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where Czy is a-connecting copula of X-and ¥ (which may be chosen
arbitrarily and may depend on X and ¥).

Next, since T  Min, there exist numbers o and b, 0<<a,b<1
such that T(a, b) s Min(a, b). Let X be a random variable assuming
the value 0 with probability o and the value 1 with probability 1—a.
Then Fy = G,. Similarly, let ¥ be such that Fy = @,. Then (3.16)

yields:
(3:17) 73 (Gay Gy) = 00, (Gas Gy),

where C,, is some connecting copula for X and Y. Now, using (3.14) and
(3.15), we have:

o(Gay §)(1/2) = T{a, b) = 0g,, (G4, Gp)(1/2) = Cp(a, b},
and
Tp(6y G5) (3/2) = Max(s, b) = 0g,, (G, 65)(3[2) = a+b— 04y (s, ).
Thus, '
Min(a, b) = T(a, b) = Cy(a, b) = a+b—Max(a, b) = Min(a, b).

Thig is a contradietion, whence g cannot exist, and the theorem is proved.
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Brownian motion, approximation of functions,
and Fourier analysis

by
ROBERT P. KAUFMAN* (Urbana, IIL)

Abstract. Quantitative approximation theory, initiated by Kolmogorov, is
used to show almost-sure properties of all mappings Fo X. Here X is Brownian motion,
and F is a diffeomorphism of clags Lip% for example. The problems considered touch
on Hausdortf dimension, Kronecker sets, Salem sets, and Diophantine approximation.
Tn some cages a critical exponent of smoothness can be found by the category method.

Introduction. In this paper we apply the quantitative approximation
theory of Kolmogorov to certain questions on Fourier-Stieltjes transforms
and Brownian motion. For example, let E be a compact: subset of (0, + oo)
of positive Hausdortf dimension; Kahane proved that X (F) is an M,-set
for almost all Brownian paths X. Therefore the same is true of X of f(Z)
whenever f is a ('-diffeomorphism of (0, + oo) into itself. How large
a clags S of diffeomorphisms f ean be named, so that Xof (F) is an M,-set
for all f in §, almost surely ? An answer is contained in the first chapter.
A gimilar question for transforms foX (H) is considered mext; for these
sets we obtain strong bounds on certain Fourier transforms. Here maitters
become distinetly non-linear, but we obtain some precise estimates by
gimple devices.

In the course of the paper we refer to constructions and inequalities
in geattered sources; we list some of these now, as a guide to the flavor
of the work.

() Lipschitz spaces A% and A% and Kolmogorov’s estimates of the
sizes of sets in these spaces, under the name “e-entropy” [13] and [16, 17,
18 Ch. 101 :

(b) Hausdorff measures, Hausdorff dimension, and construetion
of special “dyadic” sets [6 I, IT]. ‘

(¢) Gaussian processes and Brownian motion [4 XI, XIV].

* Alfred Sloan Fellow.
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(d) Special sets introduced in abstract harmonic analysis, in particular,
Kronecker sets [3], [5, VILI, 14].

(e) Classical theorems on sets of uniqueness and sets of multiplicity
(6, V], [23, IX (6, 7, 8)].

(f) Banach space methods in the construction of examples to (d)
and (e) [5, VII, 8, 9, 12].

I. TemorEM 1. Let B be a compact subset of (0, + o) of positive
Hausdorff B-measure 0 <. p <1, and let 8 be the class of diffeomorphisms
of [0, + oo) into dtself of class AVP. Then it is almost sure that all sets Xof (1)
are Mg-sets, fe S.

To each p in (0,1) there is a compact set F' of dimension S, with
this property: for almost all paths X, there is a random mapping f, of
class AN 8, such that Xof, (F) is a Kronecker set.

In explanation of Theorem 1, we recall Frostman’s theorem on
Hausdorff measures [6, I, II]; in consequence of this theorem FE carries
a probability measure u whose primitive belongs to A°; u(a, a+h) < b’
for all intervals (@, @ +%). As the conclusion is rather trivial if B hag positive
Lebesgue measure, we suppose the opposite. The class § is the union of

sets () #,, each bounded in the space A'/* on an interval [0, L] containing
1 )
E; moreover f' > »~" on [0, L] for each f in S,.
1. For each f mapping [0, + o) into itself, there is a probability
measure ¢ = ¢ (X, f) carried by Xof(H); its transform is

& (u) =fexp-27riuX(f(t))/,a(dt), — o< U< oo,

‘We shall prove that o(u) — 0 ag 4> + oo along the sequence 1, Va. yeen

oy B2, oL, uniformly for all f in 8,. For this we require a very precise
bound for the moments of o(u) [4, p. 168] '

(1) B(lo(w)f7) < (Cagqu™)t,

wherein ¢ = 1, 2, 3, ... and C,, is valid for all fin §,,. To obtain this estimate
from the one cited, we have merely to observe that the probability measures
pof~t, with £ > n™!, are subject to a uniform Lipschitz condition in dimen-
sion f. For fixed ¢ > 0, inequality (1) leads to

(2) P(l”(u”} 8) < exp — Cpu,

2. To each 7 in (0,1) we choose a finite set 7,(n).< S,, such that
each function f in §, has distance < % from T, (z), in the uniform metrio
over B. From Kolmogorov’s estimates [137], [18, Ch. 107 it is known that
the cardinality |7,(n)| ean be brought down to exp( »~"; but B has
. meagure 0, so the observations of Vosburg [22] allow a bound of the form
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exp gy (n); @u(0-+) == 0. Thus we can define a funetion ¢(7) such that -
q(n) = o(n) as 5—> 0+, while log|T,(¢(n))| = o(y™"). Let us write T (n)
ET%(Q("?))' p .

