(F, G) is non-decreasing on R.
Thus (when normalized to be left-continuous, if necessary) # (g, C)(F, @)
belongs to 4; or, in other words, for fixed g and C, #(g, () is a binary
operation on 4. Furthermore, if ¢ is non-negative on the first quadrant
then it follows from (2.10) that the restriction of # (g, C) to 4" is a binary
operation on 4%, where A+ denotes the subset of A consisting of all distri-
bution functions F with F(0) = 0.

'Combining (3.1) and (3.3) allows us to write

FV(X,Y) = J(g, Oxy)(Fx, Fr);

and from this display we see at once that every binary operation on random
variables gives rise to a family of binary operations (one for each possible
choice of connecting copula) on distribution functions. In the special
cage of addition, i.e., g(z, y) = o+, we write oy for S (g, C), so that

(3.4)

(8.8) Fyrv =“oxy(FX;F1’)'

It is well known that op,.q is convolution. Apart from this cage,
however, the operations oy have been little studied. The most extensive
investigation to date is by M. J. Frank [2] who, among other things,
has shown that oq is associative if and only if € is Prod, Min, or an ordinal
sum of Prod and Min.

DerFiNiTION 6. The set I, congists of all functions T' satisfying con-
ditions (a) and (b) of Definition. 2, and (¢') (a weaker version of condition

4 — Studia Mathematica LII
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(e) of Definition 2):
(3.6) ‘ T(0,

Thus 7, contains 7 as a subset, and indeed a proper subset, as is
seen by the fact that each function ¢* defined on. I* by

0) =0, T(1,1)=1.

(3.7) 0May b) = a+b—0(a b),

where (' is a copula, belongs to I but not to 7.

Tt is readily established (cf. [5]) that every function in 7, gives rise
to binary operations =, and 7 on 4 (or 47 Y via: »

DrrmrrioN 7. Let T be in Z°, and T, @ be in 4 (resp., 4*). Then
mp (F, @) is the function in 4 (resp., 4%) given, at every point  of continu-
ity, by:
(3.8)

(m(F, @) (@) =T (F (), G(a);

and 7,(F, @) iv the function in A (resp., A+) given, at every point # of
continuity, by (1.2).

. TurorEM b. Let O be a copula and let O be the function given by (3.7).
Then:

g = F (min, 0).

(3.9) Ty = F(max, 0) and
Proof. Let F, G¢ 4. Then for any we R, we have
(7o (T, @) (@) = O(F (v), G(@) = [[a0(F (u), &)

V<

=[] d0(F(w),60) = (#(maz, O)(F, &) ()

max(u, )<z
and
(7o (B, G)) (&) = 0P (F(w), G(w)) = F(x) -{—G(w)—~0(I’ 90))
= [[a0 (), ¢w)+ [[ac(F ), &w)— [[d0(F W), ¢o)
- a0 (P (w), G () = («# (min, C)(F, G‘)) (’m).
min(u,v)<z

Thus each of the operations sy, moa is derivable from an operation
on random variables. Similarly, since it can be shown (see [2]) that
(3.10) Tyin = Oy = (Sum, Min),

the operation 7y, is also derivable from an operation on random variables,
namely addition. :
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DerIviTION 8. For any se R and aty ae I, 1et & and G, be the distii-
bution funections defined by:

0 s <
(3.11) g(@) =1
L, s8>ua;
. 0, z <0, ‘
(3.12) Gu@) =1a, 0<z<l,
L 1<wm

Clearly G,e A" for any aeI and ge 4T for any s > 0.
LemMA 6. Let Te T. Then for any s, te R, we have:

(3.18) Tr(€sy &) = Epi-

Proof. This follows at once from the fact that = (as(u), et('u)) =1
if and only if 4 > s and v > ¢ and is equal to 0 otherwise.

LevMMA 7. Let Ted, and let C be a copula. Then, for any a, be I, we

have:
0, z< 0,
y | T@b), o<wz<i,
(3.14) 7(Gay @) () = Max(a, b), 1< < 2,
1, 2 < w;
and
0, r<0,
‘ | c(a, ), 0<w<,
(3.15) 05(Ga, Gy) (w) = a+b—Cla,b), 1<z<2,
1, 2< .