Comparing the size of Th(u™*) with our estimate for P(|o(u)] > ¢)
we can. conclude that almost surely we have

sup* [ [ exp —2mi k2 X (£(1)) () \ -0,

where sup* means the supremum for f in T (4™).

3. In the last step of the proof we need controls on the oscillation
of X; these do mot follow from Lévy’s celebrated work. Let us write g
for an element of Z7(u~?) and f for an element S,, such that |f(z)— g(%)]
< q(%~?) uniformly in 7. We geek a bound for

[min(t, |wX{f() —uX(g(0)| Ju(d).

Before passing to this final part of the proof, we notice that a bound
0(1), valid uniformly with respect g in Tr(u™?), a8 w—> + oo through
values %', will prove the first assertion in Theorem 1.

Let us fix g and estimate the u-measure of the set on the f-axis By:
X oscillates more than w='§ on the interval [g(t)—gq(u™%), g(t)+q(w*)]-

This is nothing but the x4’ = pog™ measure of the set on the s-axis
By: X oscillates more than »™'d on the interval [s —g(u?), s+ q(u™®)].

Let us divide the s-axis into adjacent intervaly (I,)?, of length
exactly q(u~%) and let 2* be the sum {Zu(l,): X oscillates by more than
w'd over I,}. Now X* is a sum of independent random variables Yps
such that 0<y,< p'(I,) and P(y, # 0)<e(u)—>0, because ¢g(u™*)
= o(u*). Let A be the positive number defined by the inequality Amax u'(I,)
= 1. Blementary inequalities yield B(expA ) < expiie(u), Pz > 9)
< exp $A[e(u) —268]. To finish the argument we recall that all the measures
u' = uog™" satisty a uniform Lipschitz condition in exponent f, 80 u’ (I. o)
< |LP = o(u"); thus P(Z*>0)<exp—w'* for large u, .while
log | T% (u?)] = o(u*'). Setting u = '*, we obtain a convergent sequence
for each § > 0. The same argument applies of course to the oscillation
of X(t-+q(w™)) and X (t~—q(u™). With the aid of a simplt? diagram,
wea gee that the u' measures of sets By tend to 0, uniformly with respect
to g in Ty (w™h). _

A moment’s reflection shows that it would be sufficient to obtmg
the bounds of this paragraph along the sequence % = 2% and for this
we need much weaker bounds on y, for example u(a, ¢-7) < (loglog o
for 0 < h << e™ .

4. The set F ix a “dyadic” set determined by a strictly increasing
sequence M = (m,)? of positive integers: I is the set of all sums Xe, 27"k,
& = 0 or 1. The sequence J must have two properties
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(1) m, < B k+o(k) for all k>1,

(ii) mh,‘_l > f7'k+10logk, for all k in an infinite sequence N of
positive integers.

" Property (i) ensures that F has Hausdorff dimension B, and indeed
F cannot be expressed as a countable union of sets F; with dimF,; < g.
Let Y be the Banach space A*#[0,1], or ¥ = (¢"[0,1] in case ™' =r,
an integer. Let Y be the open subspace of ¥ containing positive functions;
Y* like Y is separable. The second part of Theorem 1 is & consequence
of this statement:

For all paths X except a set of probability 0, the set of functions fe ¥+
such that Xof(F) is a Kronecker set, is a dense Gs-set in X.

Observing that ¥* contains an open set ¥, defined by the inequal-
ities f> 0, f'>0.on [0,1], and that each element of Y, admits an
extension to a diffeomorphism of class 2% on [0, + o), we obtain the
agserted properties of f.

Let V be an open set in ¥, g a continuous real function on [0, 1]
and ¢ > 0. We shall prove that for almost all X, there is a function f
in 'V, and a number % > 0, such that [uXof(f)—g(t)| < ¢ (modulo 1)
for all ¢ in 7. Since C0, 1] and A are separable, this leads by a familiar
path to the result stated above [8, 9, 12].

5. Let ke N sothatmy,, > f~"k+10logk > my;+1, and let F = | J T,
be the splitting of ¥ determined by e, ..., &. Thus each F, has diameter
< ay = 2:27™k+1 and the sets F, have mutual distances > b, = 27727,
For large & we find b, > afkS. We choose a functmn foin V= Y* and
elements w, of F,.

We assume now that the oscﬂlatmn of X(t) over each ¢-interval
[t—fo(@)| < O = KB} exceeds d, =k *b}%. Later we show that
this holds for sufficiently large ke N, almost surely. Setting u = d*,
we can then choose numbers f(x,) such that |f(z,)—f,(2,)] < C, while
uXof(w,) = g(#,) (modulo 1), 1< v< 2% Now let f in 1% be defined
so that it takes the specified values f(z,) and f—7, is constant over each
F,. This can be done with a function f such that ||f—f|| < C,(1-b;Y%)
= 0(1) [8]; thus for laxrge & f > 0 and Xofis defined on ¥, whilefe V < Y.
Moreover, f oscillatés no more than f, on each F,, thus f oscillates < C(f,) dy,
there. By Lévy’s eéstimates for the modulus of continuity of X, we see
that almost surely Xof oscillates < O(f,)(aloga; ) < O(f,)al? M2
(because my,; < k). To obtain a uniform estimate for uXof(t —g(t)
(modulo 1), over F = |JF,, we have only to verify that wual%
or axk = o(dj). But'dj = k*b}’, while b, = af 1, and all is provod

Returning to the osclllatmn of X over an interval of length C,, we
must estimate the probablhty of the event |X(¢)] < k™%, 0 <t 1. This
inequality implies |X (mk~%) — X (mk~* + k~%)| < 2%~ for integers m = 0,
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< B —1. Bach of these inequalities has P = ¢, < 1, 5o their inter-
section has P < exp — 0, I°. Moreover, the number of mtervals in quegtion
is 2% and > 2%exp — 0,k < co, 50 the necessary oscillations are obtained
almost surely for all large %.

There is an odd variant of the theorem above whose proof is almost
identical with the one just completed: everything can be accomplished
in the set Xt defined by f> 0 and f' = 1 on F. This shows that ¥+*
is almost ag massive ag ¥+, as a subset of O(F).

I. Let us say that a set B hay O'*-multiplicity if Xof(®) is an
M y-set for every fin any space 4% a > 1, with f > 0, f' > 0 on [0, oo).

TarorEM 2. Lot B be the dyadic set based on a sequence M such that
Mgy = Mg~k 0 (myflogmy). Then B has O"*-multiplicity.

The cited condition on. the sequence M is simply what is required
to balance an inequality in the course of the proof; its interest is in examples
leading to dyadic sets of Hausdorff dimension 0, for example, m, = k.
The method of proof also applies to sequences M with positive density d:
Lmk=*my, = d™" < oo, »
For large numbers « > 1 we define k = k(u) by the inequalities
27 Mer1sg u~? < 2™, Thus, if # i§ fixed in (0, 1) then, since my,,/my—> 1,
m{l(w)) = m(k(u’)) +p~*, and the hypotheses on m(k) yield [%(u)—
— E(uf)]logm (I (w")) > + oo.

To apply these calculations we take a bounded subset § = 4°[0, 1],
and choose f so that 1< ¢f < a. The product measure on F admits
a factorization for each > 1: in u, we group the factors corresponding
to indices % in [1, %(u’)], and in p, we take indices & > k(). An interval
of length %™ has py-Tneasure oMy _o#wf)  and the support of s, has
length L{u) = 2. 9m(HA+1) < 990,

The integral

f oxp — 2riu X o f () u(dt)

can be bounded by the maximum of integrals

7
f oxp — 2miuXog (1) ug (A1) == I (g, u),
0

say, where the functions g ave subject to inequalities
gl <B, IgI<B, lg'@)—g®I<Bla—yl

and ¢’ 2 ¢ > 0 ag well if we impose the last inequality on the functions
in §. On [0, L] we have by the mean-value theorem, and af > 1,

gt) = g(0)-+1g'(0)+ 0 (1) = g{0)+1g' (0)+ O (u™*u™"),

Xog(t) = X (g(0)+1g'(0)) +o(w™"), almost surely,
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by Lévy’s bounds on. the modulus of continuity. Moreover, it [g(0) —g* (0}
< and |g'(0)—g"(0)] < u~%, then |g—g*| = 0w *)+O0(u*u~%) on
[0, L]. Thus to bound the supremum with respect to g in 8, we require
4’ inequalities on integrals of integrals I(g, u).

Now the u,-measure, of intervals of length w™? is ab most 27%, & = (u) —
— K (u). Moreover, s/logm(k(u’))— + oo, or. sfloglogu — - oo, g0 27°
= o(logu)™. Using Kahane’s inequality for the moments of I(g, )
[4, p. 168], much asi n the proof of Theorem 1, we find for any 4> 0
and any 4 >1,

P(I(g,w)] > )< w™, u>u(d ), ge8.

As we required only u® inequalities on individual integrals I(g, ), the
proof is complete.

There is a much more powerful method for uniform approximation;

unfortunately in this situation it leads to exactly the same term, namely
o(myflogmy). The idea is to find & covering of B by intervals I of length
u*#, whose number N is estimated by means of the integer k(u~). On
“each interval I we replace fe 8 by its secant, obtaining a function f,,
and then |f—f,| = 0w ). Now the functions f, belong to a subspace
of O(B), of dimension 2N, and here we can use an inequality between
widths and entropy [18, p. 163] in Banach spaces; the resulting inequality
iy obtained for o in (0;1) by Vosburg [22]. A better estimate, in L*(u)
instead of C(®), would allow an improvement in the term. m,/logm,,.
However, most results about approximation of functions in A% in the
usual spaces L?(0, 1), suggest that no improvement can be expected in
passing from C(E) to L'(u) [1, 15].