Proof. The display (3.14) is an easy consequence of (1.2) and (1.3).
Next, note that C(@,, G) is the joint distribution funetion corresponding
to four point masses situated as follows: a mass of size C(a, b) at (0, 0),
one of size a —C(a, b) at (0, 1), one of size b —C(a, b) at (1, 0) and one of
size 1—a—b+4C(a, b) at (1, 1). From this observation and the definition
of ¢y (see (3.5)), (3.15) follows at once.

We can. now prove Theorem 1.

Proof. Assume that v, is derivable, i. e., that a suitable funection

g exigts. Let X and Y be random variables that are constant almost

everywhere, with respective values # and y. Then Fyx =g, and Fy = ¢,
whenee, by Lemma 6, v, (Fx, I,) = &,4y. Thus, by Definition 1, Fyx r
= 8,,,, Which means Lha,t ¢(X, Y) assumes the value «+y almost every-
where. Therefore g(z, y) = « 4y and, since @, y are arbitrary, ¢ is addition.
Hence, by Definition 1 and (3.5), for all random variables X and ¥, we
have ’

(3.16) tp(Fg, Fy) = Foxry = Fx v = 0oy (Fx, Fy),
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where Czy is a-connecting copula of X-and ¥ (which may be chosen
arbitrarily and may depend on X and ¥).

Next, since T  Min, there exist numbers o and b, 0<<a,b<1
such that T(a, b) s Min(a, b). Let X be a random variable assuming
the value 0 with probability o and the value 1 with probability 1—a.
Then Fy = G,. Similarly, let ¥ be such that Fy = @,. Then (3.16)

yields:
(3:17) 73 (Gay Gy) = 00, (Gas Gy),

where C,, is some connecting copula for X and Y. Now, using (3.14) and
(3.15), we have:

o(Gay §)(1/2) = T{a, b) = 0g,, (G4, Gp)(1/2) = Cp(a, b},
and
Tp(6y G5) (3/2) = Max(s, b) = 0g,, (G, 65)(3[2) = a+b— 04y (s, ).
Thus, '
Min(a, b) = T(a, b) = Cy(a, b) = a+b—Max(a, b) = Min(a, b).

Thig is a contradietion, whence g cannot exist, and the theorem is proved.
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Brownian motion, approximation of functions,
and Fourier analysis

by
ROBERT P. KAUFMAN* (Urbana, IIL)

Abstract. Quantitative approximation theory, initiated by Kolmogorov, is
used to show almost-sure properties of all mappings Fo X. Here X is Brownian motion,
and F is a diffeomorphism of clags Lip% for example. The problems considered touch
on Hausdortf dimension, Kronecker sets, Salem sets, and Diophantine approximation.
Tn some cages a critical exponent of smoothness can be found by the category method.

Introduction. In this paper we apply the quantitative approximation
theory of Kolmogorov to certain questions on Fourier-Stieltjes transforms
and Brownian motion. For example, let E be a compact: subset of (0, + oo)
of positive Hausdortf dimension; Kahane proved that X (F) is an M,-set
for almost all Brownian paths X. Therefore the same is true of X of f(Z)
whenever f is a ('-diffeomorphism of (0, + oo) into itself. How large
a clags S of diffeomorphisms f ean be named, so that Xof (F) is an M,-set
for all f in §, almost surely ? An answer is contained in the first chapter.
A gimilar question for transforms foX (H) is considered mext; for these
sets we obtain strong bounds on certain Fourier transforms. Here maitters
become distinetly non-linear, but we obtain some precise estimates by
gimple devices.

In the course of the paper we refer to constructions and inequalities
in geattered sources; we list some of these now, as a guide to the flavor
of the work.

() Lipschitz spaces A% and A% and Kolmogorov’s estimates of the
sizes of sets in these spaces, under the name “e-entropy” [13] and [16, 17,
18 Ch. 101 :

(b) Hausdorff measures, Hausdorff dimension, and construetion
of special “dyadic” sets [6 I, IT]. ‘

(¢) Gaussian processes and Brownian motion [4 XI, XIV].
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GUEST