III. The construction in this chapter is complementary to the foregoing,
leading to random exceptional functions in Banach spaces of (° functions
of very high smoothness. In defining these spaces we follow the classical
method of Denjoy—Carleman [7,V, 20 ch. 197 so that each element of any
space considered will be determined by its sequence of derivatives at an
arbitrary real number. Let 1 < Ag <X Ay <5 ... & Ay~ - 00, lot M, == 4y, ...

«vy Ay, and let ¥ be the Banach space of (™ functions defined by |f||
= supsup MM f® (). To obtain a separable subspace, we define Y,
n

to be the closed linear span of integrable functions f such that f has compact
support. Finally, we require

() 2 i< oo,
(ii) nlogn < 1, (n > 10).

The first of these ensures the quasi-analyticity of the class ¥ [7, 207, while
the gecond is imposed for technical reasons.

Browndan molion, approzimation of functions, Fourier analysis 59

TarorBM 3. Suppose that in the sequence (my), we hawe my,, > my 2™
infinitely often. Then for almost all paths X, there is a mapping f in ¥,
such thot f > 0 and f' = 0 on the dyadic set F, and Xof(F) is a Kronecker
set.

The condition imposed on (m,) is consistent with m;, = 0(2%); under
this restrietion the modulus of continuity, supu(a, a-+h), of the product
measure p, iy 0 (logh )" for small b, so X (I) is almost surely an M o-setb
[4, p. 16B]. ‘

1. Before assembling all the elements, we list some technical points
necesgary in the proof.

a) Given an interval [0, L] in [0, co) and an integer % > 1 we consider
o condition on the oscillation of X (1) over [gh™'L, ¢k 'L+%"1L),

=0,1,2,... We require that

| X (gl L+ 5 L) — X (g™ L)| > &~ L2,
and :
| X (8) = X (1)] << Toe (B~  TYMO [t — |
for all numbers s and ¢ in our interval of length kL.

The probability of each part tends to 1 as & increases, and of course
is independent of L. Hence the probability, that the condition holds for
three consecutive values of ¢ in 0, ..., b~1, exceods 1 —s(k)*, s(k)— 0.
‘We apply this to find a middle interval I over which X (¢) fills an interval
of length %~ I**, and then majorize the oseillation of X over small intervals
that meet I — these intervals of course are contained in the union of the
three intervaly, and the oscillation can be controlled by tripling the bounds
above.

b) The function of a real variable @(s) = sups"/M, can be estimated
p(8) << exp (Bs/logs) for large s. This becomes clear once we verify that
the supremum is attained with » of magnitude near s/logs.

D@, < p" in absolute value, This follows from the representation of G,
a8 & Fourier integeal.

2. Now we follow ag closely as possible the second part of Theorem, 1,
introducing again the splitting F = | I, and the 2% intervals [t —f,(@,)|
< k2t t, he ovent dosceribed in (a) holds for each v, when k is large.
Thus the interval of length L == §°2-"k+1 about f,(x,) containg & subin-
terval of length %' 1 == 2 ™k+1 on which X (1) oscillates at least &*2¥™e+1,
and on. each interval of length 52" 1, intersecting I, X (t) oscillates ab
most K241, Therefore wo choose a froquency wu = w = k=28 21k,
and corresponding displacements &,, of absolute value < &°27"e+1,

For the displacement of f, we choose g = X&,G, (1’(99-—001,)), with
P o= logh and 1 == A2"k, A Deing a large constant. ’
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To hound g we first investigate the sum X'|@, (T (¢—a,))|, Where
the dash means that we omit the index v at which |[z—a,| attaing its
smallest value. The numbers 7’|z —«,| generated by the remaining indices
» can be estimated from below by the sequence 3¢4, ¢ =1, 2, ..., taken
twice. As |G, (y) < ly|™? and p = logk, the resulting sum hag order of
magnitude k=41, with 4, = logAd —log2. (Therefore we choose 4 so that
log 4, > 20, say.) This shows that the supremum of |g| is comparable
with max |&,], hence it tends to 0. We also require & strong inequality on
the error g— £, on F,. Now F, has diameter 2-27™+1, 50 |G,(T (#—a,)) —1|
< pT|w—m,| < logh2~™2 ™e+1, Adding to this the bounds obtained
before, we obtain an inequality [g— &,| < 2~"™i+1 on I,

For the norm of g in ¥ we have an upper hound 2F-max|£,|x
X max (pTy"| M, = 2*max |&)|-¢(pT), following (b) and (c). Now pI'

= A2™logk, p T [logpT < A,2™klogk{my, = o(my.,). In view of the large
gap between my and my,,, we have 2¥max|é,| < exp — 6y, (for § near
log2), while loge(pT) < pT[logpT = o{my,,). This accomplishes the
estimation of norms,

To show now the efficacy of the displaced function fo+g = f,+
+ Z £,G, (T (@— x,)}, we recall that on F, it ditfers from f,+- &,, the correct
value, by 0(2™™-+1). Moreover f,e (", s0 we are considering the oscillation
of X(f) over a certain interval of length < 2~™1, the diameter of F,.
But f,(2,)+ &, has the special property that X(¢) oscillates at most
3K*2¥-+1, when ¢ varies within k2~™%+10f f,(x,) - £,. Since the ogcillation
of X(t) is thus o(k**2~™k+12) = o(y~'), the construetion is complete.

IV. In this chapter we study sets foX (¥), using a method of estimating
Fourier—Stieltjes coefficients slightly less precise than the one used for
Theorem 1, but more flexible. Other methods for obtaining estimates,
involving differentiable transformations f, were introduced in [10, 117.

1. TaroreM 4. Let u be a probability measure on [0, 1] whose modulus
of continuity of supp(a, a+h) = o(logh™")"", and let f be a funotion of
class C'(— oo, o) and f' > 0. Then foX (H) is almost surely an M sset.
This remains true if f is monotonic and f' > 0 almost everywhere,

Proof. Because X (F) is almost surely a bounded set, we can suppose
that f' is bounded between two constants, 0 < 0, < f' < 0,, and uniformly
continuous. For each % > 1 we divide [0, 1] into & = k(u) s % adjacent
intervals and divide the integral

1
(1 | exp —2miufoX () u(dt)
0
into the corresponding partial integrals J,, 0 < n < %k —1. Then we denote

by I, and I, the sums of these for # even and odd, respectively. Focussing
on I, for simplicity, we denote by J the conditional expectation of J,,
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relative to the field of X (), 0 <t << (n—2)k~". By the Markov property,
this is the expectation given X((n—1)k™'). We shall prove that |J}|
= o(y (nk~, (n+].)7c'"1)) uniformly with respect to n, almost everywhere.
This lagt statement in fact does not involve u at all; we need only estimate
the supremum of all integrals

() (2m)~42 f oxp — 2‘m'uf(b -} Ap) - exp — patde,

for real b and A w~'™. We obtain this formulation from the conditio-
nal digtribution of X (#) given X(s), with ¢—s=u"". To accomplish
the qualitative study of the integrals we show that the functions
exp — 2riuf (b -+ ), of w, tend weakly to 0 in L*, uniformly with respect
to b and 2 2w, In fact, if I is an interval over which f(b+ i») increases
by exactly w', then |I| ~u™*4" = o(A™"). Hence it differs from its
secant line over I, by o(4): 1] = o(u™*). Thus

fexp — 2 f(b 4 Aw) do == o([I|'),
I

and since |I] < w~*#, this proves the weal convergence needed.

Tn analyzing the sum 2y, —Jy, = 2 X,, say, we have tirst B (¥, | ¥y,...
voey Yuoy) = 0. Putting b, = |¥,|. We observe that 2b,<2, as u i
a probability measure, and b = supd, = o(logu)™!, a8 % =", Thus,

L &
ity > 0and yb < 1, we obtain by Taylor’s formula B (y |2 Y,|) < 4dexp. Ay,
with 4 an absolute constant. For small ¢ > 0 we get

P(ZT,] > &) < dexp—(44) b7

Putting in this inequality, b = b(u) = o(logw)~* and w = 1, 2% 3", ..,
we obtain & convergent series for every &> 0. Since we saw before that
150 -+ 1T51| -+ ... = 0(1), the proof is complete.

The extension to functions f not necessarily of class 0", follows the
technique of [10]; the essential point is this: to each ¢ > 0 there is a C*
function g, with g’ >> 0 and m(f # ¢) <& [23, II, pp. 73—771. Now X (1)
has an absolutely continuous distribution when ¢ > 0, and go if § denotes
a meagurable get in (— oo, oo) then by Fubini’s theorem,

B(p{t: XW)e 8}) -0
Applying this when § = (f(1) # g(t)), we obtain the theorem for the more
general function f mentioned in the last sentence. .

2. To obtain quantitative conclusions about integrals (1) containing
foX (t) it is clear that we need bounds on expected values of the form (2).
These are given in the following statement.

when m(8)—0.


GUEST


62 R. P. Kaufman

LuMMA, Suppose that all functions f in a set 8 are subject to inequalities

0<0,<f <0< oo, |fY<C< o0, 1<n<<r+1.

Then I = [exp —2miuf(x) exp—4a® do = O(|u|™") for large u > 1, uniform-
ly for fin 8.

Proof, We can assume that f(o) = 0, and write F' for the inverge
mapping of (— oo, co) onto itself, so the functions satisfy inequalities
analogous to the functions f; moreover

I =fexp—~2nium-eXp——%.Zf‘*(w)-F'(m)dm.

To obtain the bound O (|%|™") we shall show that the cofactor of exp —2niuz
has 7 derivatives, uniformly bounded in I*( — oo, oo). By Leibniz’ formula,
we only need Li-estimates for the derivatives of exp — 1 F*(»). It is clear,
however, that each derivative can be expressed by p(F(w), F'(#),...)x
x exp — 3 F2(x) for certain polynomials p. Since IV, ..., F® are subject
to uniform bounds, the L'-estimates follow from. the presence of the term
exp — $ 1'% ().

The integral (2) can be treated by the lemma when u > ui > 1, by
the substitution fo (%) = A71f(b + Az), for the nth derivative of f,is < 2~
<L

THEOREM 5. Let u be a probability measure, in H, satisfying a Lipschitz
condition in exponent B, 0< < 4, and let 0 < a < f. Then we have almost
surely

[ exp—2miufX (t) u(dt) = O (u)
Sor all f in 0°(— oo, 0o) with f > 0.

- Theorem & expresses a property of the sets foX (H): each has “Fourier-
dimension” > 24. As we can choose B to have Hausdorff dimension
exactly §, and then apply the conclusion with a sequence a, — f; foX (H)

I8 & Salem set [21] of dimension 28. A similar purpose wag achieved in
- [117, but the sets constructed there had a very special structure.
In the proof of Theorem 5 we use the fact that X (#) is almost surely
% bounded linear set, so it suffices to make the argument for functions f
that are linear outside a finite interval. Indeed, for each f in ¢°°(— oo, oo),
and each interval [ — I, L], we can find a special function f,, coincident
with f on [—L, L], and f, > 0 everywhere if f' >0 on [—IL, L]. The
same is of course true for the spaces 4A° s> 1. Given o< f ‘we choose b
50 that 0 < b < 2 and 2a < bf, and then an integer s so that s(2a—bp) > 2
and (s—1)(1—5/2) > 1.
* Then we apply the method used before, dividing the compact set B
into adjacent intervals of length approximately V = . In the remainder
of the proof we omit details similar to these encountered in the proof
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of Theorem 1, merely indicating the estimations necessary o obtain the
pound w~" The expectations in this case take the form mentioned after
the lemma, with 23w~ so that A > """ and (s—1)(1—b/2) > 1.
Thus the expectations are all o(w™*). Now the u-measure of each interval
is O(w™%), 8o we obtain bounds of the type H(exp |yI|) < exp dy2u~,
0<y=<u” The resulting estimate for (P|I]>w7") then becomes
axp — A'w, o obtain approximation of exp — 2miu fo X (t) within ™,
gay, we require approximation to f within w?, Since 27 < 2a—bB,
and we are operating in 0" 2 0%, the estimates of entropy used before
are still adequate. To obtain the rate of decrease 4™ for real numbers
u wo use the device from harmonic analysis described in [4, p. 165].

The following lemma uges the idea of “widths” in a Banach space,
ag set forth in [177, [18, Ch, 9].

3. TammA, Let 8 be o bounded subset of A°[a, b]; 1 < a < 2. Then for
all large numbers y, and integers N = 1, we can find a set S{u) < 8 contain-
ing exp AN logy elements with the following property: to each set F 2 [a, b]
covered by N intervals of length ¥~y and each f in 8, there is an fo in 8 (),
such that |f—fo| < y~° everywhere on F.

Proof. First we divide [a, b] into adjacent intervals J of length ¥yt
(and. one odd interval at most), so the number of intervals is < (b—a)y+1
< 2(b~ a)y for laxge y. Dach set H, covered by N intervals of length
g, meets at most 2N intervals J just constructed, and the numper of
ways in which these 2N ean be chosen is < exp ANlogy. Thus, if we
construct subsets T(u) < §, containing expAnlogy elements, for each
selection. @ of 2 intervaly J, their union is the set S(w) gought. Let ¢
be a fixed union of that type. . N

Tor each f in 8 we denote by fo the function, defined on @, 111;ear
on each constituent J of ¢ and coincident with f on the end-points of tl}ose
intervals, Then |f--fo| < 9~" by the mean-value th.eorem.' T]Ele functions
fo belong to a bounded subsoet of € (&), namely a ball with radmg mclependent
of y. Moreover, the functions f, belong to a subspace (?f dlmensmn_fN )
so the largest collection. of functions fo, with mutual d.w?anoes Zy " =
that is, & maximal wy<. digtinguishable” subset — contains oxp ANlogy
clements. This mouns that at most expANlogy elements of § can be
My~ *-distinguishable, with an M da;pending.on 8 alom‘a. Tl'lus,, & EIet
S(u) = 8, containing oxpdNlogy elements gives approximation within
My~ and a slight adjustment yields the statement of the lemma. (In
cage a > 1 we uge a more complicated interpolation than the secant but
the main ideas remain similar.) Compare [18, p. 163].

TenoREM 6. Let 11 be the dyadic set constructed in Theorefr’n 2. Then
it is almost sure that all sets foX (1), with fe A" and o >1,f >0, are
M g-sets. '
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Proof. It is qufficient to make the proof for a fixed o >1, and for
this we choose C in the interval o™ < 0 < 1. Let N be the number of
intervals of length u~%° required to cover H. Then N can be estimated
by 2, where m;,, log2:> 2C0logu > mlog2. Thus it is almost sure that
¥ intervals of length o(uw~**) suffice to cover X (), so we can apply the
lemma with y = % and note that expAnlogy < exp.d’ Nlogu. This
gives a bound on the number of integrals to be estimated, for a fixed
w > 1.

However, the estimates of probabilities take the form exp-— 627
where  my;,,log2 > 2logw > mylog2. Thus my, o 0~'my, so that logmy
—o(k—1l), whence finally, Nlogu = 2'logu = o(2"logu/m;) = o(2"),
and this is sufficient: the remainder of the argument follows The-
orem 2.

4. TEREOREM 5a. Let u be a probability measure in a set I < (0, -+ o0),
satisfying a Lipschite condition with ewponent g in (0, §). Then it is almost
sure that all sets foX (B), with fe A¥, f' > 0, are M-seis.

(a) Since 0 < < §, we can agsume that B has Hausdorff dimension
exactly §; otherwise B would carry a measure with a higher Lipschitz
condition, and then the proof is much easier. We use this condition on F
only to ensure that X (¥) has Lebesgue measure 0, and then o X ig
almost surely singular.

(b) For each fixed # > 0, there is a sequence (k,) of compact sets,
such that m(k,) < n.for each n, and sup,A(k,) =1 for every singular
probability measure A on (— oo, co). Applying this to the measures po X1
for a sequence 7, > 7> ... > 7, > ..., We can find a subset £, of the
probability space 2, with P(£,) near 1, with this property: for each

5> 0, there are compact sets &y, ..., k,, with m(k) <%, ..., m(k,) <7
and sup; po X~ (k;) > 1—n for each Xe 2.

(¢) Now we consider the problem of approximating the integrals
fexp —2niufoX (t)- u(df), where the elements fe S, a bounded subset
of A¥(— oo, 00). To obtain approximation with error < 7, it is sufficient
to approximate f with an ervor < 7/ 8|u|, except on a set of uoX~*-measure
< 5/2. But when X @,, this can be accomplished by approximating f
on certain compact sets Ly, ..., L,, all of Lebesgue measure << 5. This
the number of elements of 8, needed to “match? fin the sense of the Lemma
to Theorem 6, is expo(|u*) as |u| - -+ oo, For this, see [22].

(d) I we. divide (0, + o) into intervals of length ™, then the
estimates of ‘probabilities become exp ~— Ou*?, since w fulfills the Lipschitz
condition of order 8. However, if we express the bound expo(|u/*) obtained
before in the form expuw?*h(u), with k(4 co) = 0, then we can employ
a division of (0, + oo) into intervals of length «™*/h(u), becauge the
probabilities then admit a bound exp — Ou*?h? (u). .
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The factor 1/h(u)-> + oo makes the expected values tend to 0,
because (6™ [h(u))* - - co. Since the estimate of probabilities is small
enough in comparison with the number of functions needed in approxima-
tion, Theorem. ba is proved. : '

In the extreme case § = §, the result seems to hold for (* functions,
after some variations in the argument; it is useful to note that C*is a Souslin
seti in. the metric gpace O (= oo, co). The theorem may indeed dail for A%;
the absolute continuity of the measures woX~' is a difficult problem.

Y. Our aim i to show that the order of smoothness (24)~* in Theorem
ba is best possible. This is not very difficult if we choose a weak condition
on foX (f) that nevertheless prevents foX (H) from being an M -set.
If, however, we seek properties close to the Kronecker property, the
arguments become mueh more subtle. Therefore our plan is to find geomet-
rie properties of X (), for certain dyadic sets B of Hausdorff dimension
arbitrarily close to f, and then study transformations of special sets by
diffeomorphisms of clags AY*f, For definiteness we state a complement
to Theorem 5a in a simple form. .

TuporuM 7. Let B be a dyadic set constructed over a sequence (my)Y
such that my,.,/m; =z d> 7 22 for infinitely many integers k. Then for
almost all paths X, there is a dense Gy-set Ay < IM*, such that foX(E) is
not an My-set, for each f in Ay

As before we use & gplitting of H into sets H,, 1 < p < 2% and choose
wpe B, arbitrarily. Later we shall choose & to be a special index, but the
next statement is valid for all k. :

1. LuMua. Z([t—a,| -+ 27"6) " < 2™ for all real ¥

Proof. Those summands in which [t—a,| > 1/2, say, contribute
< 2% 9™ to the sum. The number of solutions of the inequality 27™+1
< [t—my| € 27", iy < 2% and m << m—k+1, so the contribution for
1=1,9,...,% doosn’t exceed 2™*V2*~! in order of magnitude; summing
for L < 1< & wo tind the bound 2™,

Let y be & real number in the interval 1< y < df, and let » be an
integer such that (r--1)(y—1) > 1. We claim now that with probability
near 1 for lavge I:

any interval of length M, == 2~™ contains at most r—1 of the images

X (ay).

To gee this we congider increasing r-tuples y, < ... <, chosen from the
numbers o, and the corresponding event: | X (y;4,) — X (%) < My, 1<k
< r. There are 2% possibilities for y; and the lemma shows that the total
probability of all these events has magnitnde < 2% (M, 2™4)" =Y, Because
(r—1)(y—1) > 1, the probability is less than 2~ for some 7 >0, and
the claim is established. By Lévy’s modulus of continuity, the sets X (E,)

6 — Studia Mathematica LII
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have length < 2~™+1% «m, ,, for large k, and this length is o (M) becauss
3d >y

i ‘I};t s now summarize the property of X (&) = F that is used in the
remaining steps of the argument: there is a sequence Dj— 0 and corre-
sponding decompositions X (B) = U F,, with diamF, < Ly, such that
no interval of length D, meets more than # of the sets Iy, and finally
I, = o(D}*"). The last relation follows from. the inequalities 1 < y < df.

2. In using these properties of X (#) we need a finer splitting than
"UF, = F. Let ¢ be defined by the formula Ly = (& DY, and let
- I, be a maximal selection of sets F,, having mutbual distances > &,Dy. Let
T, be a maximal seleetion of sets I, not in Iy, having mutual distances
> & Dy, ete. Then Iu ... u I, exhausts {F,} if & is small, because any
set I, not selected after 7 steps, has distance < &, D) from r distinet
‘sety .

Let ge A28, let  be continuous on T, and e > 0. We shall choose
a function g,, with small norm in A*** guch that

{5 Dy ) (g —go) — | < & modulol on I}, 1<s<r.
First we define i, on the intervals F, ocourring in I'y, so that the inequal-
ity above is an equality modulo 1 at some point in each Fy; this can
be accomplished with b, < & Di*# and thus k, has small norm in pRER
since the intervals in I', have mutual distances s, Dy. Also, Ly, e; " Dy *#->0,
so the inequality actually holds on the intervals F,, whose length is Ly
at most. Next we construct h,, so that g-+h,-+h, has the necessary
properties on each interval F,, in I',. The critical point here is that |hy|
< &P DY 50 the addition of %, does not interfere substantially with the
inequality attained on I'y. Continming in this manner we construct
Go =M+ ...+l ‘

Writing @, = &; % Dy, we note that a, — - oo, while ay,, > &7 a,
1< s< r Thus, taking p = 0, we have a dense Gyset 1< A% whose
members f have the following properties:

To each &> 0, we can find numbers by < ... << b,, 80 that by > &
and b,y; > & 'b,, and one of the inequalities,

|b.f(®)] < ¢ modulol, §=1,2,...,m

holds for each x in F.

Thus f(F) is a set A" of Pyateckii-Sapiro [23, p. 346; 6, p. 58] and
is a set of uniqueness for trigonometric geries: f(¥F) does mnot carry
& (Schwartz) distribution ¢ # 0, whose Fourier transform ¢ is in L and
tends to zero at infinity. Thus f(#") is not an M -set, since finite meagures
are distributions.

’
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It is very plausible that JY# contains a dense Gs-set of functions f,
guch that f(F)is a Helson set [5, IV] but the proof of this would involve
machinery from harmonic analysis [2; 19, VI A].

Tnstead of introducing ideas divergent from our main topics, we
shall show how the construction just completed ean be improved. Let
us fix an m~tuple gy, ..., 9, of continuous functions on 7, and &> 0.

"Wo shall construet gy with similar functional-analytic properties to g,.

To each j = 1,2, ..., m and s = 1,2, ..., 7 there will be a number O(s, j)
g0 that

108, §) g (g -+ go) — vyl < & modulol, on T.
Moreover, (/(s,]) is not too laxge: 1= (s, 1) < O(m, ¢).

Tn fact, functions gy and numbers ¢ (s, j) are found by a simple device.
Lot gy vy Uy eeny Gy be Tationally independent numbers in [1, 2], and
let R be so large that the wvectors (pag,...,pa,), 1<p<E form an
tenet” modulo L in the m-cube: each point in I™ has distance < & from
some m-tuple (Pay, ..., Puy), L<p <R Then we define 0(s,j) = o
for all ¢, j and construct gy at the sth step by making adjustments equal
to some number pa;t, 1= p << R. (For details, see [12].)

Applying Baire's theorem. in this more complicated situation, we
find functions f such that F(#) resombles the union of # Kronecker sets;
hence we conjecture that f(F) is o Helson set for all f in 2/ except a set
of first category. .
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An inequality for the disiribution of a sum
of certain Banach space valued random variables

by
J. KURLBS* (Madison, Wi.)

Abstract. We prove an inequality for the distribution of a sum of independent
Banach space valued random variables provided they take values in a space having
2 norm with a smooth second directional derivative and the random variables have
9+ & moments. This inequality is applied to obtain the central limit theorem and the
1aw of the iterated logarithm, and it is shown that these results apply to the L? spaces,
2 p< oo

1. Introduction. Throughout the paper B is & real separable Banach
space with norm || +||, and all measures on B are assumed to be defined
on the Borel subsets of B generated by the norm open sets. We denote
the topological dual of B by B*.

A measure x on B is called a mean zero Gaussian measure if every
continmous linear function f on' B has a mean zero Gaussian distribution
with variance [ [f(#)1%u(dw). The bilinear function 7' defined on B* by

B

T(fy9) = [ f(@)g@ndn) (f 9B
B

is called the covariamce function of w. It is well known that a mean zero
Gaugsian meagure on B is uniquely determined by its covariance function.
This % so beeause 7' uniquely determines u on the Borel subsets of B
generated by the weakly open sets, and since B is separable, the Borel
gets generated by the weakly open sets are the same as those generated’
by the norm. open sets.

However; & mean zero Gaussian measure x4 on B is also determined
by & unique subspace H, of B which has a Hilbert space structure. The
norm on H, will be denoted by |||, and it is ‘well known. that the B norm
i1l is ‘weaker than |-[|, on H,. In fact, ||-[| is & measurable norm on H,
in the sense of [7]. Since ||| is weaker than. ||, it follows that B* can be
linearly embedded (by the restriction map) into the dual of H,, call it

* Supported in part by NST Grant GP-18759.
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